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On Improved Bounds for Probability Metrics and f -Divergences

Igal Sason

Abstract

Derivation of tight bounds for probability metrics and f -divergences is of interest in information theory and statistics.

This paper provides elementary proofs that lead, in some cases, to significant improvements over existing bounds; they also

lead to the derivation of some existing bounds in a simplified way. The inequalities derived in this paper relate between the

Bhattacharyya parameter, capacitory discrimination, chi-squared divergence, Chernoff information, Hellinger distance, relative

entropy, and the total variation distance. The presentation is aimed to be self-contained.

Index Terms – Bhattacharyya parameter, capacitory discrimination, Chernoff information, chi-squared divergence,

f -divergence, Hellinger distance, relative entropy, total variation distance.

I. INTRODUCTION

Derivation of tight bounds for probability metrics and f -divergences is of interest in information theory and

statistics, as is reflected from the bibliography of this paper and references therein. Following previous work in

this area, elementary proofs are used in this paper for the derivation of bounds. In some cases, existing bounds are

re-derived in a simplified way, and in some others, significant improvements over existing bounds are obtained.

The paper is structured as follows: the bounds and their proofs are introduced in Section II, followed by various

discussions and remarks that link the new bounds to the literature. This section is separated into four parts: the first

part introduces bounds on the Hellinger distance and Bhattacharyya parameter in terms of the total variation distance

and the relative entropy (see Section II-A), the second part introduces a lower bound on the Chernoff information in

terms of the total variation distance (see Section II-B), the third part provides bounds on the chi-squared divergence

and some related inequalities on the relative entropy and total variation distance (see Section II-C), and the last part

considers bounds on the capacitory discrimination (see Section II-D). A summary, which outlines the contributions

made in this work, is provided in Section III.

Preliminaries

We introduce, in the following, some preliminary material that is essential to make the presentation self-contained.

Definition 1: Let f be a convex function defined on (0,∞) with f(1) = 0, and let P and Q be two probability

distributions defined on a common set X . The f -divergence of P from Q is defined by

Df (P ||Q) ,
∑

x∈X

Q(x) f

(

P (x)

Q(x)

)

(1)

where sums may be replaced by integrals. Here we take

0f
(0

0

)

= 0, f(0) = lim
t→0+

f(t), 0f
(a

0

)

= lim
t→0+

tf
(a

t

)

= a lim
u→∞

f(u)

u
, ∀ a > 0.

Definition 2: An f -divergence is said to be symmetric if the equality f(x) = xf
(

1
x

)

holds for every x > 0. This

requirement on f implies that Df (P ||Q) = Df (Q||P ) for every pair of probability distributions P and Q.

From [13] and [15, Corollary 5.4], the following lower bound holds for a symmetric f -divergence:

Df (P ||Q) ≥
(

1 − dTV(P,Q)
)

f

(

1 + dTV(P,Q)

1 − dTV(P,Q)

)

. (2)

Definition 3: Let P and Q be two probability distributions defined on a set X . The total variation distance

between P and Q is defined by

dTV(P,Q) , sup
Borel A⊆X

|P (A) − Q(A)| (3)

where the supremum is taken over all the Borel subsets A of X .
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If X is a countable set, (3) is simplified to

dTV(P,Q) =
1

2

∑

x∈X

|P (x) − Q(x)| =
||P − Q||1

2
(4)

and in the continuous case, probability mass functions are replaced by probability density functions, and sums are

replaced by integrals. The total variation distance is a symmetric f -divergence where f(t) = 1
2 |t − 1| for t ∈ IR.

Definition 4: Let P and Q be two probability distributions that are defined on a common set X . The Hellinger

distance and the Bhattacharyya parameter between P and Q are, respectively, given by

dH(P,Q) ,

(

1

2

∑

x∈X

(

√

P (x) −
√

Q(x)
)2
)

1

2

(5)

Z(P,Q) ,
∑

x∈X

√

P (x) Q(x) . (6)

The three measures in (3)–(6) are bounded between 0 and 1. Also, it is easy to verify that

dH(P,Q) =
√

1 − Z(P,Q). (7)

The square of the Hellinger distance is a symmetric f -divergence since the convex function

f(x) =
1

2
(1 −

√
x)2, x ≥ 0 (8)

satisfies the equality f(x) = xf
(

1
x

)

for every x > 0 with f(1) = 0, and from (1) and (5)
(

dH(P,Q)
)2

= Df (P ||Q). (9)

Definition 5: The Chernoff information and relative entropy (a.k.a. information divergence or Kullback-Leibler

distance) between two probability distributions P and Q defined on a common set X are, respectively, given by

C(P,Q) , − min
θ∈[0,1]

log

(

∑

x∈X

P (x)θ Q(x)1−θ

)

(10)

D(P ||Q) ,
∑

x∈X

P (x) log

(

P (x)

Q(x)

)

(11)

where throughout this paper, the logarithms are on base e.

Note that, in general, C(P,Q), D(P ||Q) ∈ [0,∞], C(P,Q) = C(Q, P ), and D(P ||Q) 6= D(Q||P ). The relative

entropy is an asymmetric f -divergence where f(t) = t log(t) for t > 0 is a convex function with f(1) = 0.

Proposition 1: For two probability distributions P and Q that are defined on a common set X
dTV(P,Q) ≤

√
2 dH(P,Q) ≤

√

D(P ||Q). (12)

The left-hand side of (12) is proved in [23, p. 99], and the right-hand side is proved in [23, p. 328].

The Chernoff information, C(P,Q), is the best achievable exponent in the Bayesian probability of error for binary

hypothesis testing (see, e.g., [3, Theorem 11.9.1]). Furthermore, if X1, X2, . . . , XN are i.i.d. random variables,

having distribution P with prior probability π1 and distribution Q with prior probability π2, the following upper

bound holds for the best achievable overall probability of error:

P
(N)
e ≤ exp

(

−N C(P,Q)
)

. (13)

Definition 6: The chi-squared divergence between two probability distributions P and Q, defined on a common

set X , is given by

χ2(P,Q) ,
∑

x∈X

(

P (x) − Q(x)
)2

Q(x)
=
∑

x∈X

P (x)2

Q(x)
− 1 . (14)

The chi-squared divergence is an asymmetric f -divergence where f(t) = (t−1)2 is a convex function with f(1) = 0.

For further study of f -divergences and probability metrics, the interested reader is referred to, e.g., [5, Chapter 4],

[8, Chapter 2], [12]–[16], [19]–[22], [26]–[30], [33].
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II. IMPROVED BOUNDS FOR PROBABILITY METRICS AND f -DIVERGENCES

A. Bounds on the Hellinger Distance and Bhattacharyya Parameter

The following proposition introduces a sharpened version of Proposition 1.

Proposition 2: Let P and Q be two probability distributions that are defined on a common set X . Then, the

following inequality suggests a tightened version of the inequality in (12)

1 −
√

1 −
(

dTV(P,Q)
)2 ≤

(

dH(P,Q)
)2 ≤ min

{

1 − exp

(

−D(P ||Q)

2

)

, dTV(P,Q)

}

(15)

and

max

{

exp

(

−D(P ||Q)

2

)

, 1 − dTV(P,Q)

}

≤ Z(P,Q) ≤
√

1 −
(

dTV(P,Q)
)2

. (16)

Proof: We start with the proof of the left-hand side of (15). From (4)– (7), and the Cauchy-Schwartz inequality

dTV(P,Q)

=
1

2

∑

x∈X

|P (x) − Q(x)|

=
1

2

∑

x∈X

∣

∣

∣

√

P (x) −
√

Q(x)
∣

∣

∣

(

√

P (x) +
√

Q(x)
)

≤ 1

2

(

∑

x∈X

(

√

P (x) −
√

Q(x)
)2
)

1

2
(

∑

x∈X

(

√

P (x) +
√

Q(x)
)2
)

1

2

= dH(P,Q) ·
(

1 +
∑

x∈X

√

P (x) Q(x)

)
1

2

= dH(P,Q)
(

2 −
(

dH(P,Q)
)2
)

1

2

. (17)

Let c ,
(

dTV(P,Q)
)2

and x ,
(

dH(P,Q)
)2

. By squaring both sides of (17), it follows that x(2 − x) ≥ c, which

therefore implies that

1 −
√

1 − c ≤ x ≤ 1 +
√

1 − c . (18)

The right-hand side of (18) is satisfied automatically since 0 ≤ dH(P,Q) ≤ 1 implies that x ≤ 1. The left-hand

side of (18) gives the lower bound on the left-hand side of (15). Next, we prove the upper bound on the right-hand

side of (15). The use of Jensen’s inequality gives
(

dH(P,Q)
)2

=
1

2

∑

x∈X

(

√

P (x) −
√

Q(x)
)2

= 1 −
∑

x∈X

√

P (x) Q(x)

= 1 −
∑

x∈X

P (x)

√

Q(x)

P (x)

= 1 −
∑

x∈X

P (x) e
1

2
log
(

Q(x)

P (x)

)

≤ 1 − e
1

2

∑

x∈X
P (x) log

(

Q(x)

P (x)

)

= 1 − e−
1

2
D(P ||Q) (19)
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and the inequality
(

dH(P,Q)
)2 ≤ dTV(P,Q) is due to [18, Lemma 1]; its (somewhat simplified) proof is as follows:

(

dH(P,Q)
)2

=
1

2

∑

x∈X

(

√

P (x) −
√

Q(x)
)2

=
1

2

∑

x∈X

|P (x) − Q(x)|
(

|
√

P (x) −
√

Q(x)|
√

P (x) +
√

Q(x)

)

≤ 1

2

∑

x∈X

|P (x) − Q(x)| = dTV(P,Q).

The combination of the two upper bounds on the squared Hellinger distance provides the upper bound on the

right-hand side of (15). The other bound on the Bhattacharyya parameter in (16) follows from (15) and the simple

relation in (7) between the Bhattacharyya parameter and Hellinger distance.

Discussion 1: The proof of Proposition 2 is elementary. It is interesting to realize that the sharpened lower bound

on the Hellinger distance in terms of the total variation distance, as is given in (15), also follows from the (more

involved) lower bound on symmetric f -divergences in (2). To verify this, a combination of (2), (8), (9) gives

(

dH(P,Q)
)2 ≥

(

1 − dTV(P,Q)
)

· 1

2

(

1 −
√

1 + dTV(P,Q)

1 − dTV(P,Q)

)2

=
1

2

(

√

1 + dTV(P,Q) −
√

1 − dTV(P,Q)
)2

= 1 −
√

1 −
(

dTV(P,Q)
)2

which coincides with the left-hand side of the inequality in (15). Similarly, the right-hand side of (16) follows from

the equality in (7) and the left-hand side of (15). Hence, it yields that ’half’ of Proposition 2 follows from [15,

Corollary 5.4], although the proof in this paper is elementary.

Remark 1: Since the total variation distance dTV(P,Q) and the Hellinger distance dH(P,Q) are symmetric in P

and Q, in contrast to the relative entropy D(P ||Q), one can improve the upper bound on the Hellinger distance as

follows (see the right-hand side of (15)):

dH(P,Q) ≤
√

min

{

1 − exp

(

−1

2
min

{

D(P ||Q), D(Q||P )
}

)

, dTV(P,Q)

}

(20)

and, from (7), the lower bound on the Bhattacharyya parameter on the left-hand side of (16) is improved to

Z(P,Q) ≥ max

{

exp

(

−1

2
min

{

D(P ||Q), D(Q||P )
}

)

, 1 − dTV(P,Q)

}

. (21)

Remark 2: The bounds in (12) (proved, e.g., in [23]) follow from a loosening of the bounds in (15) by a use of

the inequalities
√

1 − x ≤ 1 − x
2 for x ∈ [0, 1], and e−x ≥ 1 − x for x ≥ 0.

Remark 3: A comparison of the upper and lower bounds on the Hellinger distance in (15) or the Bhattacharyya

parameter in (16) gives the following lower bound on the relative entropy in terms of the total variation distance:

D(P ||Q) ≥ log

(

1

1 −
(

dTV(P,Q)
)2

)

. (22)

It is noted that (22) also follows from the combination of the last two inequalities in [17, p. 741]. It is tighter than

Pinsker’s inequality (a.k.a Csiszár-Kemperman-Kullback-Pinsker inequality)

D(P ||Q) ≥ 2
(

dTV(P,Q)
)2

when dTV(P,Q) ≥ 0.893, having also the advantage of giving the right bound for the relative entropy (∞) when

the total variation distance is approached to 1. However, (22) is a slightly looser bound on the relative entropy in

comparison to Vajda’s lower bound [29] that reads:

D(P ||Q) ≥ log

(

1 + dTV(P,Q)

1 − dTV(P,Q)

)

− 2dTV(P,Q)

1 + dTV(P,Q)
. (23)
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B. A Lower Bound on the Chernoff Information in Terms of the Total Variation Distance

Proposition 3: Let P and Q be two probability distributions that are defined on a common set X . Then, the

Chernoff information between P and Q is lower bounded in terms of the total variation distance as follows:

C(P,Q) ≥ −1

2
log
(

1 −
(

dTV(P,Q)
)2
)

. (24)

Proof:

C(P,Q)
(a)

≥ − log

(

∑

x∈X

√

P (x) Q(x)

)

(b)
= − log Z(P,Q)
(c)
= − log

(

1 −
(

dH(P,Q)
)2
)

(d)

≥ −1

2
log
(

1 −
(

dTV(P,Q)
)2
)

where inequality (a) follows by selecting the possibly sub-optimal choice θ = 1
2 in (10), equality (b) holds by

definition (see (6)), equality (c) follows from (7), and inequality (d) follows from the left-hand side of (15).

Remark 4: A lower bound on the total variation distance implies a lower bound on the Chernoff information

(see Proposition 3), which in turn provides an upper bound on the best achievable Bayesian probability of error for

binary hypothesis testing (see, e.g., [3, Theorem 11.9.1] and (13)). For example, lower bounds on the total variation

distance in the context of the Poisson approximation were obtained via the use of the Chen-Stein method in [1]

and [25]. Another lower bound on the total variation distance appears in [32], followed by Proposition 3 (that was

originally introduced in [24, Proposition 5]) to obtain a lower bound on the Chernoff information in the context of

the communication problem studied in [32].

C. Bounds on the Chi-Squared Divergence & Related Inequalities for Relative Entropy and Total Variation Distance

Proposition 4: Let P and Q be two probability distributions that are defined on a common set X . Then, the

chi-squared divergence between P and Q is lower bounded in terms of the relative entropy as follows:

χ2(P,Q) ≥ eD(P ||Q) − 1 (25)

and, it is also lower bounded in terms of the total variation distance as follows:

χ2(P,Q) ≥
(

1 + dTV(P,Q)
)dTV(P,Q)

1 −
(

dTV(P,Q)
)2 − 1. (26)

Furthermore, if X is a finite set, the following upper bound holds:

χ2(P,Q) ≤ 2
(

dTV(P,Q)
)2

minx∈X Q(x)
. (27)

Proof: From (14), it follows that

χ2(P,Q) =
∑

x∈X

P (x)2

Q(x)
− 1

=
∑

x∈X

{

P (x)e
log
(

P (x)

Q(x)

)

}

− 1

≥ e
∑

x∈X
P (x) log

(

P (x)

Q(x)

)

− 1

= eD(P ||Q) − 1

where the last inequality follows from Jensen’s inequality. This proves the inequality in (25).
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The second lower bound on the chi-squared divergence in (26), expressed in terms of the total variation distance,

follows from a combination of the first lower bound in (25) with the improvement in [14] of Vajda’s inequality:

D(P ||Q) ≥ log

(

1

1 − dTV(P,Q)

)

−
(

1 − dTV(P,Q)
)

log
(

1 + dTV(P,Q)
)

. (28)

For the derivation of the upper bound on the chi-squared divergence in (27), note that

χ2(P,Q) =
∑

x∈X

(

P (x) − Q(x)
)2

Q(x)

≤
∑

x∈X

(

P (x) − Q(x)
)2

minx∈X Q(x)
(29)

≤

(

∑

x∈X |P (x) − Q(x)|
)2

minx∈X Q(x)

=
4
(

dTV(P,Q)
)2

minx∈X Q(x)
(30)

where the last equality follows from (4). However, the upper bound in (27) is twice smaller than (30). In order to

prove the tightened upper bound on the chi-squared divergence in (27), we rely on (29), and the following lemma:

Lemma 1: Let

dloc(P,Q) , ||P − Q||∞ = sup
x∈X

|P (x) − Q(x)| (31)

be the local distance between a pair of probability distributions P and Q defined on a set X . Then, the inequality

dloc(P,Q) ≤ dTV(P,Q) holds, which means that the l∞-norm of P − Q does not exceed one-half of its l1-norm.

Proof: This known inequality follows directly from (3) and (4).

As a continuation to the proof of (27), it follows from (29) and Lemma 1 that

χ2(P,Q) ≤
∑

x∈X

(

P (x) − Q(x)
)2

minx∈X Q(x)

≤ maxx∈X |P (x) − Q(x)| ·
∑

x∈X |P (x) − Q(x)|
minx∈X Q(x)

(a)
=

2 dloc(P,Q) dTV(P,Q)

minx∈X Q(x)

(b)

≤ 2
(

dTV(P,Q)
)2

minx∈X Q(x)

where equality (a) follows from (4) and (31) (note that X is a finite set), and inequality (b) follows from Lemma 1.

To conclude, the upper bound on the chi-squared divergence is improved by a factor of 2, as compared to (30),

where this improvement is obtained by taking advantage of Lemma 1.

Remark 5: Inequality (25) dates back to Dragomir and Glušc̆ević (see [9, Theorem 4]).1 The lower bound on the

chi-squared divergence in (25) significantly improves the Csiszár-Györfi-Talata bound2 in [6, Lemma 6.3] which

states that χ2(P,Q) ≥ D(P ||Q) (note that ex ≥ 1 + x for x ≥ 0).

Remark 6: The transition from (a) to (b) in the derivation of the new upper bound in (27) implies that the

improvement by a factor of 2 that is obtained there, as compared to (30), can be further enhanced under a mild

condition. Specifically, a further improvement is obtained if the ratio
dloc(P,Q)
dTV(P,Q) , which according to Lemma 1 is no

more than 1, is strictly below 1 (for such possible examples, the reader is referred to [26, Section 4]); in this case,

the improvement over the upper bound on the chi-squared divergence in (30) is by a factor of
2 dTV(P,Q)
dloc(P,Q) .

1Inequality (25) is missing a proof in [9]; it was recently proved in [27, Theorem 3.1], and it was derived independently in this work

(before being aware of [9] and [27]).
2As a historical note, Györfi was acknowledged for pointing out the inequality χ2(P, Q) ≥ D(P ||Q) in [6, Lemma 6.3]; this inequality

was earlier stated in [4, Lemma 4] under a redundant requirement (see also [7, Lemma A.7], stated with a variant of this requirement).
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The following is a sort of a reverse of Pinsker’s inequality:

Corollary 1: Let P and Q be two probability distributions that are defined on a common finite set X . Then, the

following inequality holds:

D(P ||Q) ≤ log

(

1 +
2
(

dTV(P,Q)
)2

minx∈X Q(x)

)

. (32)

Proof: This result follows from the bounds on the chi-squared divergence in (25) and (27).

Remark 7: The bound in (32) improves the bound that follows by combining Csiszár-Györfi-Talata bound in [6,

Lemma 6.3] (see Remark 5) and the bound in (30). This combination gives the Csiszár-Györfi-Talata bound

min
x∈X

Q(x) D(P ||Q) ≤ 4
(

dTV(P,Q)
)2

. (33)

The improvement that is suggested in (32) over (33) is twofold: the logarithm on the right-hand side of (32) follows

from the lower bound on the chi-squared divergence in (25) (as compared to the inequality χ2(P,Q) ≥ D(P ||Q)
in [6, Lemma 6.3]); another improvement, obtained by a replacement of the factor 4 on the right-hand side of (33)

by a factor 2 inside the logarithm on the right-hand side of (32), follows from the improvement of the upper bound

on the chi-squared divergence in (27) over the bound in (30).

Note that when the distributions P and Q are close enough in total variation, the upper bounds on the relative

entropy in (32) and (33) scale like the square of the total variation distance (although the former bound improves

the latter bound by a factor of 2).

Remark 8: The following inequality has been recently introduced by Verdú: [30]:

dTV(P,Q) ≥
(

1 − β

log 1
β

)

D(P ||Q) (34)

where β−1 , supx∈X
dP
dQ

(x). The reader is also referred to [11, Lemma 3.10] where a related inequality is provided.

Remark 9: The lower bound on the chi-squared divergence in (26) is looser than the bound in (25) (due to the

additional use of the inequality in (28) for the derivation of (26)); nevertheless, the bound in (26) is expressed in

terms of the total variation distance, whereas the bound in (25) which is expressed in terms of the relative entropy.

Remark 10: As an addition to Proposition 4, a parameterized upper bound on the chi-squared divergence is

introduced in [15, Corollary 5.6] where this bound is expressed in terms of some power divergences.

Remark 11: A related problem to the result in Corollary 1 has been recently studied in [2]. The problem studied

in [2] is the characterization of D∗(ε, Q) for an arbitrary distribution Q, defined to be the infimum of D(P ||Q)
over all distributions P that are at least ε-far away from Q in total variation. It is demonstrated in [2] that D∗(ε, Q)
scales like Cε2 + O(ε3) for a certain constant C (with explicit upper and lower bounds on C). For the case where

P and Q are defined on a common finite set X , the scaling in ε2 (for ε ≪ 1) is supported by the combination

of Corollary 1 and Pinsker’s inequality. Corollary 1 further implies that (even not necessarily in the limit where

ε → 0)

D∗(ε, Q) , inf
P : dTV(P,Q)≥ε

D(P ||Q) ≤ log

(

1 +
2ε2

minx∈X Q(x)

)

.

D. Bounds on the Capacitory Discrimination in Terms of the Total Variation Distance

The capacitory discrimination, introduced by Topsøe [28] and further studied in [10] and [15], is a probability

metric which forms an f -divergence. It is defined as follows:

Definition 7: Let P and Q be two probability distributions that are defined on a common set X . The capacitory

discrimination is given by

C(P,Q) , D

(

P || P + Q

2

)

+ D

(

Q || P + Q

2

)

. (35)
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Due to the parallelogram identity for relative entropy, it follows that

C(P,Q) = min
R

{

D(P ||R) + D(Q||R)
}

where the minimization is taken over all the probability distributions R.

Proposition 5: The capacitory discrimination is lower bounded in terms of the total variation distance as follows:

C(P,Q) ≥ 2 D

(

1 − dTV(P,Q)

2

∣

∣

∣

∣

1

2

)

(36)

where D(p||q) , p log
(

p
q

)

+(1−p) log
(

1−p
1−q

)

for p, q ∈ [0, 1] (with the convention that 0 log 0 = 0). Furthermore,

if X is a finite set, then it satisfies the following upper bound in terms of the total variation distance:

C(P,Q) ≤ 2 log

(

1 +

(

dTV(P,Q)
)2

minx∈X

(

P (x) + Q(x)
)

)

. (37)

Proof: In [15, p. 119], the capacitory discrimination is expressed as an f -divergence where the convex function

f is given by f(x) = x log x − (x + 1) log(1 + x) + 2 log 2, for x > 0, with f(1) = 0. Although the capacitory

discrimination in (35) is symmetric with respect to P and Q, the above function f is asymmetric since f(x) 6= xf
(

1
x

)

(see Definition 2). In order to apply the lower bound in (2) (see [13] and [15, Corollary 5.4]), we first need to find

a symmetric convex function f with f(1) = 0 which satisfies the equality C(P,Q) = Df (P ||Q). It can be verified

that the proper symmetric function f is given by

f(x) = x log x − (x + 1) log(1 + x) + (x + 1) log 2, x > 0. (38)

Consequently, the combination of (2) and (38) implies that

C(P,Q) ≥
(

1 − dTV(P,Q)
)

f

(

1 + dTV(P,Q)

1 − dTV(P,Q)

)

=
(

1 + dTV(P,Q)
)

log
(

1 + dTV(P,Q)
)

+
(

1 − dTV(P,Q)
)

log
(

1 − dTV(P,Q)
)

= 2

[

log 2 − h

(

1 − dTV(P,Q)

2

)]

= 2D

(

1 − dTV(P,Q)

2

∣

∣

∣

∣

1

2

)

.

The last equality holds since D(p||12) = log 2 − h(p) for p ∈ [0, 1] where h denotes the binary entropy function.

This proves the lower bound in (36). The derivation of the upper bound in (37) relies on a combination of (32)

(see Corollary 1), and the equality

dTV

(

P,
P + Q

2

)

= dTV

(

Q,
P + Q

2

)

=
dTV(P,Q)

2
.

Discussion 2: The lower bound on the capacitory discrimination in (36), expressed in terms of the total variation

distance, forms a closed-form expression of the bound by Topsøe in [28, Theorem 5]. This bound is given by

C(P,Q) ≥
∞
∑

ν=1

(

dTV(P,Q)
)2ν

ν(2ν − 1)
. (39)

The equivalence of (36) and (39) follows from the power series expansion of the binary entropy function (to the

natural base) around one-half (see [31, Lemma 2.1]):

h(x) = log 2 −
∞
∑

ν=1

(1 − 2x)2ν

2ν(2ν − 1)
, ∀x ∈ [0, 1]
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which yields that

∞
∑

ν=1

(

dTV(P,Q)
)2ν

ν(2ν − 1)

= 2

[

log 2 − h

(

1 − dTV(P,Q)

2

)]

= 2D

(

1 − dTV(P,Q)

2

∣

∣

∣

∣

1

2

)

.

Note, however, that the proof here is much shorter than the proof of [28, Theorem 5] (which relies on properties of

the triangular discrimination in [28] and previous theorems of this paper), and it also leads directly to a closed-form

expression of this bound. Consequently, one concludes that the lower bound in [28, Theorem 5] is a special case

of (2) (see [13] and [15, Corollary 5.4]), which provides a lower bound on an arbitrary symmetric f -divergence in

terms of the total variation distance.

The upper bound on the capacitory discrimination in (37) is new, and it is based on Corollary 1 which provides

an improvement of the Csiszár-Györfi-Talata bound (see Remarks 5 and 7).

III. SUMMARY

Derivation of tight bounds for probability metrics and f -divergences is considered in this paper. In some cases,

existing recent bounds are reproduced by elementary or simplified proofs, and in some other cases, elementary

proofs provide significant improvements. The contributions made in this work are outlined in the following:

• Upper and lower bounds on both the Hellinger distance and the Bhattacharyya parameter are expressed in

terms of the total variation distance and relative entropy (see Proposition 2). The lower bound on the Hellinger

distance and the upper bound on the Bhattacharyya parameter are not new; nevertheless, their proofs here are

simple and elementary (see Discussion 1). The other two bounds are new.

• A new lower bound on the Chernoff information is expressed in terms of the total variation distance (see

Proposition 3). It has been recently applied in [32] with a reference to the un-published bound in [24,

Proposition 5].

• Three bounds on the chi-squared divergence are introduced in Proposition 4. The first lower bound in (25) dates

back to Dragomir and Glušc̆ević [9] (see Remark 5). A second lower bound on the chi-squared divergence is

derived in terms of the total variation distance (see (26)). The upper bound on the chi-squared divergence in

(27) is new as well, and it suggests an improvement over the bound in (30) by a factor of 2 (according to

Remark 6, this gain can be further improved under a mild condition).

• The improvements of the bounds on the chi-squared divergence (as outlined in the previous item) lead to a new

improved upper bound on the relative entropy in terms of the total variation distance when the two probability

distributions are defined on a common finite set (see Corollary 1, followed by Remarks 7–11). This forms a

kind of a reverse of Pinsker’s inequality where the two distributions are defined on a finite set, and it improves

the Csiszár-Györfi-Talata bound in (33).

• Bounds on the capacitory discrimination are provided in terms of the total variation distance (see Proposition 5).

The lower bound on the capacitory discrimination forms a closed-form expression of the bound by Topsøe

in [28, Theorem 5]; its proof, however, is more simple, and it does not involve properties of the triangular

discrimination that are used in its original proof in [28]. The upper bound on the capacitory discrimination in

(37) is new (see Discussion 2, addressing the bounds in this item).

HISTORICAL BACKGROUND

The material presented in this paper partially appears in the un-published manuscript [24] (parts of [24] have later

been published in [25] and [26], without any overlap with the bounds introduced in this paper). A recent progress

in this work stimulated the writing of the present paper where the un-published results in [24, Propositions 4, 5]

served as a starting point.
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