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Bounds onf -Divergences and Related Distances
Igal Sason

Abstract

Derivation of tight bounds onf -divergences and related distances is of interest in information theory and statistics. This
paper improves some existing bounds onf -divergences. In some cases, an alternative approach leadsto a simplified proof of
an existing bound. Following bounds on the chi-squared divergence, an improved version of a reversed Pinsker’s inequality is
derived for an arbitrary pair of probability distributionson a finite set. Following bounds on the relative entropy and Jeffreys’
divergence, a tightened inequality for lossless source coding is derived and considered. Finally, a new inequality relating
f -divergences is derived and studied.

Index Terms– Bhattacharyya distance, Chernoff information, chi-squared divergence,f -divergence, Hellinger distance,
Jeffreys’ divergence, lossless source coding, relative entropy (Kullback-Leibler divergence), total variation distance.

I. INTRODUCTION

Divergence measures are widely used in information theory,machine learning, statistics, and other theoretical
and applied branches of mathematics (see, e.g., [3], [12], [15], [34], [40] and [44]). The class off -divergences,
introduced independently in [1], [8] and [32], forms an important class of divergence measures which includes
the relative entropy (a.k.a. information divergence or theKullback-Leibler divergence), its dual and symmetrized
divergences, the total variation distance, squared Hellinger distance, chi-squared divergence, etc. Properties off -
divergences, including relations to statistical tests andestimators, were extensively studied in [30].

In the following, some related papers that are most relevantto the scope of this work are briefly reviewed.
Pinsker’s inequality (a.k.a the Csiszár-Kemperman-Kullback-Pinsker inequality) and Vajda’s inequality [44] have
been derived during the sixties to provide lower bounds on the relative entropy in terms of the total variation distance.
Following these bounds, Fedotovet al. [21] derived an exact parametrization of the infimum of the relative entropy
with respect to all possible pairs of probability distributions with a given total variation distance. The derivation of
the parametrization in [21] relies on the data processing theorem for the relative entropy, leading to a maximization
problem of the convex conjugate function of the relative entropy between two-element probability distributions; this
approach leads to closed-form solutions that are used to identify a possible form for the required parametrization.
As an extension to this problem, Harremoës and Vajda studied in [26] the joint range of pairs off -divergences,
characterizing all the possible points in[0,∞]2 that are achievable by a given pair off -divergences. It was shown
that this region is convex where each point is a convex combination of two achievable points that are obtained by
a pair of probability distributions over two elements; hence, every such an achievable point is obtained by a pair
of probability distributions over at most 4 elements.

In [23], Gilardoni studied the problem of minimizing an arbitrary symmetricf -divergence for a given total
variation distance, and provided a closed-form solution ofthis optimization problem. Furthermore, an alternative
parametrization of the infimum of the relative entropy for a given total variation distance was derived in [23]. In
a follow-up paper by the same author [24], Pinsker’s and Vajda’s type inequalities were studied for symmetric
f -divergences, and the issue of obtaining lower bounds onf -divergences for a given total variation distance was
further studied. One of the main results in [24] was a derivation of an improved and simple closed-form lower
bound on the relative entropy in terms of the total variationdistance, as well as a simple and reasonably tight
closed-form upper bound on the infimum of the relative entropy for a given total variation distance.

Sharp inequalities forf -divergences were recently studied in [25] as a problem of maximizing or minimizing
an arbitraryf -divergence between two probability measures subject to a finite number of inequality constraints
on otherf -divergences. The main result stated in [25] is that such infinite-dimensional optimization problems are
equivalent to optimization problems over finite-dimensional spaces where the latter are numerically solvable.

I. Sason is with the Department of Electrical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel (e-mail:
sason@ee.technion.ac.il).
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Following previous work, some new bounds onf -divergences and related distances are derived in this paper. This
work improves some existing bounds onf -divergences; in some cases, an alternative approach leadsto a simplified
proof of an existing bound. An improved version of a reversedPinsker’s inequality is derived in this paper for an
arbitrary pair of probability distributions on a finite set.Following [9], two tightened inequalities for lossless source
coding are derived via bounds on the relative entropy and Jeffreys’ divergence. Finally, a new general inequality
relatingf -divergences is derived and studied.

The paper is organized as follows: preliminary material is introduced in Section II, and the bounds and their
proofs are introduced in Section III, followed by discussions and remarks that link the new bounds to the literature.
Section III is separated into seven subsections that refer to variousf -divergences and related distances. The paper
is concluded in Section IV where the contributions of this work are outlined, and an additional proof that provides
some insight is relegated to an appendix.

II. PRELIMINARIES

We introduce, in the following, some preliminaries and notation that are essential to the analysis in this paper.
Definition 1: Let f : (0,∞) → IR be a convex function withf(1) = 0, and letP and Q be two probability

distributions on a setA. The f -divergencefrom P to Q is defined by

Df (P ||Q) ,
∑

x∈A

Q(x) f

(
P (x)

Q(x)

)
(1)

with the convention that

0f
(0

0

)
= 0, f(0) = lim

t→0+
f(t),

0f
(a

0

)
= lim

t→0+
tf
(a

t

)
= a lim

u→∞

f(u)

u
, ∀ a > 0.

The relative entropyD(P ||Q) ,
∑

x∈A P (x) log
(

P (x)
Q(x)

)
is anf -divergence wheref(t) = t log(t) for t > 0.

An f -divergenceDf (P ||Q) is in general jointly convex in the two probability distributions P and Q, and it
is non-negative [8]; these basic properties, which hold forthe relative entropy, are preserved forf -divergences in
general.

Definition 2: The dual of anf -divergenceis given byD?
f (P ||Q) , Df (Q||P ).

It is easy to verify thatD?
f (P ||Q) = Df?(P ||Q) with f? that is of the form

f?(t) = t f

(
1

t

)
+ a (t − 1), ∀ t > 0

for an arbitrarya ∈ IR. Since the perspective of a convex function is also convex (see [5, p. 89]), the convexity of
f? follows andf?(1) = 0.

Definition 3: An f -divergence is said to besymmetricif it is equal to its dual.
An f -divergence is symmetric if and only if there exists a constant a ∈ IR such that the functionf in Definition 1

satisfies the equality

f(t) = t f
(1

t

)
+ a(t − 1), ∀ t > 0.

The sufficiency of this condition for ensuring the symmetry of the f -divergence is easy to verify from (1), and the
necessity of this condition was proved in [44, Theorem 9.6].

Definition 4: Let P andQ be two probability distributions on a setA. The total variation distancebetweenP
andQ is defined by

dTV(P,Q) , sup
A⊆A

|P (A) − Q(A)| (2)

where the supremum is taken over all the subsetsA of A for which P (A) andQ(A) are well defined.

If A is a countable set, (2) is simplified to

dTV(P,Q) =
1

2

∑

x∈A

∣∣P (x) − Q(x)
∣∣ =

||P − Q||1
2

(3)
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so, the total variation distance forms a symmetricf -divergence wheref(t) = 1
2 |t − 1| for t ∈ IR.

The following result refers to the infimum of a symmetricf -divergence for a given total variation distance [23]:
Theorem 1:Let f : (0,∞) → IR be a convex function withf(1) = 0, and assume thatf is twice differentiable.

Let

LDf
(ε) , inf

P,Q : dTV(P,Q)=ε
Df (P ||Q), ∀ ε ∈ [0, 1] (4)

be the infimum of thef -divergence for a given total variation distance. IfDf is a symmetricf -divergence, then

LDf
(ε) = (1 − ε) f

(
1 + ε

1 − ε

)
− 2f ′(1) ε, ∀ ε ∈ [0, 1]. (5)

Consequently, for a symmetricf -divergence, and for every pair of probability distributions P andQ, we have

Df (P ||Q) ≥
(
1 − dTV(P,Q)

)
f

(
1 + dTV(P,Q)

1 − dTV(P,Q)

)
− 2f ′(1) dTV(P,Q) (6)

and this bound, expressed in terms of the total variation distance, is tight.
The following corollary from [23] and [25, Corollary 5.4] isuseful for the analysis in this paper:
Corollary 1: If f : (0,∞) → IR satisfies the equality

f(t) = t f
(1

t

)
, ∀ t > 0 (7)

and it is convex withf(1) = 0, thenDf is symmetric, and

LDf
(ε) = (1 − ε) f

(
1 + ε

1 − ε

)
, ∀ ε ∈ [0, 1]. (8)

Proof: It is easy to verify from (7) thatDf is symmetric. For simplicity, assume thatf is twice differentiable.
Equality (7) withf(1) = 0 implies thatf ′(1) = 0, and the result follows from Theorem 1.

Definition 5: Let P andQ be two probability distributions on a setA. TheHellingerandBhattacharyya distances
betweenP andQ are, respectively,

dH(P,Q) ,

(
1

2

∑

x∈A

(√
P (x) −

√
Q(x)

)2
) 1

2

(9)

Z(P,Q) ,
∑

x∈A

√
P (x)Q(x) . (10)

The divergence measures in (4), (9) and (10) are bounded between 0 and 1. Furthermore, it is easy to verify that

dH(P,Q) =
√

1 − Z(P,Q). (11)

The squared Hellinger distance is a symmetricf -divergence since
(
dH(P,Q)

)2
= Df (P ||Q) (12)

where

f(x) =
1

2
(1 −

√
x)2, x ≥ 0 (13)

is a convex function withf(1) = 0.
Definition 6: The Chernoff informationbetween two probability distributionsP andQ on a setA is given by

C(P,Q) , − min
λ∈[0,1]

log

(
∑

x∈A

P (x)λ Q(x)1−λ

)
(14)
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where throughout this paper, the logarithms are on basee. Note that

C(P,Q) = max
λ∈[0,1]

{
− log

(
∑

x∈A

P (x)λ Q(x)1−λ

)}

= max
λ∈(0,1)

{
(1 − λ)Dλ(P,Q)

}
(15)

whereDλ(P,Q) designates the Rényi divergence of orderλ [19]. The endpoints of the interval[0, 1] are excluded
in the second line of (15) since the Chernoff information is non-negative, and the logarithmic function in the first
line of (15) is equal to zero at both endpoints.

Proposition 1: For two probability distributionsP andQ on a setA
dTV(P,Q) ≤

√
2 dH(P,Q) ≤

√
D(P ||Q). (16)

Proof: The left-hand side of (16) is proved in [35, p. 99], and the right-hand side is proved in [35, p. 328].
Definition 7: The chi-squared divergencebetween two probability distributionsP andQ on a setA is given by

χ2(P,Q) ,
∑

x∈A

(
P (x) − Q(x)

)2

Q(x)
=
∑

x∈A

P (x)2

Q(x)
− 1 . (17)

The chi-squared divergence is an asymmetricf -divergence wheref(t) = (t − 1)2 for t ≥ 0.
For further study off -divergences and related distances between probability distributions, the reader is referred

to [12, Chapter 4], [15], [44] and references therein.

III. B OUNDS ONf -DIVERGENCES ANDRELATED DISTANCES

The following section is separated into six subsections that correspond to the derivation of bounds for various
f -divergences and related distances.

A. Bounds on the Hellinger and Bhattacharyya Distances

The following proposition introduces a sharpened version of Proposition 1.
Proposition 2: Let P andQ be two probability distributions on a setA. Then, the following inequality suggests

a tightened version of inequality (16)

1 −
√

1 −
(
dTV(P,Q)

)2 ≤
(
dH(P,Q)

)2 ≤ min

{
1 − exp

(
−D(P ||Q)

2

)
, dTV(P,Q)

}
(18)

and

max

{
exp

(
−D(P ||Q)

2

)
, 1 − dTV(P,Q)

}
≤ Z(P,Q) ≤

√
1 −

(
dTV(P,Q)

)2
. (19)

Proof: We start with the proof of the left-hand side of (18). From (3)– (11), and the Cauchy-Schwartz inequality

dTV(P,Q) =
1

2

∑

x∈A

|P (x) − Q(x)|

=
1

2

∑

x∈A

∣∣∣
√

P (x) −
√

Q(x)
∣∣∣
(√

P (x) +
√

Q(x)
)

≤ 1

2

(
∑

x∈A

(√
P (x) −

√
Q(x)

)2
) 1

2
(
∑

x∈A

(√
P (x) +

√
Q(x)

)2
) 1

2

= dH(P,Q)

(
1 +

∑

x∈A

√
P (x)Q(x)

) 1

2

= dH(P,Q)
(
2 −

(
dH(P,Q)

)2) 1

2

. (20)
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Let c ,
(
dTV(P,Q)

)2
andx ,

(
dH(P,Q)

)2
. Squaring both sides of (20), givesx(2 − x) ≥ c, which implies that

1 −
√

1 − c ≤ x ≤ 1 +
√

1 − c . (21)

The right-hand side of (21) is satisfied automatically since0 ≤ dH(P,Q) ≤ 1 implies thatx ≤ 1. The left-hand
side of (21) gives the lower bound on the left-hand side of (18). Next, we prove the upper bound on the right-hand
side of (18). Similarly to [27, p. 711] (or the proof of [28, Eq. (50)]), combining equations (10), (11) and Jensen’s
inequality give

(
dH(P,Q)

)2
= 1 − Z(P,Q)

= 1 −
∑

x∈A

P (x) e
1

2
log
(

Q(x)

P (x)

)

≤ 1 − e
1

2

∑
x∈A

P (x) log
(

Q(x)

P(x)

)

= 1 − e−
1

2
D(P ||Q) (22)

and the inequality
(
dH(P,Q)

)2 ≤ dTV(P,Q) is due to [29, Lemma 1]; its (somewhat simplified) proof is

(
dH(P,Q)

)2
=

1

2

∑

x∈A

(√
P (x) −

√
Q(x)

)2

=
1

2

∑

x∈A

|P (x) − Q(x)|
(
|
√

P (x) −
√

Q(x)|√
P (x) +

√
Q(x)

)

≤ 1

2

∑

x∈A

|P (x) − Q(x)| = dTV(P,Q). (23)

The two upper bounds on the squared Hellinger distance in (22) and (23) lead to the upper bound on the right-hand
side of (18). The other bound on the Bhattacharyya distance in (19) follows from (11) and (18).

Discussion 1:The proof of Proposition 2 is elementary. It is interesting to realize that the sharpened lower bound
on the Hellinger distance in (18), expressed in terms of the total variation distance, also follows from the more
advanced result in (8) (see [25, Corollary 5.4]). To verify this, a combination of Corollary 1, (12) and (13) yields
that

(
dH(P,Q)

)2 ≥ 1 − dTV(P,Q)

2

(
1 −

√
1 + dTV(P,Q)

1 − dTV(P,Q)

)2

= 1 −
√

1 −
(
dTV(P,Q)

)2

which coincides with the lower bound on the left-hand side of(18). Similarly, the right-hand side of (19) follows
from the equality in (11) and the left-hand side of (18).

Remark 1:Since the total variation distancedTV(P,Q) and the Hellinger distancedH(P,Q) are symmetric inP
andQ, in contrast to the relative entropyD(P ||Q), one can improve the upper bound on the Hellinger distance in
(18) to

dH(P,Q) ≤
√

min

{
1 − exp

(
−d

2

)
, dTV(P,Q)

}
(24)

where d , min
{
D(P ||Q), D(Q||P )

}
. From (11), the lower bound on the Bhattacharyya distance in (19) is

improved to

Z(P,Q) ≥ max

{
exp

(
−d

2

)
, 1 − dTV(P,Q)

}
. (25)

Remark 2:The bounds in (16) follow from a loosening of the bounds in (18) by a use of the inequalities√
1 − x ≤ 1 − x

2 for x ∈ [0, 1], ande−x ≥ 1 − x for x ≥ 0.
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B. Bounds on the Chi-Squared Divergence

Proposition 3: Let P andQ be two probability distributions on a setA. Then, the chi-squared divergence between
P andQ is lower bounded in terms of the relative entropy as follows:

χ2(P,Q) ≥ eD(P ||Q) − 1 (26)

and, it is also lower bounded in terms of the total variation distance as follows:

χ2(P,Q) ≥ max

{(
1 + dTV(P,Q)

)dTV(P,Q)

1 −
(
dTV(P,Q)

)2 − 1,
(
2dTV(P,Q)

)2
}

. (27)

Furthermore, ifA is a finite set, the following inequality holds:

χ2(P,Q) ≤ 2
(
dTV(P,Q)

)2

minx∈A Q(x)
. (28)

Proof: From (17), it follows from Jensen’s inequality that

χ2(P,Q) =
∑

x∈A

{
P (x)e

log
(

P(x)

Q(x)

)}
− 1

≥ e
∑

x∈A
P (x) log

(
P(x)

Q(x)

)

− 1

= eD(P ||Q) − 1.

This proves the inequality in (26).
The second lower bound on the chi-squared divergence in (27), expressed in terms of the total variation distance,

follows from a combination of the first lower bound in (26) with the improvement in [24] of Vajda’s inequality:

D(P ||Q) ≥ log

(
1

1 − dTV(P,Q)

)
−
(
1 − dTV(P,Q)

)
log
(
1 + dTV(P,Q)

)
. (29)

Furthermore, the inequalityχ2(P,Q) ≥
(
2dTV(P,Q)

)2
is derived in [22, p. 429] using the Cauchy-Schwartz

inequality:

(
2dTV(P,Q)

)2
=

(
∑

x∈A

|P (x) − Q(x)|√
Q(x)

·
√

Q(x)

)2

≤
∑

x∈A

(
P (x) − Q(x)

)2

Q(x)
·
∑

x∈A

Q(x) = χ2(P,Q).

It is verified numerically that the first term on the right-hand side of (27) improves the second term,
(
2dTV(P,Q)

)2
,

if the total variation distance satisfies0.721 ≤ dTV(P,Q) ≤ 1. This improvement is especially significant in the
limit where the total variation distance tends to 1; in this limiting case, the first term of (27) tends to infinity,
whereas the second term tends to 4. Hence, the new lower boundon the chi-squared divergence improves the
existing bound for values of the total variation distance that lie between 0.721 and 1, where the improvement is
especially significant as the value of the total variation distance gets closer to 1.

For the derivation of (28), note that

χ2(P,Q) =
∑

x∈A

(
P (x) − Q(x)

)2

Q(x)

≤
∑

x∈A

(
P (x) − Q(x)

)2

minx∈A Q(x)
(30)

≤

(∑
x∈A |P (x) − Q(x)|

)2

minx∈A Q(x)

=
4
(
dTV(P,Q)

)2

minx∈A Q(x)
(31)
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where the last equality follows from (3). However, the upperbound in (28) is twice smaller than (31). In order to
prove the tightened upper bound on the chi-squared divergence in (28), we rely on (30), and the following lemma:

Lemma 1:Let
dloc(P,Q) , ||P − Q||∞ = sup

x∈A
|P (x) − Q(x)| (32)

be thelocal distancebetween a pair of probability distributionsP andQ on a setA. Then, the inequalitydloc(P,Q) ≤
dTV(P,Q) holds, which means that thel∞-norm of P − Q does not exceedone-halfof its l1-norm.

Proof: This known inequality follows from (2) and (3).
As a continuation to the proof of (28), it follows from (30) and Lemma 1 that

χ2(P,Q) ≤
∑

x∈A

(
P (x) − Q(x)

)2

minx∈A Q(x)

≤ maxx∈A |P (x) − Q(x)| ∑x∈A |P (x) − Q(x)|
minx∈A Q(x)

(a)
=

2 dloc(P,Q) dTV(P,Q)

minx∈A Q(x)

(b)
≤ 2

(
dTV(P,Q)

)2

minx∈A Q(x)

where equality (a) follows from (3) and (32) (note thatA is a finite set), and inequality (b) follows from Lemma 1.
To conclude, the upper bound on the chi-squared divergence in (28) is improved by a factor of 2, as compared to
(31); this improvement is obtained by the use of Lemma 1, instead of the transition from (30) to (31).

Remark 3: Inequality (26) dates back to Dragomir and Glušc̆ević (see [16, Theorem 4]).1 The lower bound on the
chi-squared divergence in (26) significantly improves the Csiszár-Györfi-Talata bound2 in [13, Lemma 6.3] which
states thatχ2(P,Q) ≥ D(P ||Q). Inequality (26) is refined in the continuation of this paper(see Corollary 5).

Remark 4:The transition from (a) to (b) in the derivation of the new upper bound in (28) implies that the
improvement by a factor of 2 that is obtained there, as compared to (31), can be further enhanced under a mild
condition. Specifically, a further improvement is obtainedif the ratio dloc(P,Q)

dTV(P,Q) , which according to Lemma 1 is no
more than 1, is strictly below 1 (for such possible examples,the reader is referred to [38, Section 4]); in this case,
the improvement over the upper bound on the chi-squared divergence in (31) is by a factor of2 dTV(P,Q)

dloc(P,Q) .

Remark 5: Inequalities (26) and (27) both imply that when the total variation distance tends to 1, the chi-squared
divergence should necessarily tend to infinity (according to Vajda’s-type inequalities in [24] and [43], if the total
variation distance tends to 1 then the relative entropy tends to infinity). It is noted that the claimed achievability of
the points on the parabolic curve in [26, Example 4.B] (see [26, Eq. (12)]) is partially inconsistent with the lower
bound in (27) (the quadratic term that appears as a second term on the right-hand side of (27) is below the lower
bound in (27) when the total variation distance lies between0.721 and 1). Inequality (27) provides a lower bound
on a non-symmetricf -divergence in terms of a symmetricf -divergence; for other such inequalities, see [41].

C. A New Reversed Pinsker’s Inequality for Probability Distributions on a Finite Set

As a consequence of Proposition 3, a sort of a reversed Pinsker’s inequality is obtained in the following.
Corollary 2: Let P andQ be two probability distributions on a finite setA. Then, the following inequality holds:

D(P ||Q) ≤ log

(
1 +

2
(
dTV(P,Q)

)2

minx∈A Q(x)

)
. (33)

Proof: This result follows from the bounds on the chi-squared divergence in (26) and (28).

1Inequality (26) is missing a proof in [16]; it was recently proved in [39, Theorem 3.1], and it was derived independently in this work
(before being aware of [16] and [39]).

2As a historical note, Györfi was acknowledged for pointing out the inequalityχ2(P, Q) ≥ D(P ||Q) in [13, Lemma 6.3]; this inequality
was earlier stated in [10, Lemma 4] under a redundant requirement (see also [14, Lemma A.7], stated with a variant of this requirement).
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Remark 6:The bound in (33) improves the bound that follows by combining Csiszár-Györfi-Talata bound in
[13, Lemma 6.3] (see Remark 3) and the bound in (31). This combination gives the Csiszár-Györfi-Talata bound

min
x∈A

Q(x)D(P ||Q) ≤ 4
(
dTV(P,Q)

)2
. (34)

The improvement that is suggested in (33) over (34) is twofold: the logarithm on the right-hand side of (33) follows
from the lower bound on the chi-squared divergence in (26) (as compared to the inequalityχ2(P,Q) ≥ D(P ||Q)
in [13, Lemma 6.3]); another improvement, obtained by a replacement of the factor 4 on the right-hand side of
(34) by a factor 2 inside the logarithm on the right-hand sideof (33), follows from the improvement of the upper
bound on the chi-squared divergence in (28) over the bound in(31).

Note that when the distributionsP andQ are close enough in total variation, the upper bounds on the relative
entropy in (33) and (34) scale like the squared total variation distance (although the former bound improves the
latter bound by a factor of 2).

Remark 7: In the context of Corollary 2, another inequality has been recently introduced by Verdú [45]:

dTV(P,Q) ≥
(

1 − β

log 1
β

)
D(P ||Q)

whereβ−1 , supx∈A
dP
dQ

(x). The reader is also referred to [20, Lemma 3.10] where a related inequality is provided.

Remark 8:The lower bound on the chi-squared divergence in (27) is looser than the bound in (26) (due to the
additional use of the inequality in (29) for the derivation of (27)); nevertheless, the bound in (27) is expressed in
terms of the total variation distance, whereas the bound in (26) is expressed in terms of the relative entropy.

Remark 9:As an addition to Proposition 3, a parameterized upper boundon the chi-squared divergence is
introduced in [25, Corollary 5.6] where this bound is expressed in terms of some power divergences.

Remark 10:A related problem to the result in Corollary 2 has been recently studied in [4]. Consider an arbitrary
distribution Q, and an arbitraryε > 0. The problem studied in [4] is the characterization ofD∗(ε,Q), defined
as the infimum ofD(P ||Q) over all distributionsP that are at leastε-far away fromQ in total variation; from
Sanov’s theorem,D∗(ε,Q) is equal to the asymptotic exponential decay of the probability that theL1 distance
between the empirical distribution of a sequence of i.i.d. random variables and the true distribution(Q) is more
than a specified value (2ε, according to (3)) [33, Section 3]. It is demonstrated in [4,Theorem 1] thatD∗(ε,Q)
scales likeCε2 +O(ε3) for a certain constantC (with explicit upper and lower bounds onC that match whenQ is
a ’balanced’ distribution [4]). If the support of the distribution Q is a finite setA, the linear scaling ofD∗(ε,Q) in
ε2 (for ε � 1) also follows from a combination of Corollary 2 and Pinsker’s inequality. Corollary 2 further implies
that, for such an atomic distributionQ,

D∗(ε,Q) , inf
P : dTV(P,Q)≥ε

D(P ||Q) ≤ log

(
1 +

2ε2

minx∈A Q(x)

)
.

It is noted that, for a certain class of distributionsQ which includes all the non-atomic distributions onIR, a full
characterization ofD∗(ε,Q) is provided in [4, Theorem 2]; for this class of distributions Q, it satisfies the equality

D∗(ε,Q) = L(ε) , inf
P,R : dTV(P,R)=ε

D(P ||R)

where, due to the data processing theorem for the relative entropy, it is sufficient to restrict attention to(P,Q)
defined on a binary alphabet (see [21, p. 1492]); also, whenever the infimum forL(ε) is finite, it is also a minimum
(see the proof of [21, Theorem 1]). The exact parametric equation of the curve(ε, L(ε))0<ε<1 is introduced in
[21, Eq. (3)]; due to (3), the total variation distance contains an extra factor of one-half (as compared to [21]), and
consequently this parametric equation gets the form

ε(t) =
t

2

[
1 −

(
coth(t) − 1

t

)2
]

, t > 0

L
(
ε(t)

)
= log

(
t

sinh(t)

)
+ t coth(t) −

(
t

sinh(t)

)2

.

(35)
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D. Bounds on the Capacitory Discrimination

The capacitory discrimination (a.k.a. the Jensen-Shannondivergence) is defined as follows:
Definition 8: Let P andQ be two probability distributions. The capacitory discrimination betweenP andQ is

given by

C(P,Q) , D

(
P || P + Q

2

)
+ D

(
Q || P + Q

2

)

= 2

[
H

(
P + Q

2

)
− H(P ) + H(Q)

2

]
.

(36)

This information measure is studied in [18], [25], [31] and [42]. Due to the parallelogram identity for relative
entropy (see, e.g., [11, Problem 3.20]), it follows that

C(P,Q) = min
R

{
D(P ||R) + D(Q||R)

}

where the minimization is w.r.t. all probability distributions R.
Proposition 4: The capacitory discrimination satisfies the following equality, for every ε ∈ [0, 1],

inf
P,Q : dTV(P,Q)=ε

C(P,Q) = 2D

(
1 − ε

2

∣∣∣∣ 1

2

)
(37)

where this infimum is achievable (i.e., it is a minimum), andD(p||q) , p log
(

p
q

)
+(1−p) log

(
1−p
1−q

)
for p, q ∈ [0, 1]

(with the convention that0 log 0 = 0).
If A is a finite set, the following inequality holds:

C(P,Q) ≤ 2 min

{
dTV(P,Q) log 2, log

(
1 +

(
dTV(P,Q)

)2

minx∈A

(
P (x) + Q(x)

)
)}

. (38)

Proof: In [25, p. 119], the capacitory discrimination is expressedas anf -divergence where

f(x) = x log x − (x + 1) log(1 + x) + 2 log 2, x > 0 (39)

is a convex function withf(1) = 0. The combination of (5) and (39) implies that

inf
P,Q : dTV(P,Q)=ε

C(P,Q)

= (1 − ε) f

(
1 + ε

1 − ε

)
− 2εf ′(1)

= (1 + ε) log

(
1 + ε

1 − ε

)
− 2 log

(
2

1 − ε

)
+ 2 log 2

= (1 + ε) log(1 + ε) + (1 − ε) log(1 − ε)

= 2

[
log 2 − h

(
1 − ε

2

)]

= 2D

(
1 − ε

2

∣∣∣∣ 1
2

)
.

The last equality holds sinceD(p||12 ) = log 2 − h(p) for p ∈ [0, 1] whereh denotes the binary entropy function.
This proves the lower bound in (37). The appendix provides analternative proof of (37) which only relies on basics
of information theory and the use of maximal coupling; this proof is of interest by itself, and is elementary.

The derivation of the upper bound in (38) relies on a combination of (33) (see Corollary 2), and the equality
dTV

(
P, P+Q

2

)
= dTV

(
Q, P+Q

2

)
= dTV(P,Q)

2 . This gives the inequality

C(P,Q) ≤ 2 log

(
1 +

(
dTV(P,Q)

)2

minx∈A

(
P (x) + Q(x)

)
)

.
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Since also0 ≤ C(P,Q) ≤ 2 log 2 dTV(P,Q) (see [31, Theorem 3]), inequality (38) follows.

Discussion 2:The lower bound on the capacitory discrimination in (37), expressed in terms of the total variation
distance, forms a closed-form expression of the bound by Topsøe in [42, Theorem 5]. This bound is given by

C(P,Q) ≥
∞∑

ν=1

(
dTV(P,Q)

)2ν

ν(2ν − 1)
. (40)

The equivalence of (37) and (40) follows from the power series expansion of the binary entropy function (to the
natural base) around one-half:

h(x) = log 2 −
∞∑

ν=1

(1 − 2x)2ν

2ν(2ν − 1)
, ∀x ∈ [0, 1]

which yields that

∞∑

ν=1

(
dTV(P,Q)

)2ν

ν(2ν − 1)
= 2

[
log 2 − h

(
1 − dTV(P,Q)

2

)]

= 2D

(
1 − dTV(P,Q)

2

∣∣∣∣ 1
2

)
.

Note, however, that the proof here is much shorter than the proof of [42, Theorem 5] (which relies on properties of
the triangular discrimination in [42] and previous theorems of this paper), and it also leads directly to a closed-form
expression of this bound. Consequently, one concludes thatthe lower bound in [42, Theorem 5] is a special case
of (8) (see [23] and [25, Corollary 5.4]), which provides a lower bound on a symmetricf -divergence in terms of
the total variation distance. The lower bound on the capacitory discrimination was obtained independently of the
work by Briët and Harremoës (see [6, Eq. (18)] forα = 1) whose derivation was done in a different approach.

The upper bound on the capacitory discrimination in (38) is new, and it is based on Corollary 2 which provides an
improvement of the Csiszár-Györfi-Talata bound (see Remarks 3, 6). The upper boundC(P,Q) ≤ 2 log 2 dTV(P,Q)
is looser, and it was derived independently in [6, Theorem 9](as a special case whereα → 1) and in [31, Theorem 3].

The following result provides a measure of the concavity of the entropy function:
Corollary 3: For arbitrary probability distributionsP andQ, the following inequality holds:

H

(
P + Q

2

)
− H(P ) + H(Q)

2
≥ D

(
1 − dTV(P,Q)

2

∣∣∣∣ 1
2

)

and this inequality is tight for a given total variation distance.
Proof: This result follows from (36) and Proposition 4.

E. An Exact Characterization of the Minimum of the Chernoff Information for a Given Total Variation Distance

Proposition 5: Let C(P,Q) denote the Chernoff information between two probability distributionsP andQ (see
(14)), and let

C(ε) , inf
P,Q : dTV(P,Q)=ε

C(P,Q), ∀ ε ∈ [0, 1] (41)

be the infimum of the Chernoff information for a given total variation distance(ε). Then, the following equality
holds:

C(ε) =

{
−1

2 log(1 − ε2) if ε ∈ [0, 1)

+∞ if ε = 1.
(42)

For ε ∈ [0, 1), the infimum in (41) is achievable by the pair of probability distributions

P =

(
1 − ε

2
,

1 + ε

2

)
, Q =

(
1 + ε

2
,

1 − ε

2

)
(43)

so, the infimum in (41) is a minimum that is obtained by the pairof 2-element probability distributions in (43).
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Proof:

C(P,Q)
(a)
≥ − log

(
∑

x∈A

√
P (x)Q(x)

)

(b)
= − log Z(P,Q)
(c)
≥ −1

2
log
(
1 −

(
dTV(P,Q)

)2)

where inequality (a) follows by selecting the possibly sub-optimal choiceλ = 1
2 in (14), equality (b) holds by

definition (see (10)), and inequality (c) follows from the right-hand side of (19). By the definition in (41), it follows
that C(ε) satisfies the inequality

C(ε) ≥ −1

2
log(1 − ε2). (44)

In order to show that (44) provides a tight lower bound for a given total variation distance(ε), it is sufficient to show
the existence of a pair of probability distributionsP andQ wheredTV(P,Q) = ε andC(P,Q) = −1

2 log(1− ε2).
For the pair of 2-element probability distributionsP andQ in (43), the Chernoff information in (14) satisfies the
equality

C(P,Q) = − min
λ∈[0,1]

log

(
1 − ε

2

(
1 + ε

1 − ε

)λ

+
1 + ε

2

(
1 − ε

1 + ε

)λ
)

. (45)

Minimization of the logarithmic function in (45), by setting its derivative to zero, givesλ = 1
2 . For the pair of

2-element probability distributionsP andQ in (43) with λ = 1
2 , the Chernoff information is equal to

C(P,Q) = −1

2
log(1 − ε2)

so, the lower bound onC(ε) in (44) is tight. This concludes the proof of Proposition 5.
Corollary 4: For any pair of probability distributionsP and Q, the Chernoff information betweenP and Q

satisfies
C(P,Q) ≥ −1

2
log
(
1 −

(
dTV(P,Q)

)2)
. (46)

and (46) is obtained with equality for the pair of 2-element probability distributions in (43) wheredTV(P,Q) = ε.
Proof: Inequality (46) follows directly from the equality in (42),and it turns to hold with equality for the

2-element probability distributions in (43) wheredTV(P,Q) = ε.

Remark 11:The fact that, subject to a given total variation distance, the Chernoff information achieves its
minimum by a pair of 2-element probability distributions can be also justified by the same reasoning as in [21, first
paragraph of Section 2]. The reasoning in [21] refers to a minimization of the relative entropy, subject to the same
equality constraint on the total variation distance, and itis a simple consequence of the data processing theorem
for the relative entropy. The same concept of proof also applies to the minimization of the Chernoff information,
for a given total variation distance, since the Chernoff information also satisfies a data processing theorem. The
satisfiability of a data processing theorem by the Chernoff information can be justified by combining the data
processing theorem for the Rényi divergence (see [19, Theorem 1]) with equation (15) that relates the Chernoff
information to the Rényi divergence.

Remark 12:Following Corollary 4, a lower bound on the total variation distance gives a lower bound on the
Chernoff information; consequently, it provides an upper bound on the best achievable Bayesian probability of error
for binary hypothesis testing (see, e.g., [7, Theorem 11.9.1]). This approach was recently used in [46] to obtain a
lower bound on the Chernoff information for studying a communication problem.

Discussion 3:Let
L(ε) , inf

P,Q : dTV(P,Q)=ε
D(P ||Q). (47)

The exact parametric equation of the curve(ε, L(ε))0<ε<1 is introduced in [21, Eq. (3)] (see (35) in Remark 10).
From the satisfiability of the inequality (see [7, Section 11.9])

C(P,Q) ≤ min
{
D(P ||Q),D(Q||P )} (48)



12 DRAFT. LAST UPDATE: MAY 8, 2014

it follows from (41), (47) and (48) that

C(ε) ≤ L(ε), ∀ ε ∈ [0, 1) (49)

where the left and right-hand sides of (49) correspond to theminima of the Chernoff information and relative
entropy, respectively, given the value of the total variation distance(ε). Figure 1 plots these minima as a function
of the total variation distance, supporting inequality (49). For small values ofε, C(ε) andL(ε), respectively, are
approximately equal toε

2

2 and2ε2 (note that Pinsker’s inequality is tight forε � 1), so limε→0
L(ε)
C(ε) = 4.

0 0.2 0.4 0.6 0.8 1
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3.5

4

Total variation distance (ε)

C
(ε

) 
ve

rs
us

 L
(ε

)

 

 

L(ε): Minimum of the relative entropy for a given  ε
C(ε): Minimum of the Chernoff information for a given  ε

Fig. 1. A plot of the minima of the Chernoff information and the relative entropy for a given total variation distanceε ∈ [0, 1], denoted
by C(ε) andL(ε), respectively;C andL are given in Proposition 5 and [21, Theorem 2] (see (35)).

F. On Jeffreys’ Divergence and Lossless Source Coding

Definition 9: Let P andQ be two probability distributions. Jeffreys’ divergence isa symmetrized version of the
relative entropy, which is defined as

J(P,Q) ,
D(P ||Q) + D(Q||P )

2
. (50)

It is easy to verify that it is a symmetricf -divergence where

f(t) =
(t − 1) log(t)

2
, t > 0 (51)

is a convex function on(0,∞) with f(1) = 0. Relying on [23], [24], the following equalities hold:
Proposition 6:

inf
P,Q : dTV(P,Q)=ε

J(P,Q) = ε log

(
1 + ε

1 − ε

)
, ∀ ε ∈ [0, 1), (52)

inf
P,Q : D(P ||Q)=ε

J(P,Q) =
ε

2
, ∀ ε > 0, (53)

and the two respective suprema are equal to+∞.
Proof: Jeffreys’ divergence is a symmetricf -divergence where the convex functionf in (51) satisfies the

equality f(t) = tf(1
t
) for every t > 0 with f(1) = 0. The equality in (52) follows from Corollary 1. Eq. (53)

follows from (50) and the fact that, given the value of the relative entropyD(P ||Q), its dual (D(Q||P )) can be
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made arbitrarily small. The two corresponding suprema are equal to infinity because given the value of the total
variation distance or the relative entropy, the dual of the relative entropy can be made arbitrarily large.

We exemplify in the following a use of Proposition 6 for lossless source coding. This tightens, and also refines
under a certain condition, a bound by Csiszár [9].

Consider a memoryless and stationary source with alphabetU that emits symbols according to a probability
distributionP , and assume a uniquely decodable (UD) code with an alphabet of size d. It is well known that such
a UD code achieves the entropy of the source if and only if the length l(u) of the codeword that is assigned to
each symbolu ∈ U satisfies the equality

l(u) = − logd P (u), ∀u ∈ U .

This corresponds to a dyadic source where, for everyu ∈ U , we haveP (u) = d−nu with a natural numbernu; in
this case,l(u) = nu for every symbolu ∈ U . Let L , IE[L] designate the average length of the codewords, and
Hd(U) , −∑u∈U P (u) logd P (u) be the entropy of the source (to the based). Furthermore, letcd,l ,

∑
u∈U d−l(u).

According to the Kraft-McMillian inequality (see [7, Theorem 5.5.1]), the inequalitycd,l ≤ 1 holds in general for UD
codes, and the equalitycd,l = 1 holds if and only if the code achieves the entropy of the source (i.e.,L = Hd(U)).
Hence, for a UD code that achieves the entropy of the source, the probability distributionP satisfies the equality

P (u) =

(
1

cd,l

)
d−l(u), ∀u ∈ U . (54)

Note that the right-hand side of (54) is in general a probability distribution. Let’s designate it byQd,l, i.e.,

Qd,l(u) ,

(
1

cd,l

)
d−l(u), ∀u ∈ U (55)

and let∆d , L − Hd(U) designate the redundancy of the code.
In [9], a generalization for UD source codes has been studiedby a derivation of an upper bound on theL1 norm

between the two probability distributionsP andQd,l as a function of the redundancy∆d of the code. To this end,
straightforward calculation shows that the relative entropy from P to Qd,l is given by

D(P ||Qd,l) = ∆d log d + log
(
cd,l

)
. (56)

The interest in [9] is in getting an upper bound that only depends on the (average) redundancy∆d of the code,
but is independent of the specific distribution of the lengthof each codeword. Hence, since the Kraft-McMillian
inequality states thatcd,l ≤ 1 for general UD codes, it is concluded in [9] that

D(P ||Qd,l) ≤ ∆d log d. (57)

Consequently, it follows from Pinsker’s inequality that
∑

u∈U

∣∣P (u) − Qd,l(u)
∣∣ ≤ min

{√
2∆d log d, 2

}
(58)

where it is also taken into account that, from the triangle inequality, the sum on the left-hand side of (58) cannot
exceed 2. This inequality is indeed consistent with the factthat the probability distributionsP andQd,l coincide
when∆d = 0 (i.e., for a UD code which achieves the entropy of the source).

At this point we deviate from the analysis in [9]. One possible improvement of the bound in (58) follows by
replacing Pinsker’s inequality with the result in [21], i.e., by taking into account the exact parametrization of the
infimum of the relative entropy for a given total variation distance. This gives the following tightened bound:

∑

u∈U

∣∣P (u) − Qd,l(u)
∣∣ ≤ 2 ε

(
L−1(∆d log d)

)
(59)

where the parametric functionsε and L are introduced in (35), andL−1 is the inverse function ofL (calculated
numerically).

In the following, the use of Proposition 6 is exemplified in refining the latter bound in (59). Let

δ(u) , l(u) + logd P (u), ∀u ∈ U .



14 DRAFT. LAST UPDATE: MAY 8, 2014

Calculation of the dual divergence gives

D(Qd,l||P )

= log d
∑

u∈U

Qd,l(u) logd

(
Qd,l(u)

P (u)

)

= log d

[
− logd(cd,l)

cd,l

∑

u∈U

d−l(u) − 1

cd,l

∑

u∈U

l(u)d−l(u) − 1

cd,l

∑

u∈U

logd P (u) d−l(u)

]

= − log(cd,l) −
log d

cd,l

∑

u∈U

δ(u) d−l(u)

= − log
(
cd,l

)
− log d

cd,l

∑

u∈U

P (u) δ(u) d−δ(u)

= − log
(
cd,l

)
−
(

log d

cd,l

)
IE
[
δ(U) d−δ(U)

]
(60)

and the combination of (50), (56) and (60) yields that

J(P,Qd,l) =
1

2

[
∆d log d −

(
log d

cd,l

)
IE
[
δ(U) d−δ(U)

]]
. (61)

For the simplicity of the continuation of the analysis, we restrict our attention to UD codes that satisfy the condition

l(u) ≥
⌈
logd

1

P (u)

⌉
, ∀u ∈ U . (62)

In general, it excludes Huffman codes; nevertheless, it is satisfied by some other important UD codes such as the
Shannon code, Shannon-Fano-Elias code, and arithmetic coding (see, e.g., [7, Chapter 5]). Since (62) is equivalent
to the condition thatδ is non-negative onU , it follows from (61) that

J(P,Qd,l) ≤
∆d log d

2
(63)

so, the upper bound on Jeffreys’ divergence in (63) is twice smaller than the upper bound on the relative entropy in
(57). It is partially because the termlog cd,l is canceled out along the derivation of the bound in (63), in contrast to
the derivation of the bound in (57) where this term was removed from the bound in order to avoid its dependence
on the length of the codeword for each individual symbol.

Following Proposition 6, for an arbitraryx ≥ 0, let ε , ε(x) be the solution in the interval[0, 1) of the equation

ε log

(
1 + ε

1 − ε

)
= x. (64)

The combination of (52) and (63) implies that

∑

u∈U

∣∣P (u) − Qd,l(u)
∣∣ ≤ 2 ε

(
∆d log d

2

)
. (65)

The bounds in (58), (59) and (65) are depicted in Figure 2 for UD codes where the size of their alphabet isd = 10.
In the following, the bounds in (59) and (65) are compared analytically for the case where the average redundancy

is small (i.e.,∆d ≈ 0). Under this approximation, the bound in (58) (i.e., the original bound from [9]) coincides
with its tightened version in (65). On the other hand, since for ε ≈ 0, the left-hand side of (64) is approximately
2ε2, it follows from (64) that, forx ≈ 0, we haveε(x) ≈

√
x
2 . It follows that, if ∆d ≈ 0, inequality (65) gets

approximately the form ∑

u∈U

∣∣P (u) − Qd,l(u)
∣∣ ≤

√
∆d log d.

Hence, even for a small redundancy, the bound in (65) improves (58) by a factor of
√

2. This conclusion is consistent
with the plot in Figure 2.
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Fig. 2. Upper bounds on
∑

|P (u)−Qd,l(u)| as a function of the (average) redundancy∆d , IE[L]−Hd for a UD code with an alphabet
of sized = 10. The original bound in (58) appears in [9], and the tightenedbound that relies on the Kullback-Leibler (KL) divergence is
given in (59). The further tightening of this bound is restricted in this plot to UD codes whose codewords satisfy the condition in (62). The
latter bound relies on Proposition 6 for Jeffreys’ (J) divergence, and it is given in (65).

G. A New Inequality Relatingf -Divergences

We introduce in the following a new inequality which relatesf -divergences, and study some of its consequences.
Proposition 7: Let f : (0,∞) → IR be a convex function withf(1) = 0 and further assume that the function

g : (0,∞) → IR, defined byg(t) = −tf(t) for every t > 0, is also convex. LetP and Q be two probability
distributions on a finite setA, and assume thatP,Q are positive on this set. Then, the following inequality holds:

min
x∈A

P (x)

Q(x)
· Df (P ||Q) ≤ −Dg(P ||Q) − f

(
1 + χ2(P,Q)

)
≤ max

x∈A

P (x)

Q(x)
· Df (P ||Q). (66)

Proof: Let |A| = n be the size of the finite setA, and letA =
{
x1, . . . , xn

}
. Let u = (u1, . . . , un) ∈ IRn

+ be
an arbitraryn-tuple with positive entries. Define

Jn(f, u, P ) ,

n∑

i=1

P (xi) f(ui) − f

(
n∑

i=1

P (xi)ui

)
,

Jn(Q,u, P ) ,

n∑

i=1

Q(xi) f(ui) − f

(
n∑

i=1

Q(xi)ui

)
.

(67)

The following refinement of Jensen’s inequality has been proved in [17, Theorem 1] for a convex function
f : (0,∞) → IR (and it was extended in [2, Theorem 1] to hold for a convexf over an arbitrary interval[a, b]):

min
i∈{1,...,n}

{
P (xi)

Q(xi)

}
Jn(f, u,Q) ≤ Jn(f, u, P ) ≤ max

i∈{1,...,n}

{
P (xi)

Q(xi)

}
Jn(f, u,Q). (68)

The refined version of Jensen’s inequality in (68) is appliedin the following to prove (66). Let

ui ,
P (xi)

Q(xi)
, ∀ i ∈ {1, . . . , n}.
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Calculation of (67) gives that

Jn(f, u,Q)

=
n∑

i=1

Q(xi) f

(
P (xi)

Q(xi)

)
− f

(
n∑

i=1

Q(xi) ·
P (xi)

Q(xi)

)

=
∑

x∈A

Q(x) f

(
P (x)

Q(x)

)
− f(1)

= Df (P ||Q) (69)

and

Jn(f, u, P )

=

n∑

i=1

P (xi) f

(
P (xi)

Q(xi)

)
− f

(
n∑

i=1

P (xi)
2

Q(xi)

)

(a)
= −

n∑

i=1

Q(xi) g

(
P (xi)

Q(xi)

)
− f

(
n∑

i=1

P (xi)
2

Q(xi)

)

(b)
= −Dg(P ||Q) − f

(
1 + χ2(P,Q)

)
(70)

where equality (a) holds by the definition ofg, and equality (b) follows from equalities (1) and (17). The substitution
of (69) and (70) in (68) completes the proof.

As a consequence of Proposition 7, we introduce the following inequality which relates between the relative
entropy, its dual and the chi-squared divergence.

Corollary 5: Let P andQ be two probability distributions on a finite setA, and assume thatP,Q are positive
on A. Then, the following inequality holds:

min
x∈A

P (x)

Q(x)
· D(Q||P ) ≤ log

(
1 + χ2(P,Q)

)
− D(P ||Q) ≤ max

x∈A

P (x)

Q(x)
· D(Q||P ). (71)

Proof: Let f(t) = − log(t) for t > 0. The functionf : (0,∞) → IR is convex withf(1) = 0. Furthermore,
g(t) = −tf(t) = t log(t) for t > 0 defines a convex function withg(1) = 0. The inequality in (71) follows by
substitutingf andg in (66) whereDf (P ||Q) = D(Q||P ) andDg(P ||Q) = D(P ||Q).

Remark 13:Inequality (71) forms a refinement of (26). Combining it with(28) also refines the inequality in
(33), giving

D(P ||Q) + min
x∈A

P (x)

Q(x)
· D(Q||P ) ≤ log

(
1 +

2
(
dTV(P,Q)

)2

minx∈A Q(x)

)
. (72)

The following inequality is another consequence of Proposition 7, relating the chi-squared divergence and its
dual:

Corollary 6: Under the same conditions of Corollary 5, the following inequality holds:

min
x∈A

P (x)

Q(x)
· χ2(Q,P ) ≤ χ2(P,Q)

1 + χ2(P,Q)
≤ max

x∈A

P (x)

Q(x)
· χ2(Q,P ). (73)

Proof: The parametric functionf(t) = tα − 1 satisfies the conditions in Proposition 7 forα ∈ [−1, 0]. For
α = −1, the inequality in (73) follows from (66) where

Df (P ||Q) = χ2(Q,P ), Dg(P ||Q) = 0.
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IV. SUMMARY

Derivation of bounds onf -divergences and related distances is considered in this paper. In some cases, existing
recent bounds are reproduced by elementary proofs, and in some other cases, significant improvements are obtained.
The contributions of this work are outlined in the following:

• Upper and lower bounds on both the Hellinger distance and theBhattacharyya distance are expressed in terms
of the total variation distance and relative entropy (see Proposition 2). This tightens the bounds introduced
in Proposition 1 (see, e.g., [35]). The proof of these boundsis elementary, replacing an alternative proof that
is based on an advanced result (see Discussion 1). The simpleproof of the other two bounds dates back to
Hoeffding and Wolfowitz [27], and Kraft [29].

• Three bounds on the chi-squared divergence are introduced in Proposition 3. The first lower bound in (26) dates
back to Dragomir and Glušc̆ević [16] (see Remark 3). A second lower bound on the chi-squared divergence is
expressed in terms of the total variation distance (see (27)); this new bound improves the bound in [22, p. 429]
when the total variation distance lies between 0.721 and 1, and the improvement is especially significant when
the total variation distance tends to 1 (where the existing lower bound tends to 4, whereas the new bound
tends to infinity). The upper bound on the chi-squared divergence in (28) is new as well, and it suggests an
improvement over the bound in (31) by a factor of 2 (accordingto Remark 4, this gain can be further improved
under a mild condition).

• The improvements of the bounds on the chi-squared divergence in Proposition 3 lead to a new improved
upper bound on the relative entropy in terms of the total variation distance for an arbitrary pair of probability
distributions on a finite set (see Corollary 2, followed by Remarks 6–10). This forms a new sort of a reversed
Pinsker’s inequality which improves the Csiszár-Györfi-Talata bound in (34).

• Bounds on the capacitory discrimination are provided in terms of the total variation distance (see Proposition 4).
The lower bound on the capacitory discrimination forms a closed-form expression of the bound by Topsøe
in [42, Theorem 5]; it has two proofs in this paper: the first proof relies on an advanced result (see [23]
and [25, Corollary 5.4]), and the second proof relies on basics of information theory and coupling between
random variables (see the appendix). Both proofs do not involve properties of the triangular discrimination
that are used in the original proof in [42]. The lower bound onthe capacitory discrimination was obtained
independently by Briët and Harremoës (see [6, Eq. (18)] for α = 1) with a different approach. Furthermore,
the upper bound on the capacitory discrimination in (38) is new (see Discussion 2), and it sharpens a bound
that was derived in [6, Theorem 9] and [31, Theorem 3].

• Proposition 5 provides an exact characterization of the minimum of the Chernoff information for a given
total variation distance, which is obtained by a pair of 2-element probability distributions. The minima of the
Chernoff information and the relative entropy for a given total variation distance are plotted in Figure 1 where
the former is less than or equal to the latter (see (49)), and their ratio is approximately 4 for small values of the
total variation distance. The lower bound on the Chernoff information for a given total variation distance (see
Corollary 4) is therefore tight, and it is achieved with equality for a pair of 2-element probability distributions.
This lower bound has been recently applied in [46] in the context of a channel codebook detection in a binary
hypothesis testing problem where the receiver needs to detect the channel code upon observing noise-affected
codewords through a noisy channel (the authors referred to the bound in [37, Proposition 5] (un-published),
which was stated there as a lower bound without proving its tightness for a given total variation distance).

• A lower bound on Jeffreys’ divergence in terms of the total variation distance was readily obtained from the
analysis by Gilardoni ([23], [24]). This bound was used in Section III-F to tighten a bound by Csiszár in the
context of lossless source coding [9] (the original and tightened bounds are plotted in Figure 2).

• A new inequality which relatesf -divergences was derived in Proposition 7, based on a refinement of Jensen’s
inequality in [2] and [17]. Corollaries of Proposition 7 include an inequality relating the relative entropy, its
dual and the chi-squared divergence, and another inequality which relates the chi-squared divergence and its
dual (see Corollaries 5 and 6, respectively).
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APPENDIX: AN ELEMENTARY PROOF OF(37)

The following proof of (37) relies on basics of information theory, and coupling between random variables. By
the definition of the capacitory discrimination in (36), it follows that for any pair of probability distributions (P

andQ) on an arbitrary setA
C(P,Q)

= D

(
P || P + Q

2

)
+ D

(
Q || P + Q

2

)

= 2 log 2 +
∑

x∈A

P (x) log

(
P (x)

P (x) + Q(x)

)
+
∑

x∈A

Q(x) log

(
Q(x)

P (x) + Q(x)

)

= 2

[
log 2 −

∑

x∈A

(
P (x) + Q(x)

2

)
h

(
P (x)

P (x) + Q(x)

)]

(74)

whereh denotes the binary entropy function.
Let Θ, X1 andX2 be random variables whereX1 ∼ P , X2 ∼ Q, andΘ ∼ Ber(1

2 ) is a Bernoulli random variable
that gets the values 1 or 2 with equal probability(1

2 ). Further assume that(X1,X2) is independent ofΘ. A basic
result on a coupling(X̂1, X̂2) of (X1,X2) (see, e.g., [36, Proposition 2.7] or [38, Theorem 2]) statesthat, since
X̂1 ∼ P andX̂2 ∼ Q,

Pr(X̂1 = X̂2) ≤ 1 − dTV(P,Q) (75)

and equality in (75) holds in the case of maximal coupling (for such a construction of maximal coupling, the reader
is referred, e.g., to [36, p. 58] or [38, p. 7119]).

Let X̂Θ be equal toX̂1 or X̂2 whenΘ = 1 or Θ = 2, respectively. Then, for everyx ∈ A,

Pr(X̂Θ = x) =
P (x) + Q(x)

2
, (76)

Pr(Θ = 1 | X̂Θ = x) =
Pr(Θ = 1, X̂1 = x)

Pr(X̂Θ = x)
=

Pr(Θ = 1) Pr(X̂1 = x)

Pr(X̂Θ = x)
=

P (x)

P (x) + Q(x)
, (77)

Pr(Θ = 2 | X̂Θ = x) = 1 − Pr(Θ = 1 | X̂Θ = x) =
Q(x)

P (x) + Q(x)
. (78)

The combination of (74)–(78) gives

C(P,Q) = 2

[
log 2 −

∑

x∈A

Pr(X̂Θ = x)H(Θ | X̂Θ = x)

]

= 2
[
log 2 − H(Θ | X̂Θ)

]
. (79)

Let Θ̃ : A → {1, 2} be an arbitrary estimator ofΘ, based on the value of̂XΘ, and letPe = IE
[
Pr(Θ 6= Θ̃ | X̂Θ)

]

denote the average probability of error given̂XΘ. SinceΘ is a Bernoulli random variable, it follows that

H(Θ | X̂Θ) = h(Pe). (80)

Let E be a Bernoulli random variable that gets the value 1 in case ofan error event in the estimation ofΘ (i.e.,
E = 1 if Θ 6= Θ̃), and it is zero otherwise. The average probability of erroris equal to

Pe = IE
[
Pr(E = 1 | X̂Θ)

]
(81)

and

Pr(E = 1 | X̂Θ) = Pr(E = 1 | X̂Θ, X̂1 = X̂2) Pr(X̂1 = X̂2) + Pr(E = 1, X̂1 6= X̂2 | X̂Θ). (82)

If X̂1 = X̂2, the knowledge of the value of̂XΘ does not help in estimatingΘ, and

Pr(E = 1 | X̂Θ, X̂1 = X̂2) =
1

2
(83)
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sinceΘ is equally likely to be either 1 or 2. Consider the second termon the right-hand side of (82):

Pr(E = 1, X̂1 6= X̂2 | X̂Θ) =
∑

x̂1,x̂2 : x̂1 6=x̂2

{
Pr(E = 1 | X̂Θ, X̂1 = x̂1, X̂2 = x̂2) · Pr(X̂1 = x̂1, X̂2 = x̂2)

}
.

If the values ofX̂1, X̂2, X̂Θ are known,X̂1 = x̂1 andX̂2 = x̂2 wherex̂1 6= x̂2, one can determine the value ofΘ
without any ambiguity (i.e.,Θ = 1 if and only if X̂Θ = x̂1, andΘ = 2 if and only if X̂Θ = x̂2), and

Pr(E = 1, X̂1 6= X̂2 | X̂Θ) = 0. (84)

Combining (75) and (80)–(84) gives

H(Θ | X̂Θ) ≤ h

(
1 − dTV(P,Q)

2

)
(85)

and (85) is obtained with equality when (75) holds with equality (i.e., for a maximal coupling). The combination
of (79) and (85) finally gives

C(P,Q) ≥ 2

[
log 2 − h

(
1 − dTV(P,Q)

2

)]

= 2D

(
1 − dTV(P,Q)

2

∣∣∣∣ 1
2

)

where, for a given total variation distance, equality is obtained for a maximal coupling that indeed implies that (75)
holds with equality. This completes the proof of (37) where it is shown that the infimum in this equality is in fact
a minimum.
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[21] A. A. Fedotov, P. Harremoës and F. Topsøe, “Refinementsof Pinsker’s inequality,”IEEE Trans. on Information Theory, vol. 49, no. 6,
pp. 1491–1498, June 2003.

[22] A. L. Gibbs and F. E. Su, “On choosing and bounding probability metrics,” International Statistical Review, vol. 70, no. 3, pp. 419–435,
2002.

[23] G. L. Gilardoni, “On the minimumf -divergence for given total variation,”Comptes Rendus Mathematique, vol. 343, no. 11–12,
pp. 763–766, 2006.

[24] G. L. Gilardoni, “On Pinsker’s and Vajda’s type inequalities for Csiszár’sf -divergences,”IEEE Trans. on Information Theory, vol. 56,
no. 11, pp. 5377–5386, November 2010.

[25] A. Guntuboyina, S. Saha, and G. Schiebinger, “Sharp inequalities forf -divergences,”IEEE Trans. on Information Theory, vol. 60,
no. 1, pp. 104–121, January 2014.
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