CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

' h
CI IRWIN AND JOAN JACOBS

Bounds on f-Divergences and
Related Distances

Igal Sason

CCIT Report #859
May 2014

~w

HEmEE Flectronics
mEmmnn Computers DEPARTMENT OF ELECTRICAL ENGINEERING \‘7
mmmes Communications TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL u




CCIT Report #859 May 2014

DRAFT. LAST UPDATE: MAY 8, 2014

Bounds onf-Divergences and Related Distances

Igal Sason

1

Abstract

Derivation of tight bounds orf-divergences and related distances is of interest in indtion theory and statistics. This
paper improves some existing bounds faivergences. In some cases, an alternative approach teadsimplified proof of
an existing bound. Following bounds on the chi-squaredrdaece, an improved version of a reversed Pinsker’s indgsl
derived for an arbitrary pair of probability distributions a finite set. Following bounds on the relative entropy aefételys’
divergence, a tightened inequality for lossless sourcengots derived and considered. Finally, a new inequalityatiah
f-divergences is derived and studied.

Index Terms— Bhattacharyya distance, Chernoff information, chi-sqdadivergence f-divergence, Hellinger distance,
Jeffreys’ divergence, lossless source coding, relativeopy (Kullback-Leibler divergence), total variation @iace.

. INTRODUCTION

Divergence measures are widely used in information theogchine learning, statistics, and other theoretical
and applied branches of mathematics (see, e.g., [3], [18], [34], [40] and [44]). The class of-divergences,
introduced independently in [1], [8] and [32], forms an imjamt class of divergence measures which includes
the relative entropy (a.k.a. information divergence or khalback-Leibler divergence), its dual and symmetrized
divergences, the total variation distance, squared Hgdlirdistance, chi-squared divergence, etc. Propertiels of
divergences, including relations to statistical tests estiimators, were extensively studied in [30].

In the following, some related papers that are most relet@rthe scope of this work are briefly reviewed.
Pinsker’s inequality (a.k.a the Csiszar-Kemperman4radk-Pinsker inequality) and Vajda’s inequality [44] have
been derived during the sixties to provide lower bounds errghative entropy in terms of the total variation distance.
Following these bounds, Fedotet al. [21] derived an exact parametrization of the infimum of thatree entropy
with respect to all possible pairs of probability distriloms with a given total variation distance. The derivatidn o
the parametrization in [21] relies on the data processiegriim for the relative entropy, leading to a maximization
problem of the convex conjugate function of the relative@oy between two-element probability distributions; this
approach leads to closed-form solutions that are used tdifigea possible form for the required parametrization.
As an extension to this problem, Harremoés and Vajda duidig26] the joint range of pairs of-divergences,
characterizing all the possible points|ih oo]? that are achievable by a given pair pidivergences. It was shown
that this region is convex where each point is a convex coatiain of two achievable points that are obtained by
a pair of probability distributions over two elements; henevery such an achievable point is obtained by a pair
of probability distributions over at most 4 elements.

In [23], Gilardoni studied the problem of minimizing an drbry symmetric f-divergence for a given total
variation distance, and provided a closed-form solutionthig optimization problem. Furthermore, an alternative
parametrization of the infimum of the relative entropy foriaeg total variation distance was derived in [23]. In
a follow-up paper by the same author [24], Pinsker's and &ajdype inequalities were studied for symmetric
f-divergences, and the issue of obtaining lower boundg-glivergences for a given total variation distance was
further studied. One of the main results in [24] was a deidvabf an improved and simple closed-form lower
bound on the relative entropy in terms of the total variatibstance, as well as a simple and reasonably tight
closed-form upper bound on the infimum of the relative entrfgp a given total variation distance.

Sharp inequalities forf-divergences were recently studied in [25] as a problem ofimizing or minimizing
an arbitrary f-divergence between two probability measures subject tmite fnumber of inequality constraints
on other f-divergences. The main result stated in [25] is that suclmitefidimensional optimization problems are
equivalent to optimization problems over finite-dimensibspaces where the latter are humerically solvable.

I. Sason is with the Department of Electrical Engineeringchinion—Israel Institute of Technology, Haifa 32000, &rde-mail:
sason@ee.technion.ac.il).
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Following previous work, some new bounds gidivergences and related distances are derived in thig.pEps
work improves some existing bounds grdivergences; in some cases, an alternative approachteadsimplified
proof of an existing bound. An improved version of a reverBatsker’s inequality is derived in this paper for an
arbitrary pair of probability distributions on a finite s€bllowing [9], two tightened inequalities for lossless sm
coding are derived via bounds on the relative entropy anfleysf divergence. Finally, a new general inequality
relating f-divergences is derived and studied.

The paper is organized as follows: preliminary materialnisaduced in Section Il, and the bounds and their
proofs are introduced in Section I, followed by discuss@nd remarks that link the new bounds to the literature.
Section Ill is separated into seven subsections that refeatious f-divergences and related distances. The paper
is concluded in Section IV where the contributions of thisrkvare outlined, and an additional proof that provides
some insight is relegated to an appendix.

[I. PRELIMINARIES

We introduce, in the following, some preliminaries and tiotathat are essential to the analysis in this paper.
Definition 1: Let f: (0,00) — IR be a convex function withf(1) = 0, and letP and @Q be two probability
distributions on a se#. The f-divergencdrom P to ) is defined by

DAPIQ) £ T Q) (o) (M)
with the convention that
0F(3) =0, £(0) = Jim f(1).
(2) - g ) -y 2 v

The relative entropyD(P||Q) £ Y. . 4 P(z) log (PE“'%) is an f-divergence wherg (t) = tlog(t) for ¢t > 0.
An f-divergenceD;(P||Q) is in general jointly convex in the two probability distrifions P and @, and it
is non-negative [8]; these basic properties, which holdtler relative entropy, are preserved ftidivergences in

general.
Definition 2: The dual of an f-divergences given by D7 (P||Q) £ Ds(Q||P).
It is easy to verify thatD}(P||Q) = Dy-(P[|Q) with f* that is of the form

f*(t):th) fa(t—1), ¥t>0

for an arbitrarya € IR. Since the perspective of a convex function is also conveg (S, p. 89]), the convexity of
f* follows and f*(1) = 0.

Definition 3: An f-divergence is said to beymmetridf it is equal to its dual.

An f-divergence is symmetric if and only if there exists a comistac IR such that the functiorf in Definition 1
satisfies the equality

£(t) = tf(%) Fa(t—1), Vi>o0.

The sufficiency of this condition for ensuring the symmetfythe f-divergence is easy to verify from (1), and the
necessity of this condition was proved in [44, Theorem 9.6].

Definition 4: Let P and @ be two probability distributions on a set. The total variation distancebetweenP
and( is defined by

dry(P,Q) 2 sup [P(4) — Q(A)| @
ACA

where the supremum is taken over all the subsetsf A for which P(A) andQ(A) are well defined.
If A is a countable set, (2) is simplified to

dTV P Q Z ‘p w (3)

2
:(:E.A
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so, the total variation distance forms a symmeffidivergence wherg(t) = 1 |t — 1| for ¢ € IR.
The following result refers to the infimum of a symmetfiedivergence for a given total variation distance [23]:
Theorem 1:Let f: (0,00) — IR be a convex function wittf (1) = 0, and assume that is twice differentiable.
Let

L £ inf Ds(P Y 0,1 4
Df(g) PQ: di?(P,Q):a f( ||Q)> 56[7 ] ()

be the infimum of thef-divergence for a given total variation distance}§ is a symmetricf-divergence, then

Lo ()= (=) f (17

> —2f'(1)e, Veelo,1]. (5)

Consequently, for a symmetrit-divergence, and for every pair of probability distributsoP and @, we have

1+ dTV(P7 Q)
1- dTV(P> Q)
and this bound, expressed in terms of the total variatiotadi®, is tight.

The following corollary from [23] and [25, Corollary 5.4] isseful for the analysis in this paper:
Corollary 1: If f: (0,00) — IR satisfies the equality

Dy(PIIQ) = (1— dr(P,Q)) f ( ) 251y dr(P.Q) (6)

1
fty=tf(5), vt>o (7)
and it is convex withf(1) = 0, then D is symmetric, and

1+¢
1—¢

LDf(E):(l—E)f< ), Ve € [0,1]. (8)

Proof: It is easy to verify from (7) thaD, is symmetric. For simplicity, assume thAtis twice differentiable.
Equality (7) with f(1) = 0 implies thatf’(1) = 0, and the result follows from Theorem 1. [ |
Definition 5: Let P and@ be two probability distributions on a sgt TheHellingerandBhattacharyya distances
betweenP and () are, respectively,

An(P.Q) 2 (; > (VP@ - \/Q(:ﬂ))2>2 ©)

€A

Z(P,Q) £ Y VP(x)Q(x). (10)

zeA

The divergence measures in (4), (9) and (10) are boundecebat@ and 1. Furthermore, it is easy to verify that
dn(P,Q) = /1~ Z(P,Q). (11)
The squared Hellinger distance is a symmeffridivergence since
(du(P. Q)" = Dy(PQ) (12)

where

fl@)=501-Va)?, 20 (13)

is a convex function withf(1) = 0.
Definition 6: The Chernoff informatiorbetween two probability distribution® and @ on a setA is given by

C(P,Q) = — min _log (Z P(x)? Q(m)l_A> (14)

A€0,1] ey
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where throughout this paper, the logarithms are on lkadéote that

C(P,Q) = max {— log (;P(@A Q(w)H> }

— max {(1 —\)DA(P, Q)} (15)

A€(0,1)
where D, (P, Q) designates the Rényi divergence of ord€il9]. The endpoints of the intervéld, 1] are excluded
in the second line of (15) since the Chernoff information é&megative, and the logarithmic function in the first
line of (15) is equal to zero at both endpoints.

Proposition 1: For two probability distributions” and@ on a setA4
drv(P,Q) < V2du(P,Q) < v/D(P[|Q). (16)

Proof: The left-hand side of (16) is proved in [35, p. 99], and thédtdigand side is proved in [35, p. 328
Definition 7: The chi-squared divergendeetween two probability distribution® and@ on a setA is given by

2 p oy & N (P@) — Q@)° P(a)?
X*(P,Q) 2;4 o) Z;l oGy ! (17)
The chi-squared divergence is an asymmefrigivergence wherg (t) = (¢t — 1) for t > 0.

For further study off-divergences and related distances between probabi$tyilitions, the reader is referred
to [12, Chapter 4], [15], [44] and references therein.

[1l. BOUNDS ON f-DIVERGENCES ANDRELATED DISTANCES

The following section is separated into six subsections$ tarespond to the derivation of bounds for various
f-divergences and related distances.

A. Bounds on the Hellinger and Bhattacharyya Distances

The following proposition introduces a sharpened versibRroposition 1.
Proposition 2: Let P and@ be two probability distributions on a set. Then, the following inequality suggests
a tightened version of inequality (16)

1- \/1 — (drv(P.Q))? < (du(P,Q))* < min {1 — exp<—D(PTHQ)>7 drv(P, Q)} (18)

and

max {exp<—w>, 1 — dry (P, Q)} < 2(P,Q) < \/1- (dn(P.Q)% (19)

Proof: We start with the proof of the left-hand side of (18). From+(8)1), and the Cauchy-Schwartz inequality
drv(P,Q) = Z |P(x

mG.A

— % > ‘\/P(w) —/Q(x) ‘ (\/P(w) + \/Q(w))

zeA

1

D=

—_

§<Z(V— V—)>

zeA

(z (mwmf)

zeA

_ (P.Q) <1 £ VPG Q(m)) 2

€A

= (P.Q) (2~ (@(P.Q)°) (20)
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Let ¢ = (drv (P, Q))2 andz £ (du(P, Q))Z. Squaring both sides of (20), give$2 — ) > ¢, which implies that
1—-V1—-c<z<l++v1-—c. (22)

The right-hand side of (21) is satisfied automatically siice dy(P, Q) < 1 implies thatz < 1. The left-hand
side of (21) gives the lower bound on the left-hand side oj.(IN&xt, we prove the upper bound on the right-hand
side of (18). Similarly to [27, p. 711] (or the proof of [28, E¢O0)]), combining equations (10), (11) and Jensen’s
inequality give

(dn(P,Q)* =1-Z(P,Q)

13 payet el

zeA
<13 Taeal (z) log( 222)

| _ o iDPlQ) (22)

and the inequality(dy (P, Q))2 < drv(P,Q) is due to [29, Lemma 1]; its (somewhat simplified) proof is

(P, Q) = 5 3 (VP@) ~ V@)

mG.A

1 |V P(z) — \/Q(w)|>
= = P(x) — Q(x
> 1P@) - Q( >\< O Ie

zeA
Z |P(x z)| = drv (P, Q). (23)
:(:E.A
The two upper bounds on the squared Hellinger distance ing@@ (23) lead to the upper bound on the right-hand
side of (18). The other bound on the Bhattacharyya distam¢&9) follows from (11) and (18). |

Discussion 1:The proof of Proposition 2 is elementary. It is interestingdalize that the sharpened lower bound
on the Hellinger distance in (18), expressed in terms of ttal variation distance, also follows from the more
advanced result in (8) (see [25, Corollary 5.4]). To verlfyst a combination of Corollary 1, (12) and (13) yields
that
2

(du(P, @))% > L= Q) (l_ M)

2 1 —drv(P,Q)

—1-\/1- (d(P,Q))?

which coincides with the lower bound on the left-hand sidé1&). Similarly, the right-hand side of (19) follows
from the equality in (11) and the left-hand side of (18).

Remark 1:Since the total variation distanegy (P, @) and the Hellinger distancé, (P, Q) are symmetric inP
and@, in contrast to the relative entrogy(P||R), one can improve the upper bound on the Hellinger distance in

(18) to
(P, Q) < \/mm {1 ~exp (_g) dny(P, Q)} (24)

whered £ min{D(P||Q), D(Q||P)}. From (11), the lower bound on the Bhattacharyya distancel®) (s
improved to

2(P.Q) = maxfexp (-5 1- in(P.0) | (25)

Remark 2: The bounds in (16) follow from a loosening of the bounds in)(b8 a use of the inequalities
I—-z<1-5forze(0,1], ande™ >1—x for z > 0.
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B. Bounds on the Chi-Squared Divergence

Proposition 3: Let P and@ be two probability distributions on a sét Then, the chi-squared divergence between
P and@ is lower bounded in terms of the relative entropy as follows:

(P, Q) = ePle) — (26)
and, it is also lower bounded in terms of the total variatigstathce as follows:
(1 + dry (P, Q) ™"
1— (drv(P,Q))*

Furthermore, ifA is a finite set, the following inequality holds:

2(drv (P, Q)

mianA Q(x) '

XZ(P, Q@) > max { -1, (2d-|-V(P, Q))Z} . (27)

YA(PQ) < (28)

Proof: From (17), it follows from Jensen’s inequality that

X(P,Q) = Z{P(m)eIOg(gEf:;)} -1

zeA
> Zeea P@) los( &) _ 4
DPIR) _

This proves the inequality in (26).
The second lower bound on the chi-squared divergence in éXppyessed in terms of the total variation distance,
follows from a combination of the first lower bound in (26) Wwithe improvement in [24] of Vajda’s inequality:

1
l_dTV(PvQ)> ~

Furthermore, the inequalitx?(P, Q) > (2drv(P, Q))2 is derived in [22, p. 429] using the Cauchy-Schwartz
inequality:

2
|P(z z)| (P(x)
2dry (P, E T < E E
( TV Q (IGA \/— Q( )> B z€A Q Q Q)

zeA

It is verified numerically that the first term on the right-llaside of (27) improves the second ter(ﬁdTV(P, Q))Z,
if the total variation distance satisfi@sr21 < drv(P,Q) < 1. This improvement is especially significant in the
limit where the total variation distance tends to 1; in thimiling case, the first term of (27) tends to infinity,
whereas the second term tends to 4. Hence, the new lower bmuride chi-squared divergence improves the
existing bound for values of the total variation distancat the between 0.721 and 1, where the improvement is
especially significant as the value of the total variatiostatice gets closer to 1.

For the derivation of (28), note that

(P(z) - Q(x))”
2 aw)
Seea(P(@) — Qx))?

minmeA Q(SL’)

2

_ (ZeealP@) - Q@)
- minge4 Q(l’)
4(drv (P, Q)

- minge4 Q(z) e

X’(P,Q) =

< (30)
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where the last equality follows from (3). However, the uppeund in (28) is twice smaller than (31). In order to
prove the tightened upper bound on the chi-squared diveegen(28), we rely on (30), and the following lemma:
Lemma 1:Let

dioc(P, Q) = ||P = Q| = sup |P(z) — Q)] (32)

be thelocal distancebetween a pair of probability distributiofdand@ on a setd. Then, the inequalityioc( P, Q) <
drv (P, Q) holds, which means that thHg,-norm of P — () does not exceedne-halfof its /;-norm.
Proof: This known inequality follows from (2) and (3). |
As a continuation to the proof of (28), it follows from (30)cahemma 1 that

) S een(P(@) — Qz))?
X (PQ) = minge 4 Q(x)

o maxgen [P(x) = Q)] XoealPle) — Qx)]
a minge A Q(l’)
@ 2dioc(P, Q) drv(P,Q)

minge A Q(I‘)

(2) 2(drv (P, Q))2
T mingeaq Q(l’)
where equality (a) follows from (3) and (32) (note thts a finite set), and inequality (b) follows from Lemma 1.

To conclude, the upper bound on the chi-squared divergen(28) is improved by a factor of 2, as compared to
(31); this improvement is obtained by the use of Lemma 1gs$tof the transition from (30) to (31). |

Remark 3:Inequality (26) dates back to Dragomir and Glustevie (46, Theorem 4]}.The lower bound on the
chi-squared divergence in (26) significantly improves ttssgar-Gyorfi-Talata bourdn [13, Lemma 6.3] which
states thai?(P, Q) > D(P||Q). Inequality (26) is refined in the continuation of this pageze Corollary 5).

Remark 4:The transition from (a) to (b) in the derivation of the new apgound in (28) implies that the
improvement by a factor of 2 that is obtained there, as coatpér (31), can be further enhanced under a mild
condition. Specifically, a further improvement is obtainfthe ratio % which according to Lemma 1 is no
more than 1, is strictly below 1 (for such possible examples,reader is referred to [38, Section 4]? in this case,

the improvement over the upper bound on the chi-squaredgginee in (31) is by a factor cﬁ‘ﬁvﬂ.

Remark 5:Inequalities (26) and (27) both imply that when the totaiaton distance tends to 1, the chi-squared
divergence should necessarily tend to infinity (accordmd/ajda’s-type inequalities in [24] and [43], if the total
variation distance tends to 1 then the relative entropygdadnfinity). It is noted that the claimed achievability of
the points on the parabolic curve in [26, Example 4.B] (se& Bg. (12)]) is partially inconsistent with the lower
bound in (27) (the quadratic term that appears as a secomdaerthe right-hand side of (27) is below the lower
bound in (27) when the total variation distance lies betw@&21 and 1). Inequality (27) provides a lower bound
on a non-symmetrig'-divergence in terms of a symmetrfecdivergence; for other such inequalities, see [41].

o))

C. A New Reversed Pinsker’s Inequality for Probability Bimitions on a Finite Set

As a consequence of Proposition 3, a sort of a reversed Rimshequality is obtained in the following.
Corollary 2: Let P and@ be two probability distributions on a finite sdt Then, the following inequality holds:

2(drv(P,Q))
D(P <log |1+ —-"—""—]. 33
(PlIQ) g< 00 (33)
Proof: This result follows from the bounds on the chi-squared djgace in (26) and (28). [ |

YInequality (26) is missing a proof in [16]; it was recentlyoped in [39, Theorem 3.1], and it was derived independemtlyhis work
(before being aware of [16] and [39]).

2As a historical note, Gyorfi was acknowledged for pointing the inequalityy®(P, Q) > D(P||Q) in [13, Lemma 6.3]; this inequality
was earlier stated in [10, Lemma 4] under a redundant remein¢ (see also [14, Lemma A.7], stated with a variant of taguirement).
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Remark 6: The bound in (33) improves the bound that follows by comhjn@siszar-Gyorfi-Talata bound in
[13, Lemma 6.3] (see Remark 3) and the bound in (31). This doation gives the Csiszar-Gyorfi-Talata bound

min Q(z) D(P(|Q) < 4(dv(P. Q)" (34)

The improvement that is suggested in (33) over (34) is tvebftile logarithm on the right-hand side of (33) follows
from the lower bound on the chi-squared divergence in (26)campared to the inequality?(P, Q) > D(P||Q)
in [13, Lemma 6.3]); another improvement, obtained by aaepent of the factor 4 on the right-hand side of
(34) by a factor 2 inside the logarithm on the right-hand 8¢33), follows from the improvement of the upper
bound on the chi-squared divergence in (28) over the bour@lih

Note that when the distribution® and () are close enough in total variation, the upper bounds onedfative
entropy in (33) and (34) scale like the squared total vammatiistance (although the former bound improves the
latter bound by a factor of 2).

Remark 7:1n the context of Corollary 2, another inequality has bearendly introduced by Verd( [45]:

in(P,Q) > (=2 pplQ)
logg

wheres=! £ sup,c 4 %(az). The reader is also referred to [20, Lemma 3.10] where a etlatguality is provided.
Remark 8: The lower bound on the chi-squared divergence in (27) isdotsan the bound in (26) (due to the
additional use of the inequality in (29) for the derivatioh(®7)); nevertheless, the bound in (27) is expressed in

terms of the total variation distance, whereas the boun@®) i expressed in terms of the relative entropy.

Remark 9:As an addition to Proposition 3, a parameterized upper baamdhe chi-squared divergence is
introduced in [25, Corollary 5.6] where this bound is exgegkin terms of some power divergences.

Remark 10:A related problem to the result in Corollary 2 has been rdgesidied in [4]. Consider an arbitrary
distribution @, and an arbitrary: > 0. The problem studied in [4] is the characterizationdf(s, @), defined
as the infimum ofD(P||Q) over all distributionsP that are at least-far away from( in total variation; from
Sanov’s theoremD*(e, Q) is equal to the asymptotic exponential decay of the proltalihat the L; distance
between the empirical distribution of a sequence of i.iahdom variables and the true distributiof) is more
than a specified value4, according to (3)) [33, Section 3]. It is demonstrated in Theorem 1] thatD* (e, Q)
scales likeCs? 4+ O(e?) for a certain constar® (with explicit upper and lower bounds @i that match wher) is
a 'balanced’ distribution [4]). If the support of the difwition ) is a finite setA, the linear scaling oD*(s, @) in
2 (for £ <« 1) also follows from a combination of Corollary 2 and Pinskdrequality. Corollary 2 further implies
that, for such an atomic distributiof,

22
D* £ inf D(P <1 1+ —.
(E’ Q) P: dTvl(rll’7Q)Z€ ( HQ) =08 < i minge 4 Q(w)>

It is noted that, for a certain class of distributiof@swhich includes all the non-atomic distributions @ity a full
characterization oD*(e, @) is provided in [4, Theorem 2]; for this class of distributio®, it satisfies the equality

D*(s,Q) = L(¢) & inf D(P||R

Q) (€) P,R: dg/l(P,R):e (PIIR)

where, due to the data processing theorem for the relativ®mn it is sufficient to restrict attention taP, Q)
defined on a binary alphabet (see [21, p. 1492]); also, whesrtee infimum forL(¢) is finite, it is also a minimum
(see the proof of [21, Theorem 1]). The exact parametric #ouaf the curve(e, L(g))p<c<1 IS introduced in
[21, Eqg. (3)]; due to (3), the total variation distance camtaan extra factor of one-half (as compared to [21]), and
consequently this parametric equation gets the form

e(t) = % [1 - (coth(t) - %)2] , t>0

2 )
L(=(t)) = log (@) + tcoth(t) — (mi (t)> .
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D. Bounds on the Capacitory Discrimination

The capacitory discrimination (a.k.a. the Jensen-Shaulih@rgence) is defined as follows:
Definition 8: Let P and @ be two probability distributions. The capacitory discniraiion betweer? and Q@ is

given by
) 20 (1125 0 01 259)
:2@<P+Q>_HU¥+H@W. (36)
2 2

This information measure is studied in [18], [25], [31] ar®]. Due to the parallelogram identity for relative
entropy (see, e.g., [11, Problem 3.20]), it follows that

C(P,Q) = min{D(P||R) + D(Q||R)}

where the minimization is w.r.t. all probability distribons R.
Proposition 4: The capacitory discrimination satisfies the following dayafor every e € [0, 1],

_ 1—¢,1
inf C(P,Q)=2D — 37
PQ: dg,l(P,Q):e (P.Q) ( 2 H 2> (37)
where this infimum is achievable (i.e., it is a minimum), dnb||q) = plog (%) +(1—p) log G%Z) forp,q € [0, 1]
(with the convention thab log 0 = 0).
If A is a finite set, the following inequality holds:

2
C(P,Q) <2 min{dTv(P, Q) log 2, log (1 + mmxif(vlggff 5 (w))> } (38)

Proof: In [25, p. 119], the capacitory discrimination is expresasdanf-divergence where
flz)==xlogx — (x +1)log(l + z) +2log2, x>0 (39)
is a convex function withf(1) = 0. The combination of (5) and (39) implies that

inf C(P,
o i (@)

=<1—@f<1f5)—2w%n

1 2
=(1+¢) log ~te —2log | —— | +2log2
1—c¢ 1—e¢

=(1+4e¢e)log(l4+e)+(1—¢)log(l—¢)

()]
20 (15115).

The last equality holds sinc@(pH%) = log 2 — h(p) for p € [0, 1] whereh denotes the binary entropy function.
This proves the lower bound in (37). The appendix providealgrnative proof of (37) which only relies on basics
of information theory and the use of maximal coupling; thiegd is of interest by itself, and is elementary.

The derivation of the upper bound in (38) relies on a comimmabf (33) (see Corollary 2), and the equality

drv (P, PL2Q> = drv (Q, P;Q) — Iv(2Q) This gives the inequality

(drv (P, Q))2 )
minge 4 (P(z) + Q(z)) )

C(P,Q) <2 log <1 +
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Since alsa) < C(P,Q) < 2log2 drv(P, Q) (see [31, Theorem 3]), inequality (38) follows. [ |

Discussion 2:The lower bound on the capacitory discrimination in (37pressed in terms of the total variation
distance, forms a closed-form expression of the bound bydepn [42, Theorem 5]. This bound is given by

00 2v
arg =y PO (40)

v=

The equivalence of (37) and (40) follows from the power sedgpansion of the binary entropy function (to the
natural base) around one-half:

e _ 1,21/
h(z) =log2 — 2%, vz € 0,1]

which yields that

= (dry ,]j’_Qi) _2[10g2—h<w>}

—op (1B 0.

Note, however, that the proof here is much shorter than thefmf [42, Theorem 5] (which relies on properties of
the triangular discrimination in [42] and previous theoseof this paper), and it also leads directly to a closed-form
expression of this bound. Consequently, one concludesttiealower bound in [42, Theorem 5] is a special case
of (8) (see [23] and [25, Corollary 5.4]), which provides avéy bound on a symmetri¢-divergence in terms of
the total variation distance. The lower bound on the capgacidiscrimination was obtained independently of the
work by Briét and Harremoés (see [6, Eq. (18)] tor= 1) whose derivation was done in a different approach.
The upper bound on the capacitory discrimination in (38)a&,rand it is based on Corollary 2 which provides an
improvement of the Csiszar-Gyorfi-Talata bound (see Rksn3, 6). The upper bound(P, Q) < 2log 2 drv (P, Q)
is looser, and it was derived independently in [6, Theoref@aSk special case whete— 1) and in [31, Theorem 3].

v=1

The following result provides a measure of the concavityhef éntropy function:
Corollary 3: For arbitrary probability distribution® and @), the following inequality holds:

L e D

and this inequality is tight for a given total variation diste.
Proof: This result follows from (36) and Propaosition 4. |

E. An Exact Characterization of the Minimum of the Chernofbimation for a Given Total Variation Distance
Proposition 5: Let C(P, Q) denote the Chernoff information between two probabilitstidbutionsP and @ (see
(14)), and let

A .
C(E) - PQ: d-lr\r/l(fP,Q):eC(P7 Q)a Ve € [07 1] (41)

be the infimum of the Chernoff information for a given totakiaion distance(c). Then, the following equality
holds:

—Llog(1—¢€?) ifeco,1)
Cle)=5 ° ’ 42
© {+oo it e =1. 42)
Fore € [0,1), the infimum in (41) is achievable by the pair of probabilifgtdbutions
1—¢ 14¢ 14+ 1—¢
P=(5550) o= () (43

so, the infimum in (41) is a minimum that is obtained by the pdi2-element probability distributions in (43).
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Proof:

C(P,Q) (za) —log (Z VP(z) Q(@)

zeA

—
~

2 —log 2(P,Q)
> —S1og(1- (d(P.Q))?)

where inequality (a) follows by selecting the possibly syttimal choicel = % in (14), equality (b) holds by
definition (see (10)), and inequality (c) follows from thghi-hand side of (19). By the definition in (41), it follows
that C'(¢) satisfies the inequality

—
~

C(e) > —% log(1 —&). (44)

In order to show that (44) provides a tight lower bound foregitotal variation distancg), it is sufficient to show
the existence of a pair of probability distributiofsand @ wheredry (P, Q) = £ andC (P, Q) = —1 log(1 —&?).
For the pair of 2-element probability distributiodsand @ in (43), the Chernoff information in (14) satisfies the

equality
c(P,Q) w1l l—¢e/1+¢ )‘+1+z—: 1—e\* (45)
= — Imin 1o .
’ e B\ T2 \1 =2 2 \1te
Minimization of the logarithmic function in (45), by setgnits derivative to zero, givea = % For the pair of
2-element probability distribution® and @ in (43) with A = % the Chernoff information is equal to

C(P,Q) =~ log(1 — )

so, the lower bound of(¢) in (44) is tight. This concludes the proof of Proposition 5. [ |
Corollary 4: For any pair of probability distribution® and @, the Chernoff information betweeR and Q)
satisfies

o(P,Q) > —% tog (1~ (4 (P.Q)°). (46)

and (46) is obtained with equality for the pair of 2-elemergh@bility distributions in (43) wheréy (P, Q) = ¢.
Proof: Inequality (46) follows directly from the equality in (42&nd it turns to hold with equality for the

2-element probability distributions in (43) whetley (P, Q) = ¢. |

Remark 11:The fact that, subject to a given total variation distante, Chernoff information achieves its
minimum by a pair of 2-element probability distributionsndae also justified by the same reasoning as in [21, first
paragraph of Section 2]. The reasoning in [21] refers to amikation of the relative entropy, subject to the same
equality constraint on the total variation distance, anid id simple consequence of the data processing theorem
for the relative entropy. The same concept of proof alsoiapfb the minimization of the Chernoff information,
for a given total variation distance, since the Chernofbinfation also satisfies a data processing theorem. The
satisfiability of a data processing theorem by the Cherndfirimation can be justified by combining the data
processing theorem for the Rényi divergence (see [19, rEned]) with equation (15) that relates the Chernoff
information to the Rényi divergence.

Remark 12:Following Corollary 4, a lower bound on the total variatioistdnce gives a lower bound on the
Chernoff information; consequently, it provides an uppeurtd on the best achievable Bayesian probability of error
for binary hypothesis testing (see, e.g., [7, Theorem 1]).9This approach was recently used in [46] to obtain a
lower bound on the Chernoff information for studying a conmication problem.

Discussion 3:Let

L(e) £ D(P[|Q). (47)

inf
P,Q: dv(P,Q)=¢
The exact parametric equation of the cuf¢eL(¢))o<c<1 is introduced in [21, Eq. (3)] (see (35) in Remark 10).
From the satisfiability of the inequality (see [7, Section9]}L

C(P,Q) < min{D(P|Q), D(Q|P)} (48)
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it follows from (41), (47) and (48) that
C(e) < L(e), Veel0,1) (49)

where the left and right-hand sides of (49) correspond tontfir@ma of the Chernoff information and relative
entropy, respectively, given the value of the total vamatdistancgc). Figure 1 plots these minima as a function
of the total variation distance, supporting inequality )(4Bor small values ot, C(¢) and L(e), respectively, are
approximately equal t(‘;iz3 and2e? (note that Pinsker's inequality is tight fer< 1), solim._ % =4.

4
——L(€): Minimum of the relative entropy for a given ¢
3.5 | ——C(g): Minimum of the Chernoff information for a given ¢
3 [

N
a1
T

C(€) versus L(g)
i

=
a1
T

0 0.2 0.4 0.6 0.8 1
Total variation distance (g)

Fig. 1. A plot of the minima of the Chernoff information andethelative entropy for a given total variation distance [0, 1], denoted
by C(e) and L(e), respectively;,C and L are given in Proposition 5 and [21, Theorem 2] (see (35)).

F. On Jeffreys’ Divergence and Lossless Source Coding

Definition 9: Let P and(@ be two probability distributions. Jeffreys’ divergenceaisymmetrized version of the
relative entropy, which is defined as

It is easy to verify that it is a symmetri¢-divergence where
f(t):(t_l)%g(“, £>0 (51)

is a convex function orf0, co) with f(1) = 0. Relying on [23], [24], the following equalities hold:
Proposition 6:

1+¢
inf J(P =c I — v 0,1 52
poait  I(P.Q)=c og<1_€>, ce0,1), (52)
g
inf J(P,Q)==, Ve>0, 53
P.Q: D(P||Q)=¢ (P.Q) 9 (53)

and the two respective suprema are equal-to.

Proof: Jeffreys’ divergence is a symmetrit-divergence where the convex functighin (51) satisfies the
equality f(t) = tf(%) for everyt > 0 with f(1) = 0. The equality in (52) follows from Corollary 1. Eq. (53)
follows from (50) and the fact that, given the value of theatieke entropyD(P||@), its dual (D(Q||P)) can be
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made arbitrarily small. The two corresponding suprema areakto infinity because given the value of the total
variation distance or the relative entropy, the dual of thlative entropy can be made arbitrarily large. [ |

We exemplify in the following a use of Proposition 6 for lasst source coding. This tightens, and also refines
under a certain condition, a bound by Csiszar [9].

Consider a memoryless and stationary source with alphabetat emits symbols according to a probability
distribution P, and assume a uniquely decodable (UD) code with an alphditsitend. It is well known that such
a UD code achieves the entropy of the source if and only if émgth/(u) of the codeword that is assigned to
each symbotl € U satisfies the equality

l(u) = —logy P(u), Vuel.

This corresponds to a dyadic source where, for evegyld, we haveP(u) = d~™ with a natural numben,; in

this case/(u) = n, for every symbol € U. Let L £ IE[L] designate the average length of the codewords, and
Hy(U) & =3, c P(u) log, P(u) be the entropy of the source (to the bakeFurthermore, let,; £ 3, ., d=.
According to the Kraft-McMillian inequality (see [7, Theam 5.5.1]), the inequality;; < 1 holds in general for UD
codes, and the equality,; = 1 holds if and only if the code achieves the entropy of the selire., L = H,(U)).
Hence, for a UD code that achieves the entropy of the souneepttobability distributionP satisfies the equality

P(u) = <i> d7'W . vueu. (54)
Cd,l
Note that the right-hand side of (54) is in general a prolighilistribution. Let's designate it by, i.e.,
1
Qay(u) 2 <C—> a7 Yueu (55)
d,l

and letA,; = L — Hy(U) designate the redundancy of the code.

In [9], a generalization for UD source codes has been stuuljeal derivation of an upper bound on the norm
between the two probability distribution3 and,,; as a function of the redundancy, of the code. To this end,
straightforward calculation shows that the relative gogrrom P to @4, is given by

D(PHQ(“) = Ay logd + log(ch). (56)

The interest in [9] is in getting an upper bound that only defseon the (average) redundandy of the code,
but is independent of the specific distribution of the lengtheach codeword. Hence, since the Kraft-McMillian
inequality states that;; < 1 for general UD codes, it is concluded in [9] that

D(P||Qa;) < Ag logd. 57)

Consequently, it follows from Pinsker’s inequality that

Z‘P( — Qau(u ‘<m1n{\/2Adlog 2} (58)

ueU

where it is also taken into account that, from the triangkqimality, the sum on the left-hand side of (58) cannot
exceed 2. This inequality is indeed consistent with the fiaat the probability distributiong” and ), coincide
whenA,; = 0 (i.e., for a UD code which achieves the entropy of the source)

At this point we deviate from the analysis in [9]. One possilvthprovement of the bound in (58) follows by
replacing Pinsker’s inequality with the result in [21],.j.by taking into account the exact parametrization of the
infimum of the relative entropy for a given total variatiors@ince. This gives the following tightened bound:

D |Pw) = Qau(u)] < 22(L7 (Aglogd)) (59)
uel

where the parametric functionsand L are introduced in (35), and ! is the inverse function of. (calculated
numerically).
In the following, the use of Proposition 6 is exemplified ifimang the latter bound in (59). Let

§(u) = 1(u) +logy P(u), Yu€el.



14 DRAFT. LAST UPDATE: MAY 8, 2014

Calculation of the dual divergence gives

D(Qa,l|P)
Qa,(u)
=logd Y Qqu(u logd< 0]
ueld
1
=logd [ Ogd ca) Zd Zl i) _ Zlogd (u)
uel ca uel &l weu
—log(cay) logd Z 5(u d—'w)
d,l ueU
log cdl logd ZP (u)
d,l ueU
— log(cq) - (1ng> E[3(U)a-*)] (60)
d,l
and the combination of (50), (56) and (60) yields that
1 log d _
J(P.Qa1) = 5 [Ad logd — < Ci;l >IE[5(U)d WJ)}] . (61)

For the simplicity of the continuation of the analysis, wetrigt our attention to UD codes that satisfy the condition

l(u) > {logd ﬁw , Yuel. (62)

In general, it excludes Huffman codes; nevertheless, itisfied by some other important UD codes such as the
Shannon code, Shannon-Fano-Elias code, and arithmetiogc¢gke, e.g., [7, Chapter 5]). Since (62) is equivalent
to the condition thabt is non-negative o/, it follows from (61) that

Aglogd
J(P, Q) < =52

so, the upper bound on Jeffreys’ divergence in (63) is twinalker than the upper bound on the relative entropy in
(57). Itis partially because the terlvg cq; is canceled out along the derivation of the bound in (63),dnt@st to
the derivation of the bound in (57) where this term was rerddvem the bound in order to avoid its dependence

on the length of the codeword for each individual symbol.
Following Proposition 6, for an arbitrary > 0, lete £ ¢(z) be the solution in the intervad, 1) of the equation

(63)

1
510g<1i_i> =z. (64)
The combination of (52) and (63) implies that
Aglogd
Z‘P — Qau(u)| < ( d2g > (65)

ueU

The bounds in (58), (59) and (65) are depicted in Figure 2 fordddes where the size of their alphabet is- 10.

In the following, the bounds in (59) and (65) are comparedyaically for the case where the average redundancy
is small (i.e.,Aq ~ 0). Under this approximation, the bound in (58) (i.e., thegimal bound from [9]) coincides
with its tightened version in (65). On the other hand simmesf~ 0, the left-hand side of (64) is approximately

2¢2, it follows from (64) that, forz ~ 0, we haves(x \/_ It follows that, if A; ~ 0, inequality (65) gets
approximately the form

Z‘P le ‘ < VAglogd.

uel

Hence, even for a small redundancy, the bound in (65) imsr¢s@) by a factor of/2. This conclusion is consistent
with the plot in Figure 2.
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Fig. 2. Upper bounds op_ |P(u) — Q4. (u)| as a function of the (average) redundamky 2 IE[L] — H, for a UD code with an alphabet
of sized = 10. The original bound in (58) appears in [9], and the tightebednd that relies on the Kullback-Leibler (KL) divergense i
given in (59). The further tightening of this bound is resed in this plot to UD codes whose codewords satisfy the itiondin (62). The
latter bound relies on Proposition 6 for Jeffreys’ (J) dijerrce, and it is given in (65).

G. A New Inequality Relating-Divergences

We introduce in the following a new inequality which relateslivergences, and study some of its consequences.

Proposition 7: Let f: (0,00) — IR be a convex function withf(1) = 0 and further assume that the function
g: (0,00) — IR, defined byg(t) = —tf(t) for everyt > 0, is also convex. Let?P and ) be two probability
distributions on a finite sed, and assume tha®, (Q are positive on this set. Then, the following inequalitydsol

P(z) . _ 2 max &)
min 505 Di(PIQ) < =Dy(PlIQ) ~ F(1+x*(P.Q)) < max 505

- Dy (Pl|Q)- (66)

Proof: Let |A| = n be the size of the finite set, and letA = {z1,...,z,}. Letu = (uy,...,u,) € R} be
an arbitraryn-tuple with positive entries. Define

In(f,u, P) ZP ;) fui) = f <ZP(:UZ-)W> ;
=1

Jn(Q,u, P) ZQ () f(wi) — f (meui) .
=1

The following refinement of Jensen’s inequality has beervgaoin [17, Theorem 1] for a convex function
f:(0,00) — IR (and it was extended in [2, Theorem 1] to hold for a conyeaver an arbitrary intervala, b]):

(67)

min {ggg} (o, Q) < Jo(fou, P) < max {ggzi;}Jn(f,g,Q). (68)

ie{l,...,n} ie{l,...,n}

The refined version of Jensen’s inequality in (68) is appiiethe following to prove (66). Let

w2 P(xi)
tQ(w)

Vie{l,...,n}.
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Calculation of (67) gives that

zeA
= D4(P||Q) (69)
and
In(f,u, P)
- P(fﬂi)) — P(z:)*
- P(x; —
2 P@)] () ! (; Q) )
@ N~ P(m)) (= Pla)?
= ;Q(azz)g <Qm) f (M o) )
2 _Dy(PQ) ~ (1 +3(P.Q) (70)
where equality (a) holds by the definition gfand equality (b) follows from equalities (1) and (17). Thibstitution
of (69) and (70) in (68) completes the proof. |

As a consequence of Proposition 7, we introduce the follgwirequality which relates between the relative
entropy, its dual and the chi-squared divergence.

Corollary 5: Let P and@ be two probability distributions on a finite sgt, and assume tha?, () are positive
on A. Then, the following inequality holds:

min b(z)

zeA Q(x)

) 2 . P(z) )
D(@IIP) < log(1+x*(P,Q)) = D(PIIQ) < max 5 - DQIIP) (72)
Proof: Let f(t) = —log(t) for ¢ > 0. The functionf: (0,00) — IR is convex with f(1) = 0. Furthermore,
g(t) = —tf(t) = tlog(t) for t > 0 defines a convex function with(1) = 0. The inequality in (71) follows by
substitutingf andg in (66) whereD((P||Q) = D(Q||P) and Dy(P||Q) = D(P||Q). [ |

Remark 13:Inequality (71) forms a refinement of (26). Combining it wik8) also refines the inequality in
(33), giving

Q@) (72)

The following inequality is another consequence of Prapmsi7, relating the chi-squared divergence and its
dual:

Corollary 6: Under the same conditions of Corollary 5, the following inality holds:
2
o P() (P,Q) P(x)

2
W o X @R ST r o) S B Q)

2
DPIQ) +min 1) D(QI|P) < log (1 ¥ %) .

Proof: The parametric functiorf(t) = ¢t — 1 satisfies the conditions in Proposition 7 ferc [—1,0]. For
a = —1, the inequality in (73) follows from (66) where

Df(P||Q) = x*(Q, P), Dy(P||Q) = 0.



I. SASON: BOUNDS ONF-DIVERGENCES AND RELATED DISTANCES 17

IV. SUMMARY

Derivation of bounds orf-divergences and related distances is considered in tipisrpbn some cases, existing
recent bounds are reproduced by elementary proofs, andrig sther cases, significant improvements are obtained.
The contributions of this work are outlined in the following

« Upper and lower bounds on both the Hellinger distance andHtattacharyya distance are expressed in terms
of the total variation distance and relative entropy (seap8sition 2). This tightens the bounds introduced
in Proposition 1 (see, e.g., [35]). The proof of these bouaddementary, replacing an alternative proof that
is based on an advanced result (see Discussion 1). The spmpdé of the other two bounds dates back to
Hoeffding and Wolfowitz [27], and Kraft [29].

« Three bounds on the chi-squared divergence are introdadembposition 3. The first lower bound in (26) dates
back to Dragomir and Gluscevic [16] (see Remark 3). A sddower bound on the chi-squared divergence is
expressed in terms of the total variation distance (seg;(%$ new bound improves the bound in [22, p. 429]
when the total variation distance lies between 0.721 anad tlae improvement is especially significant when
the total variation distance tends to 1 (where the existowgel bound tends to 4, whereas the new bound
tends to infinity). The upper bound on the chi-squared diecg in (28) is new as well, and it suggests an
improvement over the bound in (31) by a factor of 2 (accordmBemark 4, this gain can be further improved
under a mild condition).

o The improvements of the bounds on the chi-squared diveeg@ndroposition 3 lead to a new improved
upper bound on the relative entropy in terms of the totalatemn distance for an arbitrary pair of probability
distributions on a finite set (see Corollary 2, followed bynieks 6—10). This forms a new sort of a reversed
Pinsker’s inequality which improves the Csiszar-Gyddlata bound in (34).

« Bounds on the capacitory discrimination are provided imteof the total variation distance (see Proposition 4).
The lower bound on the capacitory discrimination forms ssetbform expression of the bound by Topsge
in [42, Theorem 5]; it has two proofs in this paper: the firsbgdrrelies on an advanced result (see [23]
and [25, Corollary 5.4]), and the second proof relies ondsasf information theory and coupling between
random variables (see the appendix). Both proofs do nothiavproperties of the triangular discrimination
that are used in the original proof in [42]. The lower boundtba capacitory discrimination was obtained
independently by Briet and Harremoés (see [6, Eq. (18)lofe= 1) with a different approach. Furthermore,
the upper bound on the capacitory discrimination in (38)éaw/rfsee Discussion 2), and it sharpens a bound
that was derived in [6, Theorem 9] and [31, Theorem 3].

« Proposition 5 provides an exact characterization of theiimim of the Chernoff information for a given
total variation distance, which is obtained by a pair of @rebnt probability distributions. The minima of the
Chernoff information and the relative entropy for a givetatwariation distance are plotted in Figure 1 where
the former is less than or equal to the latter (see (49)), beid tatio is approximately 4 for small values of the
total variation distance. The lower bound on the Cherndtirmation for a given total variation distance (see
Corollary 4) is therefore tight, and it is achieved with elifydor a pair of 2-element probability distributions.
This lower bound has been recently applied in [46] in the exindf a channel codebook detection in a binary
hypothesis testing problem where the receiver needs teiditte channel code upon observing noise-affected
codewords through a noisy channel (the authors referretlegdound in [37, Proposition 5] (un-published),
which was stated there as a lower bound without proving gfisttiess for a given total variation distance).

« A lower bound on Jeffreys’ divergence in terms of the totaiation distance was readily obtained from the
analysis by Gilardoni ([23], [24]). This bound was used irct8m IlI-F to tighten a bound by Csiszar in the
context of lossless source coding [9] (the original andtéglkd bounds are plotted in Figure 2).

« A new inequality which relateg-divergences was derived in Proposition 7, based on a refineof Jensen’s
inequality in [2] and [17]. Corollaries of Proposition 7 lnde an inequality relating the relative entropy, its
dual and the chi-squared divergence, and another inegudtiich relates the chi-squared divergence and its
dual (see Corollaries 5 and 6, respectively).
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APPENDIX: AN ELEMENTARY PROOF OF(37)

The following proof of (37) relies on basics of informatidmebry, and coupling between random variables. By
the definition of the capacitory discrimination in (36), @llbws that for any pair of probability distributiong”(
and @) on an arbitrary set

C(P,Q)

:D<P||P;—Q> +D<Q||P_;Q>

—2log 2 + ;P(w) log (%) + %Q(w) log (%) (74)
- [1°g2 B> (B2 o <P<;(+$22<w>>]

whereh denotes the binary entropy function.

Let ©, X; and X, be random variables wheré; ~ P, X5 ~ ), and® ~ Ber(%) is a Bernoulli random variable
that gets the values 1 or 2 with equal probabiﬁg/). Further assume thafX;, X) is independent 06. A basic
result on a cgupling{Xl,Xg) of (X1, X2) (see, e.g., [36, Proposition 2.7] or [38, Theorem 2]) sthes, since
X1~PandX2~Q, . .

Pr(X; = Xs) <1-drv(PQ) (75)
and equality in (75) holds in the case of maximal coupling §loch a construction of maximal coupling, the reader

is referred, e.g., to [36, p. 58] or [38, p. 7119)).
Let Xo be equal toX; or Xo when® = 1 or © = 2, respectively. Then, for every € A,

Pr(Xe — 2) = w, (76)
o _:E_Pr(@zl,Xlzx)_Pr(@zl)Pr(Xlz )  P(a)

Pr(®=1]Xe =2) = Pr(Xe =2) Pr(Xo = ) - P(z)+Q(z)’ ()

Pr(@zz\X@:x):1—Pr(@:1\X@:x):ﬂ. (78)

The combination of (74)—(78) gives

C(P,Q) =2 [10g2 — Y Pr(Xe =2)H(O|Xo =)
€A

=2 [bg 2~ H(O] X@)]. (79)

Let ©: A — {1,2} be an arbitrary estimator &, based on the value ofe, and letP, = IE[Pr(© # o X@)]
denote the average probability of error giv&R. Since® is a Bernoulli random variable, it follows that

H(©|Xe) = h(Pe). (80)

Let £/ be a Bernoulli random variable that gets the value 1 in casgnodrror event in the estimation 6f (i.e.,
E=11if ©# ©), and it is zero otherwise. The average probability of ersoequal to

P=TE[Pr(E=1|Xp)] (81)
and
Pr(E =1|Xg) =Pr(E =1|Xe, X1 = X3) Pr(X; = Xo)+ Pr(E =1, X; # X5| Xe). (82)

If X, = X, the knowledge of the value ofg does not help in estimating, and

|
Pr(E = 1| Xo, X1 = Xa) = 5 (83)
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since©® is equally likely to be either 1 or 2. Consider the second temthe right-hand side of (82):
Pr(E=1, X1 #X;|Xe)= Y {PT(E =1|Xe, X1 =21, Xo =) Pr(X; =1, Xp = li"z)}-

1,82 Ifﬁéi’z
If the values ofX1, X», X¢ are known,X; = #; and X, = &, wherez; # i1, one can determine the value ©f
without any ambiguity (i.e.© = 1 if and only if Xg = 21, and© = 2 if and only if Xg = Z5), and

Pr(E =1, X, # X3 | Xe) = 0. (84)
Combining (75) and (80)—(84) gives

(85)

H(O|Xo) < h (M)

2

and (85) is obtained with equality when (75) holds with egudi.e., for a maximal coupling). The combination
of (79) and (85) finally gives

arQ) zg[loﬂ_h(%(m)]

_ 9D <1_dT\;(P>Q) H%)

where, for a given total variation distance, equality isaifd for a maximal coupling that indeed implies that (75)
holds with equality. This completes the proof of (37) wherés ishown that the infimum in this equality is in fact
a minimum.
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