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Abstract

A universal decoding procedure is proposed for the intebmtnimterference (ISI) Gaussian channels.
The universality of the proposed decoder is in the sense ioighiedependent of the various channel
parameters, and at the same time, attaining the same randdmgcerror exponent as the optimal
maximum-likelihood (ML) decoder, which utilizes full kndadge of these unknown parameters. The
proposed decoding rule can be regarded as a frequency desraion of the universal maximum mutual

information (MMI) decoder. Contrary to previously suggesuniversal decoders for ISI channels, our

proposed decoding metric can easily be evaluated.

Index Terms

Universal decoding, interference intersymbol (ISI), ersxponents, maximum-likelihood (ML),

random coding, maximum mutual information, Gaussian chnreterministic interference.

. INTRODUCTION

In many practical situations encountered in coded comnatioic systems, the specific channel over
which transmission is to be carried out is unknown to the iveceThe receiver only knows that the
channel belongs to a given family of channels. In such a ctejmplementation of the optimum

maximum likelihood (ML) decoder is precluded, and thus, arsal decoders, independent of the
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unknown channel, are sought. In designing such a decodge Hre two desirable properties that should
be taken into account: The first is that the universal decoddonmes asymptotically as well as the ML
decoder had the channel law been known, and secondly, thatahstructed decoding metric will be
reasonably easy to calculate. This paper addresses theepraifl universal decoding for intersymbol
interference (ISI) Gaussian channels.

The topic of universal coding and decoding under channelrtaiogy has received very much attention
in the last four decades, see, for example, [1-15]. In thénreaf memoryless channels, Goppa [2]
explored the maximum mutual information (MMI) decoder, ahichooses the codeword having the
maximum empirical mutual information (MMI) with the charrmitput sequence. It was shown that this
decoder achieves the capacity in the case of discrete mémsrghannels (DMC). In [3], the problem
of universal decoding for DMC'’s with finite input and outpuphhbets was studied. It was shown that
the MMI decoder universally achieves the optimal randomirggderror exponent under the uniform
random coding distribution over a certain type class. In & analogous result was derived for a certain
parametric class of memoryless Gaussian channels with lemowm deterministic interference signal. In
the same paper, a conjecture was proposed concerning asatidgecoder for ISI channels.

For channels with memory, there are several quite genesaltse each proposing a different universal
decoder. In [5], the case of unknown finite-state channelf Witite input and output alphabets for
which the next channel state is a deterministic unknowntfanmf the channel current state and current
inputs and outputs, was considered. For uniform randomscoder a given set, a universal decoder (that
achieves the optimal random coding error exponent) whidbased on the Lempel-Ziv algorithm was
proposed. Later, in [6], it was shown that this decoder cameignto be universally asymptotically optimum
also for the class of finite-state channels with stochasdither than deterministic, next-state functions.
In [7], sufficient conditions and a universal decoder (called merging decoder) were proposed, for
families of channels with memory. The idea was to employ masagoding lists in parallel, each one
corresponding to one point in a dense grid (whose size groitvstive input block length) in the index
set. Accordingly, with regard to our work, it was shown tha proposed decoder universally achieves
the optimal error exponent under the ISI channel. Unforelgats was mentioned before, this deocder
is very hard to implement in practice due to its implicit sture and the fact that it requires to form
a dense grid in the parameter space. In [8], a competitivénmaix criterion was proposed. According
to this approach, an optimum decoder is sought in the queshiimmizing (over all decision rules) the
maximum (over all channels in the family) ratio between thereprobability associated with a given

channel and a given decision rule, and the error probalufithe ML decoder for that channel, possibly
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raised some power less than unity. This decoder is, agaig, hemd to implement for the ISI channel
due its complicated decoding metric.

In this paper, we propose a universal decoder that asyropligtiachieves the optimal error exponent,
and contrary to previous proposed decoders, our proposamtioig metric can easily be calculated. The
technique used in this paper is in line with the techniqueklvivere established in [1, 16]. Specifically,
similarly to [1], the main idea is to define an auxiliary “backwd channel”, which is a mathematical tool
for assessing log-volumes of conditional typical sets @fusmces with continuous-valued components.
These log-volume terms play a pivotal role in the universalodéng metric. The backward channel is
defined in a way that guarantees two properties: first, a measaentration property, that is, assignment
of high probability to a given conditional type by an appliapg choice of certain parameters, and
secondly, the conditional density of the input given thepaut associated with this backward channel
should depend on the input and the output only via the sufficitistics that define the conditional type
class. Contrary to the problem considered in [1], the difficuh the ISI channel, stems from the fact
that the choice of the backward channel is a non-trivialés$tturns out that in this case, the passage to
the frequency domain resolves this difficulty. The proposembdimng rule can be regarded as a frequency
domain version of the universal maximum mutual informat{tMI) decoder.

The remaining part of this paper is organized as follows. IrtiGedl, we first present the model and
formulate the problem. Then, the main results are providetdiscussed. In Section Ill, we provide a
proof outline where we discuss the techniques and methgiwadhat are utilized in order to prove the

main result. Finally, in Section IV, the main results are prbve

II. MODEL FORMULATION AND MAIN RESULT

Consider a discrete time, Gaussian channel characterized b

k
ytzzhixt—i+wt7 t2071727”'7n (1)
1=0

where{x;} are the channel input$hi}f:0 is the unknown channel impulse responge; } is zero-mean

Gaussian white noise with an unknown variarce> 0, and {y;} are the channel outputs. It will be
assumed that the noidev;} is statistically independent of the inp{it, }. We allow & to grow withn in
the order oft = o (n'/2). In such a case, we further assume that the impulse respeqaere(h;}°,,

is absolutely summabte

1This assumption can be relaxed to square summabilityhe¥.
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The input is a codeword that is randomly and uniformly drawerca codebook’ = {x!,... ="}
of M = 2" messagex’ = (z%,...,2%) € R", i = 1,2,..., M, whereR is the coding rate in bits
per channel use. In the following, the probability of erresaciated with the ML decoder, that knows
the unknown parameter?, hy, . .., ki), will be denoted byP. , (C, R,n). We shall adopt the random
coding approach, where each codeword is randomly chosérrespect to a probability measure denoted
by u (x). For a given power constraint, a reasonable choicg @f is the truncated Gaussian density

restricted to the shell of an-dimensional hypersphere whose radius is abotf. To wit,

@)= s ) T oo {2} @

2 2
t=0 Tz

whereya (x) is the indicator function of the set

A 1n71
DA =qx: —Zm?—ai
n

t=0

whereA < 1, andv normalizes the above measure such that it would integrat@itg. Note thaty (x)

< Aoi} 3)

is invariant to unitary transformations af. It is well-known [17, Chap. 7] thaj (-) attains a higher
error exponent than that of the respective Gaussian dewnditythe same variance, at least for small
rates, where the non-typical events (or, the large deviativents) are the dominaniThe analysis in
this paper can also be carried for the case where the codsvaoeddrawn independently and uniformly
over a setZ, C R" that is endowed with @-algebra (e.g., am-dimensional hypercube), and satisfy
an average power constraint, as was considered in [7, The¢yebet P, , (R, n) =) {Peo(C,R,n)},
where the expectation is taken over the ensemble of randeatgcted codebooks undger(-). Finally,
we define the random coding error exponentFasR) 2 lim sup,,_,. n~ ‘log P., (R, n).

As was mentioned previously, we wish to find a decoding proaedhich is universal in the sense
of being independent of the unknown parameters, and at the siane attaining? (R). Specifically, let
P.. (C,R,n) designate the error probability associated with the usaderule for a given codebook,
and letP. , (R,n) 2 E{P.. (C,R,n)}. Then, we would likeP., (R,n) to decay exponentially with
rate £ (R).

We now turn to present the proposed decoding rule. To thislehdl andy denote the discrete Fourier

transforms (DFT) of the sequencés;} and{y.}, respectively, i.e., then-th component oft is given

by

n—1
1 .
T = § :xtefJZﬂ'mt/n (4)
vn —

2Intuitively speaking, this is true because of the fact that it does not allemeleergy codewords
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wherej = +/—1 and similarly fory. Then, define an auxiliary “backward channel” by the conddion

measure
n—1 12 1 k N 2
V(@15.8.k) = [ (2708) " exp { =5 [ = Gin Y cue™ (5)
m=0 0 1=0
where§ £ (03,0, ...,ai) is the parameters vector of the backward channel, in whieh})_, are

complex-valued. It should be emphasized that the above defirof the auxiliary backward channel is
completely unrelated to the underlying probabilistic motteparticular, it is not argued thaft (z|y, 0, k)
is obtained fromu (x) and the forward channel (1) by the Bayes rule, or any otheticgiship. For
example, our backward channel allows vectorthat are outside the regiab . Our decoding rule will
select a messag@’ that maximizes the metric
) (ii,@) _ maxg V' (%Z\Q,O,k)
(@)

among allM codewords. The backward channel is a mathematical tool feesasg log-volumes of

(6)

typical sets [1, 16, 18], and it should be defined in a way thargntees two general properties: first,
a measure concentration property, that is, assignmentgbf priobability to a given conditional type by
an appropriate choice of the parameters of this backwardrnehaand secondly, the conditional density
of £ given g, associated with the backward channel should dependt and ¢ only via the sufficient
statistics that define the conditional type class. Contrarthé problem considered in [1], the difficulty
in the ISI channel stems from the fact that the choice of théklward channel is a non-trivial issue.
Specifically, as will be seen in the sequel, an “appropriateiticdate backward channel must depend on
a sufficient statistics vector (associated withwith dimension that equals to the number of degrees of
freedom, which in turn adjust their conditional expectasiolt turns out that in this case, the passage to
the frequency domain is more “natural” and mathematicadipvenient due to the well-known asymptotic
spectral properties of Toeplitz matrices (see, for examl®]). To wit, it can be seen that the model
in (1) can be written in a vector forrg = Az + w where A = {q; ;} = {h;—;} is a Toeplitz matrix.
Now, by the spectral decomposition theorem [20], we know thare exists an orthonormal basis that
diagonalizes the matrid. Projecting the observations onto this basis will simplyatepose the original
channel into a set of independent channels, which are sirtgplnalyze. While this is true for any matrix
A, for Toeplitz matrices we can asymptotically charactethmir eigenvalues and eigenvectors in terms
of the generating sequen({ei}fzo, which is a fundamental part in our analysis. We next giverttan

result of this paper.
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Theorem 1 Let the codewords af be chosen randomly and independently with respect to thsitgten(-)
given in (2). Assume that the channel impulse response ciegificare absolutely summatlg; };°, € 41,
and thatk = o (n'/2). Then,

limsup — [log Py (R, n) — P (B,n)] < €(A) )

n—oo N
where ¢ (A) — 0 asA — 0, and ., (R,n) is the average probability of error associated with the

universal decoder given in (6).

The intuitive interpretation of (6) is that~!logu (&,9) = n~!logmaxg V (Z|y,0,k) /u(x) is an
empirical version of the per-letter mutual informationweénx andy in the frequency domain. Thus, we
select the inpuk that seems empirically “most dependent” upon the givenuwwectory in the frequency
domain, which corresponds to the MMI principle. The passagth¢ frequency domain asymptotically
eliminates the strong interactions between the variouspomnts of the input vector, and transforms the
original model into a set ofi separable channels which are controlled(by+ 2) degrees of freedom.
Note that on the support qf (-), the termn~!log i1 (i’) is nearly a constant independent ofThus,
the proposed decoding rule is essentially equivalent totbaemaximizeanaxg V (Z|y, 0, k), namely,

maximum a posteriori (MAP) decoding.

Remark 1 In [1], a universal decoding procedure for memoryless Gansshannels with a deterministic
interference was proposed. Accordingly, we remark that fdradl can be fairly easily extended to the

channel model
k

yo =Y hie i+ 2+ w (8)
i=0

where {z:} is an unknown deterministic interference that can be decsen as a series expansion of

orthonormal bounded functions with an absolutely summabkdfficient sequence, namely,
[e.e]
thzbi¢i,ta t:1,2,... (9)
=1

where{b;} € ¢, and|¢;:| < L < oo for all i andt¢. The coefficient{d;} are assumed deterministic and

unknown. In this case, an appropriate definition of the aaryilbackward channel is
2

n k q
T o~ |~ —1/2 1 ~ ~ 27jlm ~
V (2l7,0,k.q) = [] (2703) " exp g7 [T I 2 oue —Zﬁiqbz-,m (10)
m=1 =0 i=1
where now8 £ (02, c0,...,an, B, ..., B,) is the parameter vector of the backward chan{éﬁlé,m}

is the frequency transformed representation{¢f,}, andq = ¢, is assumed to be a monotonically
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non-decreasing integer-valued sequence suchythat oo andg, = o (n'/3). Accordingly, the decoding
rule will select a message’ that maximizes the metric (6) (whefé in (6) is replaced with/), among
all M codewords. For simplicity of the exposition and to facttahe reading of the proof of Theorem

1, we will assume the original model (1).

Il1. PROOFOUTLINE

In this section, before getting deep into the proof of Theofkemve discuss the techniques and the
main steps which will be used in Section IV. In order to faailt the explanations, we will need the

following definitions: Letx andy be arbitrary vectors ifR™ and define

So(@,y) = {2/ - W (yl2') > W (ylz)} | (11)
Su (z,y) = {w' S U (w',y) > u(w,y)} , (12)
and
5 A ;o1 / 1
S) (xz,y) = {:13 : ElogW(y|az) > nlogW(y|az)—6}, (13)

whereW (y|x) is the conditional pdf associated with the channel. In woigx,y) andS, (x,y) are
simply the sets of prospective incorrect codewords comeding to the ML decoder, and the proposed
universal decoder, respectively, assuming thas the transmitted codewords and thats the received
vector. The sef] (z, y) is just as-perturbed version af; (z, y) which will be used for technical reasons.
Finally, we letP., (R,n), P, (R,n), and P!, (R, n) be the average error probabilities associated with
the ML decoder, the proposed decoder, anddperturbed decoder (see, (18)-(21)).

Generally speaking, the root of our analysis is Lemma 1, whiah asserted and proved in [1, Lemma
1], and can be thought as a continuous extension of [5, Goyoll]. This result relates betweé_rio (R,n)
and P. ,, (R,n) as follows

s, @y (@) 0

_ _ 3
P..(R,n) <2P°, (R,n) |=+ sup ) (14)
’ 2 (w,y)eH” fsg(m7y) N (m/) dm/

where{H, },-, is a sequence of sets of pais,y) such that

1
limsup —logP{H,,} < —E (R). (15)

n—oo N
Whence, we see that in order to show tifat, (R,n) and P., (R,n) are exponentially the same, we
just need to define a sequentH.,, }, -, such that the ratio in (14)
fsu(w,y) p(z') de’
S (@) 1 () A’

(16)
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is uniformly overbounded by a subexponential functionmgfi.e., e~ wheree, — 0 asn — oo
uniformly for all (x,y) € H,. Once this accomplished, the proof of the theorem will be giete. The
main question is now how to define the sequel{lél?n}n21 properly? To answer this question, let us
interpret its role. The sel,, simply divides the space of pai(s,y) into two parts, where in the first
part, the supremum in (14) is uniformly bounded by a subegptal function ofn, and the second part
possesses a probability smaller than the desired expahémtictione="£(%) and hence negligible (see,
(15)). Obviously, given these requirements one can propegeral candidates fdid,,, namely, the choice
is not unique. However, another important property #¥t, },,., should account for is that the function
n~tlogV (Z|y, 6, k) will be uniformly continuous w.r.t. small perturbations tife sufficient statistics
(this idea will be emphasized in the analysis). To summatize first part in the forthcoming analysis
is to define the sequendgd, },, such that (15) holds true, and that hopefully (14) will hadd t The
proposed{ Hy},-, is given in Lemma 2, and the main tool that is used in the proddnge deviations
theory.

Following the first part, in the second part, we will eventyahow that the chose#,, fulfills the
desired subexponential behavior of (16). Accordingly, wi# ewverbound (16) withinH,, as follows:
we will derive an upper bound on the numerator of (16) and eetolaound on its denominator, and
show that these are exponentially equivalent. To this eredwill need to define a conditional typical
set of our continuous-valued input-output sequenceshlsttasome of its properties, and particularly
to calculate its volume (Lebesgue measure). This typical 5ebme sequence given y will contain
all the vectors which, withire > 0, have the same sufficient statistics @snduced by our backward
channel (see (61) for a precise definition of this set). Thenwileprovide upper and lower bounds
(which are exponentially of the same order) on the volumehdf typical set. To accomplish this, we
will use methods that were previously used in [1, 16, 18],ckhére based on large deviations theory
and methods that are customary to statistical physicsr Atfitet, we will show that for any two vectors
u andwv that belong to this typical set, the conditional pd¥s (y|u) and W (y|v) are exponentially

equivalent, that is, for sufficiently large,
1 1
—logW (ylu) — —log W (ylv)| <¢ (17)

for any( > 0. Thus, given this property, we can easily provide a lower ldoomthe denominator of (16).
Indeed, sincer € Sg (z,y), then in view of the last result, there exists a sufficientlyam > 0 such
that the predefined typical set is essentially a subs&’df:,y). Therefore, the integral oves? (z, y),

in the denominator, can be underestimated as an integraltbeetypical set, and since we know its
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volume (or, more precisely, a lower bound on it which is exguarally tight), it is not difficult to provide

a lower bound on this integral (see (105) for more detailg)viding an upper bound on the numerator is
a little more involved. The underlying idea is to partitioretsetS,, (=, y) into a subexponential number

of conditional types, where for each conditional type, thiegral over the respective conditional type is
overestimated using the upper bound on the volume. Finahyillibe shown that these two bounds are

exponentially equivalent, which implies that (16) is sub@xential function ofn, as required.

IV. PROOF OFTHEOREM1

For completeness, in this section, we will provide again eatefinitions that were already presented
in short in the previous section. Letandy be arbitrary vectors ifR™ and defineS, (z,y) andS, (x,y)
as in egs. (11) and (12), respectively. The average errorapiliies associated with the ML decoder

and the proposed decoder are given by (see, for example, [1])

2nR_1
1— / 7 (w') dcc/] (18)
S,(X,Y)

P.o(R,n)=1-E

and
gnR_1
Py (Rn)=1-ES |1— / p () da’ , (19)
S.(X)Y)

respectively, where the expectations are taken with régpduv.r.t.) the joint distributiorn. (x) W (y|x),

and we use the usual conventions where random vectors aotedeny capital letters in bold face font,
and their sample values are denoted by the respective loager letters. Similar convention will apply
to scalar random variables (RVs), which will be denoted vsiime symbols without the bold face font.

Finally, for 6 > 0 we define the set

A 1 1
Sg (x,y) = {a:’ : ElogW (y|m’) > ﬁlogW(y|m) — 5} , (20)

and accordingly

2nE_1
Pgo (R,n)=1—-E<¢ |1-— / (') da:'] . (21)
SH(XY)

Finally, with a slight abuse of notation, we also use the mmtatS, (z,y) which is defined as

follows: Let & and ¢ be the Fourier transforms of and y, respectively. ThensS, (z,9) =

{#/ =F"2': 2’ €Sy (z,F"y)} whereF is the DFT matrix, namelyf’ = {e/>™™!/n /\/n}

n—1
m,l=0"
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As was discussed earlier, our goal is to compare the expahdrghavior of P. ,, (R,n) to that of
P.,(R,n). To this end, we will instead compare the exponential behasf P., (R,n) to that of
Pgo (R,n) for smallé > 0. In the final step of the proof, this will be justified by showiritat

lim sup 1 log P! (R n) —log P., (R,n)} < (22)
n—soco N
whered’ — 0 asé — 0 and A — 0. In the analysis, we will use the following lemma [1, Lemma 1 pp
1263].

Lemma 1 Let {H,},., be a sequence of sets of paits, y) of n-dimensional vectors such that

1
limsup —logP{H } < —E (R) (23)
n—oo T
Then, for all largen,
- B ,u z d /
P.,(R,n) < 2Péo (R,n) 3 + sup fs @9) . (24)

2 (z,y)eH, fso (&,9) (:C/) da’

Thus, by using Lemma 1, we see that in order to showhat(R,n) and P, , (R, n) are exponentially

the same, we just need to find a sequefis. },,, such that the ratio

fsu(:ng) p (') da’
Jss (g 1 () @’

is uniformly overbounded by a subexponential functiompffe.,e™ wheree,, — 0 asn — oo uniformly

(25)

for all (z,2) € H,. For a given paif(&,¥), let us defined = (52, do, ..., é) to be

>

0 = arg m(;cxxV (x|y,0,k). (26)

The setH,, will be parametrized by a paramet8r> 0 and defined as follows

n—1
Ao 1 ~ 2 o 1
Hn(B):{a:y nZ\xm\ — 02| < Ad?, mz::o]ym\ < B, UOZB}. (27)
We have the following result.
Lemma 2 There exists a sufficiently largB such that{ 1., (B)},,~, satisfies (23).
Proof of Lemma 2. By the union bound we have that
n—1
P{mxBngP{ >y >B}+P{O<B]} (28)
t=0
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Thus, it should be shown that i is sufficiently large, both probabilities on the right-handesof (28)

decays faster thaa"£(%) Regarding the first term, note that

(29)
:
(30)
: :
N TN 3 @)

where||-||, denotes the spectral norm, and in the second inequality we tised the fact thatr AB| <

| B||, tr (A) for any B and nonnegative definite matriA. Due to the fact tha{h,,} € ¢; (essentially,
{hm} € €5 is suffice here) it can be shown that [19] the spectral nip#h|, is uniformly bounded, that
is for all matrix dimensiom we have that| H||, < M whereM > 0. Therefore, we obtain that

n—1 n—1
P{:LZ}Q2>B}§P{:LZWE>(\/E—M\/ag(l+A)>2} (32)
t=0 t=0

which can be made less than™Z(%) by selecting a sufficiently larg®, as can be shown by a simple
application of the Chernoff bound. As for the remaining terry taking the gradient of (z|y, 0, k)

w.r.t. @, we obtain that the components @fare given by the solutions of the following set of equations

n—1 n—1 k

- oy _2mimg . 2 _2mimg . 2mjml
E Imlme  n = g |Um| €™ = qe »~ , forg=0,...,k, (33)
m=0 m=0 1=0

and

2

n—1

66 =

(34)

k
- - N 2mjml
Im — Ym E ae
=1

SENS

m=0

Note that

1 n—1 9 o
P{c}g < B—l} < P{&O < B!, EZ )Ym} < \/E, min ‘Ym) > 7-}
t=0

0<m<n—1

n—1

1 _ 2 2
P ’Ym‘ ~ VB +]P>{ max ’Ym‘ gf}

nt:O 0=

m<n—1

1n—1 9 2
<P{&z<B 7 -3 )Ym} <VB, min (Ym) > 7
n —o 0<m<n—1

+P{ig’ffm‘2>\/§}+P{i§‘ffm‘2gr} (35)
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wherer > 0. As before, the exponential decay rate of the last two termthe right-hand side of (35)
can be made arbitrarily large by selecting a sufficientlydaByand sufficiently small-. As for the first

term, we first note that by using (33), we have

n—1 k n—1 k .
S e b = Red 33 ag il e zaze n 30
m=0 q=0 m=0 ¢q=0
n—1 k ) ) 2
= [iml* D> cue (37)
m=0 =0
Thus, using the last result we obtain
1 n—1 k z 2
OA’S = E T — gmzdle n (38)
m=0 =0
1 n—1 n—1 k . 1 n—1 k . 2
= |Zm|? — 2Re{z Zimy;afe_ n } + — Z |Gm|? Zdlé’ n (39)
m=0 m=0 [=0 m=0 =0
1 n—1 1 n—1 k 2
=2 ~ 2 A 2miml
=2 laml = S igmlP ) dwe (40)
m=0 m=0 =0
which in turn must be nonnegative, and hence
n—1 k - 2 1 n—1
G D dne™ | < = il <02 (14 4). (41)
m=0 = =
Thus, given that mm |ym| > 7, by using (40) we obtain that
1 n—1 k . 2 1 n—11| k . 2
D il D w2 S e (42)
m=0 =0 m=0 | [=0
k k 1 n—1 S
=73 Y &ar=y e (43)
l:O TIO n m:()
k
— 23 (44)
1=0
Therefore, invoking (41), we finally obtain that
1+A) A
Z| 2 ZUER 2 0 ), (45)

Now, recall that{&;} minimizes the quadratic norm
2

—1 k
1« |. 2nimt
— § Tm — ym§ ae
n

m=0 =0
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over all vectorsa = (ag,...,a) in CF1. Also, due to (45), the minimizing vector must lie
in the (k4 1)-dimensional hypersphere’a < C(1,A). Now, fix § > 0 and define the grid
g2 {§-i:i=—[C(r,A)/8],...,—1,0,1,...,[C(1,A)/5]}, and letG*+! designate thék + 1)th
Cartesian power of;. From the uniform continuity of the above quadratic form \vitthe set of all
energy limited vectorg, one can find a sufficiently small value 6f(depending onC') such that there
exists a vectorae = ap + jo; where ag, a; € GFFL, ie., the nearest neighbor of the minimizer,

satisfying (given of course the event th} < B~1)

k
- - 2mjml
LTm — Ym E Qe -

=0

1t 2
- <2y (46)
n = B

whered’ is a sufficiently small value (depending o For brevity, in the following, we will omit this

negligible additive term. Whence

1 n—1 9 92
IP’{&O <BL =Y ‘Ym’ < VB, min ‘Ym’ > T}
t=0

0<m<n—1
1 n-l ~ ~ k 2 ! ? 1 1 n-l ~ 12 - 12
=P K = Ve <5 EZ‘YW < \/E,ngnn%%_l‘ym‘ > 7 (47)
m=0 =0 =
1 n—1 _ ~ k . 2 9 1n71 9
Qap,oeGhtt m=0 =0 t=0
2
1 n-l ~ ~ k 2mim 2 1 nd g 2
< Z Pq— Xm—Yn ae n l <=5 = ‘Ym‘ <VvB (49)
n B’ n
agr,€GEtT m=0 =0 t=0
2
C (r, A) T\ 19 o & 2 1|5 2
< (,4) max  P{ =S K=V Y e | < 2, S )Ym‘ <VB
d QR0 EGRH n B’ n
m=0 1=0 t=0
(50)

Let us show that the term on the right-most side of can be magenextially less thaa—"Z(%) Define

the set
A 11 i M=
Fa= (52,:{/) H jm_gmzale ” E EZkym‘ <\/> . (51)
m=0 =0 m=0
Accordingly, define an auxiliary joint density
2
1 e B M 1 )
9@y =7———=z || exp{—5 [Tm —Im )_aue - exp{—lz?ml } (52)
(%2/\/?)71 nno 2 1=0 VB
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Thus,

1> /f g (de, dy) (53)
2
\ol {Jr } . ox B k o ezﬂ-g nl oxc _L -9

Vol { Fo, } 5

> PVl oy (55)

(2x*/VB) bimzn)

m2e2\ "

Vol (£} (2 = > , (56)

and therefore Vo[ F,,} < (27r262/\/§>n. Thus, we now obtain that

P{Fa} = p(x) W (y|z) dedy (57)
(z,y)eF.
< Vol {F¢} (2%02)771/2 v (58)
on—n/2 _1 n B
< (27TU ) VT exp {—2log (W)} (59)
2
=vlexp {_n log <BU2> } (60)
2 e
which, again, can be made less thartZ(%) by selectingB sufficiently large. ]

To overbound (25) withinH,, (B), we derive an upper bound on its numerator and a lower bound
on its denominator, and show that these are exponentialljvalgnt. To this end, we first need to
define a conditional typical set of our continuous-valuedutaputput sequences and establish some of
its properties. For a given pair of vectai®, y) ande > 0, define thekth order conditionak-type of &

giveny as

7;k<wry>é{ izw ——Z\
:LZRe{img,*n }——ZRe{N;ng;e_zwilm} <el=0,... k

1 — 2mjlm 1 — 2mjlm
=3 Im {@mg;;e*f‘n }— - § jIm {;z;ng;;e*T } <e, l:O,...,k}. (61)
n m=0 n m=0

This set is regarded as a conditional typeaofjiven y as it contains all vectors which, withiey have

the same sufficient statistics asinduced by our backward channel. In the following, we wilbghthat

for every conditional typg* (z|y), and for any two vectors andwv in 7 (z|g), the conditional pdf’s
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W (y|lu) and W (y|v) are exponentially equivalent. This property will be use@dain. To show that

this is indeed the case, we will need the following lemma.

Lemma 3 Let L and n, be natural numbers such thaf, = n/n,. Define the setsgi =
{e-i:i=0,1,...,[LP;/€e]}. Also, let
TF (@ {U X %5 (P) }ﬂT (62)
< =1

where X designates a Cartesian product, and

1
T ~ 1~y A 1 e _ 2mjlm oy 2milm
zW|w={ "HE:&{me 71}——22&%;wm : ”Sgleuwh
m=0
1n_1 ~ o~y —2milm 1 - ~ o~y 2mjlm
- ZIm {xmyme }— - Zlm {xmyme n } <el=0,....kp, (63)
m=0 m=0
and
7 (P) = {& e ||@|" - nP| <e |
where

wé{Peﬁé

1 L 1 n—1
~ 12
L2 Fimy 2 ol
=1 m=0

wheregfe is the Lth Cartesian power of; .. Then,

e} (64)

TF (2lg) € T (2]9). (65)

Proof: See Appendix A. ]
Intuitively speaking, the difference betwe@H (z|g) and 7* (&|§) is that in the former we split each
sequencé: into L bins, where in each bin we fix the energy. Indeedzdgb € 7.* (|y). Due to Lemma
3, we also have thaii, » € T* (&|§). Then,
n—1 k n—1 k

) )

1 1
Zlog W — ZlogW
—log (y|u) -~ log (ylv)| =

(66)
Recall that the model in (1) can be represented in the foligwiector formy = Ax + w where A
is a Toeplitz matrix formed by the generating sequefig, that is A = {a;;}, ; = {hi—;}, ;- Now,

by using the spectral decomposition theorem [20], we knoat there exists a unitary matriR that

Swithout loss of generality, it is assumed that (bin size) is a divisor ofe, and that allL bins have the same size.
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diagonalizesA. Accordingly, let{\;};", denote the singular values associated with this transfiimma

Thus, we obtain that

1 1
‘ log W (yl) — ~ log W (ylo)
n n

1 1 n—1 1 n—1
507 | 2 i = Al = = > i Am@mﬁ‘ (67)
m=0 t=0

wherey = Ry and similarly for{,,} and{%,,}. Continuing, we see that

n—1

n—1
Z Re (5, Amibm} — = > Re (G Anim)
m:()

1 1 — 2 ~ 2 ~ 2
s ;ZM (lml? = liml?) |
m=0

Now, we note that by Szés theorem [19-22], the Fourier basis asymptotically dizaizes Toeplitz

1
‘ logW (ylu) — — logW (ylv)| =—

(68)

matrices. Accordingly, the asymptotic eigenvalues aremivy the DFT of the generating sequerég},

that is, for sufficiently large enough and anys > 0, we have that [20]

k
o Z hle—ijml/n <
=0

and by the same tokénsince the Fourier basis asymptotically diagonaliZgsthe eigenvectors matrix

g, m=0,...,n—1, (69)

R asymptotically equal to the Fourier badis Thus, using (61) and (69), we see that

n—1 n—1
1 1
- Uy, )\mAm - g, )\mAm
‘”mi Re {JmAmtim } nmEZORe{ym Om }

=0
k 1 n—1 1 n—1 .
< |h | 4 — Re ymu e—27rjml/n - Re g;kn,bme—%r]ml/n (70)
S 5 i) 15 o)
k
<(e+e)) |l < (ete)-C (71)

1=0

where in the last inequality we have used the fact #igt} is absolutely summable. Now, regarding
the second term on the right hand side (r.h.s.) of (68), wethisefollowing approximation argument
(which is asymptotically tight), that was used in [16, Sec]. Recall that due to Szég theorem, we
know that the Fourier basis asymptotically diagonaliz&sand that there exists a frequency response
H (w) that corresponds to the linear system induceddyyand is given by the Fourier transform of the
sequencd h; }. Then, we use the fact that every continuous function can peoapnated arbitrarily well

by a sequence of staircase functions with sufficiently sngdcig between jumps. In other words, we

4Another approach is to first assume thhtis a circulant matrix, and then the Fourier basis exactly diagonalzésr any
n, that is, the eigenvectors are given by the DFT matrix, and the eigesvateegiven by the DFT ofh; }. Then, when taking
the limit n — oo, using Sze@'s theorem, this assumption can be dropped.
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approximate the continuous frequency respalsev) by a staircase function and then we take the width
of each stair to zero. This approximation in turn correspaiedassuming that the eigenvalugsy,,},

are piecewise constant over the varidudins (see Lemma 3). At the final stage of the analysis (after
taking the limitn — oo), we will take the limitL — oo so that this approximation becomes superfluous.
Thus, under this approximation, we obtain that

1n—1 1 L 1
2 (1~ |2 -2 2 (1~ 2 L2
o 2 Danl? (finl? = 5l?) | = |7 32 2 30 el (il = 1o )
m=0 =1

meZ,

1 & 1 ) )
L;Mllan > (\uml2 - |va2) (73)

mEIl

(72)

L
1 1 - ~
<P 3 (Enl? — fonl?) (74)
=1 b meZ,
L C LTk 2
<Y NP4 [ZIhU] <e-Cf. (75)
=1 =1 Lv=0
Thus, we have shown that
1 1 €+e¢
oW (vl Log W (ulo)| < 57 e c), (76)

Clearly, the right-most side of (76) can be made arbitragityall by choosing sufficiently small and
n, L sufficiently large. Similarly,. (v) and i (v) are also exponentially equivalent, provided that they
both belong to the support ¢f(-), namely,

‘ 1

- log i (u) — %logu (v)| <e-Cy (77)

for some constanf’,. Next, we provide upper and lower bounds on the volum&®tz|y), where the

volume of a setd C R" is defined as Vo|[.A} 2 Sy de.

Lemma 4 Let (x,y) € H, (B) for someB > 0. Then, for every sufficiently sma#l > 0, the volume of
7F (2|y) is bounded as follows

exp{—nef (B,Ak)} 2

exp{nef (B,Ak)}

B .
— < <
maxy V (Z|y, 0, k) [1 (2k + 12)7162] < Vol {7; (m]y)} ~ max, V (Z|y,0,k)’ (78)
in which f (B, A, k) 2B [1+VEk+1-C(B™',A)] whereC (-,-) is defined in (45).
Proof of Lemma 4: Fix a pair(z,y) € H, (B) and let
n—1
A N
Pzz =T ! Z ‘xm‘Qa (79)
m=0
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n—1
pp 20t Y Re{Fngne ) =0,k (80)
m=0

and
A n—1 .
ph=nt Z Im {img:ne* n } ,1=0,...,k. (81)
m=0
Also, let 0 designate the vector of paramete(t%,ag, . ,ak) that corresponds to the solution of the

following set of equations

Ey {Zl )me} = 82)

and

n—1
Ey {Z Re {Xmg;e—f“i’"” }} =nph, 1=0,...,k, (83)

and

n—1
Ey {Z Im {X’mgj:ne_%fmlm }} = nplf, [=0,...,k (84)

m=0

where the expectatioRiy is taken w.r.t. the backward chanriél(-|y, 8, k). This parameter vector can
be found by solving the set of equations (33)-(34), namelgttains the maximum oV (z|y, 0, k) as

can be easily seen. Then,

1=V ({75 @l9)} l9.6.k) (85)
:Lk(i~)l/(az@,9,k)dx (86)
> Vol { 7 (#13)} sl V(l5.0.k) (87)
> Vol { 7 (&[7) } exp {—n 2;2 (1 + 2213 |@l|> ¢ }V(d’:@,é,k) (88)

=0
> Vol {T’“ (:a;z,)} exp {—neB [1 +VE+1-C (B, A)} } V(2|g,0,k) (89)

where the second last inequality readily follows from a \ion similar to (76) and the fact that
(z,y) € H,(B), and the last inequality follows from (45) along with the tfalat for any sequence

z = (21,...,2n), We have|z|, < \/n|z|,,. Thus, we obtain

o exI){nﬁf(lgﬂﬁwk)}
vol {7} (@) } < max, V (2[4, 6, k)

For a lower bound on the volume, we first note that

=exp{nef (B,Ak)}exp {n log (7‘(‘65‘8) } (90)

1=V ({7* @lg) v {7* @19)} } 19,6, k) (91)
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< Vol {7 (@[9) } exp {nef (B, A, )} max V @]5,0,k) + V ({TF @)} 19.6.5)  (92)
where the last inequality follows by the same consideration(89). Using Boole’s inequality

v ({7 @) 19.0.%) <v ( IS & e @,é,k)

> €

k n—1

1 2mjlm
—1—2‘/ EZRQ{meme_ n }—pi‘%>e
=0 m=
i 1 ) 21 .
+YV < - Zlm{Xmg:‘ne— "i’”} —phl > € @,0,k> (93)
=0 m=0

Now, due to (82)-(84), the events in (93) are large deviatievents. For example, for the second term

on the right hand side of (93), let us define the following Gausslensity

n—1
5g(z):(m}18)nexp{—;gzo|zm|2}_ (94)

Whence, by Chebychev’s inequality we obtain, for @ny [ < k,

1 i S o~y — 2milm ~ 1 ol oy 2mjlm
V( nZORe{meme " }_plxy >6y797k> _5G’{Z: nZORe{Zmyme n } > €
m= m=

n—1 . 2
;E& (i Y Re {Zmﬂ;“ne—”i}> (95)

S J—
m=0
1 n—1 1 n—1
< [Z [Gm | Ea{n > |Zm|2} (96)
m=0 m=0
Bé2  B?
She Saa (97)

For the third term on the right hand side of (93), we again hheg

n—1 n—1 2
1 > o~k 2milm l PO 1 1 oy 2milm
V(nmzzzolm{meme . }—pzy >6y,9,k) < =By <nmzz:01m{2myme 2nito }) (98)
B2
<= (99)
ne

Finally, exactly in the same way, one obtains that
n—1
1 = |2 2miim !
V(an:ORe{ Xm‘ e n }—pm
Therefore, using (92), (97), (99), and (100), we finally codeluhat

exp{—nef (B,Ak)} 1 1282 B 2kiz
maxe V (Z|y, 0, k)

ne2 ne2

> €

R 2
y,0, k) < 123; (100)

ne

vol { T (&lg) } > (101)
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> exp{—nef (B,A,k)} 1— (2k+ 12)B722 X (102)

maxy V (Z|y, 0, k) ne

[ |

We are now ready to derive a lower bound on the denominato2)t Sincex € S (&,¥), then, in
view of (76), there exist a sufficiently small> 0 and a sufficiently large: (both depending o) such

that 7% (2|§) C SS (&, 9). Thus, using Lemma 4, we get

/ p () da’ > / p () de’ (103)
S(2,9) T (Z|Y)

k ()~ . . !
> Vol { T (i19) } ot (@) (104)

exp{—nef (BaAak;)}
max, V (Z|y, 0, k)
We next overbound the numerator of (25). The basic idea her® idecomposeS, (,y) into

32
[1 —(2k+12)— e 0y (&) (105)

subexponential number of conditional types, where for eeahditional type,ftk(im)u(w’)dw’ is
overestimated using Lemma 4. Yet, this cannot be done diresithply because not evey € S, (Z,y)

is such thatz’, §) € H,, (B) and hence we cannot apply Lemma 47fb (z'|%). Thus, in order to alleviate
this difficulty, let us divideS,, (&, y) into two subsetssS,, (z,y) N H,, (Bo|ly) andS, (&, y) NHS (Boly),
where H,, (By|y) 2 {z': («/,y9) € H, (Bo)}, By > B, being a constant to be chosen later. Now, in
the first set we can apply Lemma 4 while the second has a very lowapility provided thatBy is
sufficiently large. LetB be large enough so that (23) holds and(fix ¢) € H,, (B). Similarly to Lemma

2, one can choos8, so large such that for every € H, (B|z), we have

/ 7 (:c') da’ < e "QBo), (106)
He(Boly)
for all largen, where@ (Bj) > 0 can be made arbitrarily large. Thus, we have
/ p(2) da’ < / p (') da’ + e @B, (107)
Su(z,y) Su(x,y)NHn(Boly)

Let us now subdivide the domain of the first term on the r.h.shefdbove inequality into conditional
e-types, whose volumes can be overestimated by Lemma 4. Toetlds we will need the number
of such sets required to cover the whole domain of integnatibat is S, (x,y) N H, (Boly) C
H, (Byly). We note that within this sety=* >2"_% [#/.|* < By, n=' 32" |gm|*> < Bo, and hence
also n~! ’zj;:o Re {#,,jt,e2" /Y| < By and n~1 ‘z;;;lo Tm { &/, 7%, e2mtm/n}
| =0,...,k Thus, the number of conditional typdsT” (z'|y)} needed to coveid, (Bo|y) is not
larger than(2B,/¢)* 3. Therefore,

1 (w') dz’ < Z /7' 1 (:1:") dx” (108)

TH@ [§)CSu(@§) N Ho (Bolgy) T+ (@19)

< By for all

/su(ﬁs,g)mHn(Bolﬂ)
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€ &S, (2.7 x €THE |

<(2B0>2k+3 sup ){Vol {7;1c (ﬁn’\_@)}. sup )u(m”)}

2B0 > 2k+3 C % (33/)
S =~V eXp n6f B’ A’ ]f 6” 2€ Sup ~ /| ~
( € {nef( )} #'es. (@) maxe V (29,0, F)

9B, 2k+3 C ()
< (%Bo B,Ak)} e"2¢ '
< - > exp{nef (B,Ak)}e max, V (Z|y, 0, k)

(109)

Therefore, combining (105), (107), and (109), we get for affisiently largen,

o / / 29—1 2k+3
sup fSu(az7y) p(x') de _ [1 okt 12)3] <QBo> 2nelCart f(B,AK)]
(&,§)€H,,(B) ng(:i:,’y) o (.’13/) dx’ — ne2 €

(110)

| £ enQBY) g max, V (2]y,0,k) |
(&,§)cH,(B) ()

We next provide the conditions under which the last bounchteed a subexponential function of
To this end, let us first handle the squared brackets in (11@),show it tends to unity as — oo by

choosing@ (By) to be sufficiently large. Note that the supremum can be boubged

~ |~ ~9\—n/2
Sup maX@ V (:Ij|y7 07 k) — Sup % (111)
(&,9)€H, (B) 1 (@) @g)eH,(B) H(Z)
7T€B_1)_n/2
< —1o(I+A)m/2 (112)
and that the normalization constantcan also be upper bounded as follows
n—1
v= / dzx exp —% g2} < emH1=A)n/2 [2mea? (1 + A)]H/Q. (113)
ZBE\I’A 201 t=0
Whence, using the last results and (110), we see that by clyppd% so large so that
1
Q(Bo) > 5 [log B +log o2 + log (1 + A) + 2A] (114)

the last term in the squared brackets in (110) tends to usity & oo, as required. Thus, in order that

(110) will be a subexponential function af we lete = ¢, tend to zero and = k,,, such that

2—1 2k, +3
lim + log { [1 — (2k, + 12)3} <230) e%en[@*f(BvA:’“n)]} =0, (115)

n—00 ne2 €n

or, equivalently, that the following hold simultaneously

1

knlog — =o0(n), (116)
€n

lim /knen =0, (117)
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and

neQ

lim " = C, (118)

n—o0 n

where(Cs is some sufficiently large constant, and (116), (117), an@)(1dllow from the midterm, right,
and left terms on the left hand side of (115). This happens i o (n~1/%) and hencék, = o (n'/?).

Whence, we obtain that (110) is subexponential functiom,cnd thus

1, - 1
lim = log P., (R,n) < —log P°, (R,n), (119)
n b

n—oo N

as required. Finally, to complete the proof of the theoremeritains to show (22). Note that bafh (x, y)
and Sg (z,y) correspond to a known channel. This is, actually, a similad (simpler) problem to that
we considered above, and is very related to the problem deresi in [1, Egs. (33)-(39)], where (22)
has been proven. In the sequel, we briefly describe how torof2a). Similarly to the above analysis,
using Lemma 1, we would like to show that the ratio
Jss@g) 1 (2) Az’

(120)
fso(&:,g) p (') da’

is uniformly overbounded by a subexponential functionnofover (z,y) € H, where H,, is defined
exactly as in (27). For a given pair of vectqiB, y) ande > 0, define thekth order conditionak-type

TX* (z|§) exactly as in (61). Accordingly, we know that for amy ¥ € 7* (&|§) the conditional pdf’s
W (ylu) andW (y|v) are exponentially equivalent, that is, (76) holds. Then,&wof the last fact, there
exists a sufficiently smakt; > 0 and a sufficiently large: such that7* (z|g) C S, (z,%), and another

€2 > 0 and a sufficiently large: (both depending o#) such thatS? (z,3) C 7 (2|§). Then, using the
same techniques as previously described, it is possibleddound the numerator and underbound the
denominator of the r.h.s. of (120) in terms of the volumeshef tonditional type§* (&|y), and show

that (120) is overbounded by a subexponential function.of

APPENDIXA

PROOF OFLEMMA 3

We need to show the inclusion
TE (@ly) € TF (2]g), (A1)

namely, for anyz € 7* (z|g) alsoZ € 7* (z|y). Using the definitions of these sets we see that in order

to show the above inclusion we only need to show that for edeey 7" (z|y), there exist a sequence
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{Pn}E _ € P¢ such that for anyt <1< L,

2
Hjl(yil)nb—ﬁ—lH —mpP| <€ (A.2)
where ;" = (x1, 141, .., 2m) for m > 1. To this end, for eacl <[ < L, P, is chosen to be the
2 2
nearest point tchl{llil)nb-i-lH in the setgfe, namelyP, = wizl(?jl)anH /(nbe)J -e. Under this choice,
obviously, (A.2) holds, and P}/, € P, since
k L pln ?
1 1 Hm(zi1)nb+1H
“N'p-P|=|= L0 le—p, A.
LZ ! LZ npe € (A-3)
=1 =1
< |1 i *s <§ A4
<25 ol s 2| < Ao

where the last equality follows from the fact thatc 7* (z|y) and thatn = n, L.
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