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Information-Theoretic Sneak-Path Mitigation in
Memristor Crossbar Arrays

Yuval Cassuto,Senior Member, IEEE,, Shahar KvatinskyStudent Member, IEEE,, and
Eitan Yaakobi,Member, IEEE

Abstract

In a memristor crossbar array, functioning as a memory array, a memristor is positioned on each row-column
intersection, and its resistance, low or high, represents two logical states. The state of every memristor can be sensed
by the current flowing through the memristor. In this work, westudy the sneak path problem in crossbar arrays, in which
current can sneak through other cells, resulting in readinga wrong state of the memristor. Our main contributions are
modeling the error channel induced by sneak paths, a new characterization of arrays free of sneak paths, and efficient
methods to read the array cells while avoiding sneak paths. To each read method we match a constraint on the array
content that guarantees sneak-path free readout, and determine the resulting capacity.

Index Terms

Codes for memories, sneak paths, constraint codes, Z channel, memristors, resistive memories, crossbar arrays.

I. I NTRODUCTION

The memristor technology [14] allows packing storage cellsin an unprecedented density, over a simple crossbar
structure. The blessing of high storage density and architectural simplicity comes with a major caveat:data-dependent
behavior [12]. The read accuracy, speed, and power consumption in memristor storage may all vary significantly
depending on the instantaneous data stored in the crossbar array. This is clearly an undesired property for a storage
medium, and a motivation for data representations that ensure that the physical content of the array corresponds to
a well-behaving device. Memristor storage has already motivated a novel data representation for one instantiation of
the data-dependence problem [9]. Here we address another very significant data-dependent phenomenon calledsneak
paths[12], causing the read correctness to depend on the array content. The importance of the sneak-path problem
can be sensed by the significant body of research addressing it recently in the device and circuit literature [4]–[6],
[8], [11], [12], [17], [18].

To understand the sneak-path problem in memristor arrays, we first show a simplified schematic of a memristor
array in Fig. 1(a). Each row-column pair is connected by a resistor that can be in either the high-resistance state
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Fig. 1. (a) A memristor array as an array of programmed resistors – white: high resistance, black: low resistance. The high-
resistance cell at location(4, 1) has a sneak-path in parallel (plotted dashed), causing it tobe read as low-resistance. (b) The
corresponding logical values of the memristor array. The cell in the square frame has a sneak-path comprising of the three cells
marked in circles.
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(marked white) or the low-resistance state (marked black).In Fig. 1(b) appear the corresponding logical values of the
cells: logical ”0” for the high-resistance state, and logical ”1” for the low-resistance state. The sneak-path problem
occurs when a resistor in the high-resistance state (white)is being read, while a series of resistors in the low-resistance
state (black) exists in parallel to it, thereby causing it tobe erroneously read as low-resistance. It is shown by the
dashed line in Fig. 1(a) that the white resistor in (row,column) location(4, 1) has a sneak path that traverses the
black resistors in locations(4, 3), (1, 3) and(1, 1). This dashed path is in parallel to the main current path of(4, 1)
marked by a solid line.

In this paper we seek to combat memristor-array sneak paths using information-theoretic techniques. We first note
that such an attempt was already presented in [16] by forcingthe number of zeros and ones in every row and column
to be the same. While this gives an elegant intuitive solution that can reduce the sneak path effect, our objective
in this paper is to give a systematic information-theoreticstudy of the sneak-path problem and its mitigation. We
begin the information-theoretic treatment of sneak paths in Section II by formulating sneak-path errors as a special
kind of a Z channel, in which the (one-directional) transition probability depends on the array dimensions and on the
distribution of the written bits. We give a precise closed-form calculation of the transition probability as a functionof
these parameters. This formulation of sneak-path arrays aserror channels lays the foundation to coding for mitigating
sneak-path errors.

An alternative approach to mitigating sneak paths is to eliminate them altogether by a proper constraint code.
This approach is the subject of Sections III and IV. Here coding works to restrict the written bits in the array
to bit assignments that do not induce any sneak path to any cell. The number of sneak-path free assignments to
an m × n memristor array was calculated by Sotiriadis in [13]. Our contributions to the study of the sneak-path
constraint are enabled by a new succinct characterization of sneak-path free arrays, which we give in section III.
Then in Section IV, we give a capacity-achieving efficient encoder that maps unrestricted information to sneak-path
free arrays. In Section V, we depart from the full-array model and consider two methods to avoid sneak paths by
selectively grounding array rows. These methods enable a tradeoff between high power consumption (grounding many
rows increases read power) and low storage capacity (grounding few rows enforces harder constraints and reduces
capacity, in particular ungrounded full array results in zero capacity [13]). To the second grounding method we
match a parametrized constraint, and calculate the resulting capacity. In this method, it turns out that a1-dimensional
(d,∞) run-length limited constraint provides sufficiency, and weprove that it also has the same capacity. The most
interesting contribution from practical standpoint is that among these two approaches it is better to read a memristor
array by grounding all rows outside a symmetric set of rows around the read row.

II. A NALYSIS OF ERRORS DUE TOSNEAK PATHS

We start the information-theoretic treatment of sneak paths by examining the errors that they cause, and calculating
the resulting error probabilities. In this section and throughout the paper we assume that a resistive cell at location
(i, j) programmed to the “0” state (high resistance) is read in error as being at the “1” state (low resistance) when
it is affected by at least one sneak path of any length, i.e., there exists a path as defined in Definition 1.

Definition 1. Given a binary arrayA of sizem× n, we say that there is asneak pathof length2k+1 affecting the cell
at position(i, j) if ai,j = 0 and there exist2k positive integers1 6 r1, . . . , rk 6 m and1 6 c1, . . . , ck 6 n for some
k > 1 such that the following2k + 1 cells satisfy

ai,c1 = ar1,c1 = ar1,c2 = · · · = ark−1,ck = ark,ck = ark,j = 1.

The sneak path is a closed path originating from and returning to (i, j) and traversing “1”-state cells through alternating
vertical and horizontal steps. The integersr1, . . . , rk andc1, . . . , ck are, respectively, the row and column indices of
the traversed cells.

A. Calculating the sneak-path bit-error probability

In anm×n array we want to calculate the probability that a certain bitwill be in error due to one or more sneak
paths affecting it. To this end we restrict ourselves to sneak paths of length3 (k = 1 in Definition 1), and define that
a bit will be in error due to sneak path if the following two conditions are met:

1) The bit value is0.
2) The bit location(i, j) has at least one combinationc1, r1 that induces a sneak path defined by

ai,c1 = ar1,c1 = ar1,j = 1. (1)
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According to the definition of sneak path given in (1), we onlyconsider in the analysis sneak paths with3 cells,
which is a special case of the2k + 1-cell sneak path given in Definition 1. We do so for two reasons. One is that
sneak paths with more than3 (5, 7, etc.) cells are less prone to errors because of their higherresistance. The second
is that analyzing longer sneak paths is much more difficult. In Section III we show that when determining sneak-path
existence in a fullm× n array, it is sufficient to consider3-cell sneak paths as in (1).

A bit error due to sneak paths can thus be characterized usingthe Z channel depicted in Figure 2. If a0 is written,
it is read in error with probabilityP , the probability that there is a sneak path affecting it. If a1 is written, it is
always read correctly.

0 0

1 1

P

1− P

write read

Fig. 2. Sneak-path read errors as a Z channel. A written0 is read as0 if no sneak path affects it and as1 otherwise. A written
1 is always read correctly.

It is now our objective to calculate the sneak-path transition probabilityP . The main challenge in findingP stems
from the fact that there are many possiblec1, r1 combinations, and multiple of them may exist simultaneously for
the same array assignment. We now define the problem formally.

Problem 2.Given an array of dimensionsm × n, where bits are written to array locations such thatPr(ai,j = 1) = q,
Pr(ai,j = 0) = 1− q, i.i.d. for all (i, j). What is the probabilityP that a0-written array bit is read in error due to sneak
path?

It is clear that the answer to Problem 2 depends on the parameter q. For example, it is possible to trivially make the
sneak-path transition probability identically zero by setting q = 0 (hence having no1s in the array to create sneak
paths). However, this would not be a wise choice as the resulting information rate is zero. The sneak-path transition
probability also depends on the array dimensions, hence we re-denoteP asP (m,n, q).

Theorem 3.The transition probability due to sneak paths in anm× n array with parameterq equals

P (m,n, q) = 1−

m−1
∑

u=0

n−1
∑

v=0

(

m− 1

u

)(

n− 1

v

)

qu+v(1 − q)m−1−u+n−1−v+uv. (2)

Proof: The proof proceeds by summing the probabilities of bit assignments for which there isno sneak path
affecting cell(i, j). Taking the complement yieldsP (m,n, q).
We consider a location(i, j) where the bit value is0. Suppose columnj hasu 1s in row locations taken from
{1, . . . ,m} \ i, and rowi hasv 1s in column locations taken from{1, . . . , n} \ j. Then in order for cell(i, j) to
have no sneak path, each intersection of a1 in columnj with a 1 in row i must have a0 value. An example for an
array with no sneak path for cell(i, j) = (1, 1) is given in Figure 3.

The probability that all these intersections have0s is (1− q)uv. Now all that is needed to obtain the second term
of (2) is to sum over allu from 0 to m− 1 and allv from 0 to n− 1 and weight with their respective probabilities.

Theorem 3 gives an exact closed-form expression for the probability that randomly selecting them × n array bits
i.i.d. with parameterq will result in at least one sneak path affecting location(i, j). Note that the same expression
applies to any array location, as (2) does not depend on(i, j). This implies a simple coding scheme where the encoder
chooses a biasq, and obtains information reliability given by (2). It is important to observe that for two locations
(i1, j1) and(i2, j2) on the same array, sneak-path error events arenot independent. For example, ifi1 = i2, knowing
that (i1, j1) has a sneak path makes a sneak path for(i2, j2) more likely.

It may be the case in practice that one sneak path is not sufficient to cause a bit error. Rather, the sensing circuit
may have sufficient margins to tolerate up toL − 1 sneak paths affecting an array location, in which case a bit
error due to sneak paths requires at leastL sneak paths affecting the same array location. For this casewe derive a
generalized expression for the bit-error probability due to L or more sneak paths.
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Fig. 3. An example of an array with no sneak path for cell(1, 1). Given 0/1 assignments in rowi = 1 and columnj = 1, the
intersections of the1-rows with the1-columns must be set to zeros. In the rest of the array locations, the value can be arbitrary,
marked withX.

Theorem 4.The transition probability due toL or more sneak paths in anm× n array with parameterq equals

PL(m,n, q) =

(m−1)(n−1)
∑

l=L

m−1
∑

u=1

n−1
∑

v=1

(

m− 1

u

)(

n− 1

v

)

qu+v+l(1− q)m−1−u+n−1−v+uv−l

(

uv

l

)

. (3)

Proof: Given u 1s in columnj and v 1s in row i, an array will inducel sneak paths on location(i, j) if it
has exactlyl 1s out of theuv cells that intersect a1-row of columnj and a1-column of row i. There are

(

uv
l

)

combinations to choose thesel 1s. To restrict to exactlyl 1s in the probability expression, we add (on top of (2))l
to the exponent ofq to getqu+v+l anduv− l to the exponent of1− q to get(1− q)m−1−u+n−1−v+uv−l. Summing
for all l greater or equal toL yields (3).

One can verify thatP (m,n, q) = P1(m,n, q), hence Theorem 3 is a special case of Theorem 4.

B. Asymptotic analysis

In this section we move to analyze the sneak-path transitionprobability when the array dimensionsm andn tend
to infinity. This analysis will help finding out whether reliable readout is possible in the limit of large memory arrays.
We will explore the case where bothm andn tend to infinity, and then the case where one ofm,n tends to infinity
while the other is a constant. The first question we pose is whether we can store bits reliably on arrays with bothm
andn tending to infinity. The following theorem answers this question to the negative.

Theorem 5.The transition probabilityP (m,n, q) tends to1 if m andn tend to infinity, for any constantq.

Proof: As we did in the proof of Theorem 3, we will look at the complement of P (m,n, q) and prove that
it tends to0 for m andn tending to infinity. Suppose that columnj is assigned a particular vectoru with weight
u = 1. Then the probability that there is no sneak path conditioned onu in columnj is given by

1− P (m,n, q|u) =
n−1
∑

v=0

(

n− 1

v

)

qv(1 − q)n−1−v(1− q)v. (4)

The power ofq in (4) is the number of1s in row i and the first power of1 − q is the number of0s in row i.
The second power of1 − q is the number of zeros required to not have sneak path when theweight of u is 1.
Simplification of (4) yields

1− P (m,n, q|u) = (1− q)n−1(1 + q)n−1 = (1− q2)n−1 −→
n→∞

0. (5)

It is clear that for any vectoru′ in columnj with weightu > 1, the probability of having no sneak path conditioned
on u

′ similarly tends to0. (Intuitively, more1s in columnj mean fewer assignments to the remaining bits that do
not cause sneak-path.) Hence the probability of no sneak path conditioned on the weight of columnj being greater
or equal to1 tends to0 asn tends to infinity. To prove that the same applies even withoutconditioning, we observe
that the probability that columnj has weight0 (u′ is the all-zero vector) tends to0 as m tends to infinity. This
completes the proof.
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To overcome the impossibility result of Theorem 5, we resortto the solution of physically limiting the sneak-path
effect to a constant numberb of rows. Instead of being vulnerable to sneak paths fromm rows, wherem tends to
infinity, we now only consider a subset of rows of sizeb, whereb is a constant. Practically speaking, reducing the
number of rows per array is simple, but incurs some implementation cost. The number of columnsn is assumed as
before to be large, and tending to infinity in the analysis. Wecall suchb × n arrayssemi-infinite. For a constant
numberb of rows (which include rowi andb− 1 additional rows), the probability that columnj has all0s equals

(1− q)b−1.

Since all0s in columnj guarantees that there are no sneak paths, we can bound from above the transition probability

P (b, n, q) 6 1− (1− q)b−1. (6)

The bound (6) applies to anyn, and becomes tighter asn tends to infinity. For the forthcoming analysis, we use the
notationP̂ for this upper bound on the transition probability

P̂ , 1− (1− q)b−1.

Using this upper bound, we next calculate the capacity of reliable storage on semi-infinite arrays with sneak paths.

C. Capacity of semi-infinite arrays with sneak paths

In this sub-section we seek to find the information capacity of semi-infinite arrays with sneak paths. Bits stored
on such arrays are subject to errors due to sneak-paths, and the capacity – denotedC(b) – gives the amount of
information that can be stored reliably on one physical array bit (hence0 6 C(b) 6 1). Information theoretically,
errors due to sneak paths in semi-infinite arrays are modeledusing the Z channel depicted in Figure 2. The uniqueness
of sneak-path errors over a standard Z channel is that the transition probabilityP depends on the input distribution
through the parameterq. Accordingly, the calculation of the channel capacity willneed to consider this coupling
between the input and the channel.

Proposition 6.The capacity of the semi-infinite sneak-path array withb rows is given by

C(b) = argmaxq {H [(1 − q)(1− P (q))]− (1 − q)H [P (q)]} , (7)

where
P (q) = P̂ = 1− (1− q)b−1,

andH(·) is the binary entropy function.

Proof: This is the standard Z-channel capacity, only with substitution of the coupled transition probability
P (q) = 1− (1− q)b−1 and maximization overq.

We calculated the capacity for several values ofb and listed them in Table I. For eachb the second column lists the
resulting capacity, and the third column shows theq values at which the respective capacities are obtained.

b C(b) optimal q

2 0.383 0.287
3 0.245 0.203
4 0.181 0.157
5 0.143 0.128

TABLE I
THE CAPACITY OF SEMI-INFINITE SNEAK PATH ARRAYS FOR DIFFERENT VALUES OFb.

D. Discussion

There are a few insights to take from the results of this section. First, it is clear from Table I that even for semi-
infinite arrays the capacity is very low – quite away from1. Hence one cannot expect high-rate reliable storage
without taking extra measures to combat sneak paths. Second, due to the dependence between sneak-path errors
within the array, sneak-path error-correction coding needs to be performedacross arrays(i.e., each bit in a codeword
is assigned to a different array), so that errors within a code block can be assumed i.i.d. It is possible to assign
multiple array bits to the same code block so long as the errordependence is accommodated into the error model.
Third, the storage rate may be made much higher by reducing both m andn to finite values that give small transition
probabilities, which can be calculated by (2).
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III. C HARACTERIZATION OF SNEAK-PATH FREE ARRAYS

The approach manifested in the previous section is to regardsneak paths as a source of errors, and using error-
correcting codes to combat them. Now in this section we explore an alternative approach of constraining the array to
bit assignments that do not have anysneak path for any cell(i, j). Such an approach would give a complete solution
to the sneak-path problem without need to employ error-correcting codes.

To obtain sneak-path free arrays, let us first define formallyand mathematically the required constraint. Recall that
for a cell at location(i, j) that is programmed to “0” a sneak path is defined according to Definition 1. Hence we
say that an arrayA satisfies thesneak-path constraint if no cell within it has a sneak pathof any length. In these
cases we call the arrayA a sneak-path-free array.

The sneak-path constraint was already introduced and studied in [13] with application to nanowire resistive crossbar
switching networks (R-CSNs). This previous work addressedthe same problem of high-resistance cells being “short-
circuited” by paths of cells at low-resistance state. The contributions of [13] include an exact count of the number
of ”0”, ”1” m × n arrays that are distinguishable by measuring resistance atthe array row/column terminals. This
count can be easily seen to be identical to the number of distinct sneak-path-free arrays. However, the more refined
characterization of the sneak-path constraint pursued here allows obtaining superior storage information rates for
more general sneak-path problems motivated by memristor arrays. For completeness and clarity we include in the
presentation results for the simple sneak-path model, which can be implied by results in [13].

For the ability to extend sneak-path-free coding results tomore general models, it is useful to represent the sneak-
path constraint by a new, more succinct constraint, which islater shown to be equivalent. It turns out that the existence
of sneak paths of any length in a memristor array can be perfectly characterized by an abstract constraint, which we
call the isolated zero-rectangle constraint.

Definition 7. A binary arrayA has anisolated zero rectangleif there are four positive integersi1 6= i2 andj1 6= j2
such that

ai1,j1 + ai1,j2 + ai2,j1 + ai2,j2 = 3.

That is, the value of exactly one out of the four cells in the rectangle formed by these four positions is zero.

Note the similarity between Definition 7 and Definition 1 for the special case ofk = 1. The difference is that
Definition 1 characterizes sneak paths affecting the particular cell at location(i, j), while Definition 7 characterizes
the existence of sneak paths affectinganycell in the array. An arrayA satisfies theisolated zero rectangle constraint
if it has no isolated zero rectangles and then it is called anisolated zero rectangle free array.

According to the last definition, a ”0” belongs to an isolated-zero rectangle if it is part of any rectangle in the
array, all of whose remaining vertices are ”1”s. For example, the cell in the(4, 1) location in Fig. 1(b) belongs to an
isolated zero rectangle because it is part of a rectangle (marked by a dashed line) with three ”1”s at locations(1, 1),
(1, 3) and(4, 3). There are no other isolated zero rectangles in the array.

Next we show that a memristor array is free of sneak paths of any length if and only if it has no isolated zero-
rectangles. Note that sneak paths may consist of any odd number of cells greater than one, not necessarily three as in
the rectangle case. However, this property tells us that rectangles, i.e. sneak paths of length three, provide a complete
characterization of the existence of sneak paths.

Theorem 8.The sneak path constraint and the isolated zero rectangle constraint are equivalent.

Proof: We will show that an array has a sneak path if and only if it has an isolated zero rectangle. We show
only one direction as the other one is immediate.

Let us assume to the contrary that there exists an arrayA which has a sneak path affecting the(i, j) cell and yet
it satisfies the isolated zero rectangle constraint. First note thatai,j = 0 and there is a path as defined in Definition 1
starting at thei-th row and ending at thej-th column. Assume the vertices of this path are the cells at positions
(i, c1), (r1, c1), (r1, c2), . . . , (rk−1, ck), (rk, ck), (rk, j) for somek > 1, and these array cells have value ”1”.

We will show by induction that for for all1 6 h 6 k, arh,c1 = 1. This property holds forh = 1 since the
(r1, c1) cell is part of the sneak path. Assume the claim is true for some 1 6 h < k, that is,arh,c1 = 1. We will
show thatarh+1,c1 = 1 as well. Note that the vertices(rh, ch+1), (rh+1, ch+1) belong to the sneak path and hence
arh,ch+1

= arh+1,ch+1
= 1. Therefore, in the rectangle formed by the vertices

(rh, ch+1), (rh, c1), (rh+1, ch+1), (rh+1, c1)
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the first three cells have value one. Therefore, according tothe assumption that there is no isolated zero rectangle
we conclude thatarh+1,c1 = 1.

From the last claim we get in particular thatark,c1 = 1. Since the vertices(i, c1), (rk, j) belong to the sneak path,
we haveai,c1 = ark,j = 1 and since the sneak path affects the cell at position(i, j) we also haveai,j = 0. Therefore,
there exists a sneak-path with three cells(i, c1), (rk, c1), (rk, j) in contradiction with the assumption that there are
no isolated zero rectangles.

From the isolated zero rectangle characterization it is implied that for sneak paths to not exist in the array, the ”1”
cell locations in any pair of rows (or columns) must have either full overlap or no overlap. For example, rows 2, 3 in
Fig. 1(b) have full overlap of ”1”s, rows 2, 4 have no overlap of ”1”s, and thus no sneak paths exist between these
row pairs. However, rows 1, 4 have neither full-overlap nor no-overlap, and thus introduce a sneak path.

Lemma 9.An arrayA is an isolated zero rectangle free array if and only if the ”1”s in every two rows either completely
overlap or are disjoint.

Proof: It is clear that the condition is sufficient. If ”1”s either completely overlap or have no overlap between
every pair of rows, then every rectangle has either0,1, 2 or 4 ”1”s.

To prove necessity, assume to the contrary that the condition does not hold. That is, there are two rows, say thei-th
and j-th rows, such that the ones in these rows neither overlap norare disjoint. Assume without loss of generality
that there are more ones in thei-th row and assume that there areℓi > 2 ones in positions1, . . . , ℓi. Since the ones
in the two rows are not disjoint, there is1 6 k 6 ℓi such thataj,k = 1, and since they do not fully overlap, there is
1 6 h 6 ℓi, h 6= k such thataj,k = 0. Thus, the rectangle formed by the vertices{(i, k), (i, h), (j, k), (j, h)} is an
isolated-zero rectangle and so the arrayA does not satisfy the isolated zero rectangle constraint.

Let N(m,n) be the number ofm × n arrays satisfying the isolated zero-rectangle constraint. An exact count of
N(m,n) (for an equivalent constraint) is derived in [13]. For the sake of completeness, we provide a proof of the
result that uses the isolated zero rectangle constraint andits characterization in Lemma 9.

First, we denote byS(k, ℓ) the number of distinct ways that a set ofk elements can be partitioned intoℓ nonempty
subsets, where it is known that

S(k, ℓ) =
1

ℓ!

ℓ
∑

t=0

(−1)ℓ−t

(

ℓ

t

)

tk =
1

ℓ!

ℓ
∑

t=0

(−1)t
(

ℓ

t

)

(ℓ− t)k.

This is known as the Stirling number of the second kind [15].

Lemma 10.The valueN(m,n) is expressed by

N(m,n) = 1 +
m−1
∑

i=0

n−1
∑

j=0

(

m

i

)(

n

j

)min{m−i,n−j}
∑

ℓ=1

S(m− i, ℓ)S(n− j, ℓ)ℓ!.

Proof: AssumeA is an array which satisfies the isolated zero-rectangle constraint, which is not the all zero
array. Assume thatA hasi zero rows andj zero columns where0 6 i 6 m− 1 and0 6 j 6 n− 1. There are

(

m
i

)

options to choose these rows and
(

n
j

)

to choose the columns. After removing thesei rows andj columns we obtain
an (m− i)× (n− j) arrayA′ with no zero rows or zero columns.

According to Lemma 9, the rows ofA′ can be partitioned into some1 6 ℓ 6 m − i sets such that the rows in
every set are identical. The number of distinct ways to partition them− i rows intoℓ nonempty sets isS(m− i, ℓ).
Note that if the rows are either identical or their ”1” positions do not overlap then the same property holds for the
columns. Therefore, the columns can be partitioned intoℓ nonempty sets, where1 6 ℓ 6 n− j and the number of
such options is similarlyS(n− j, ℓ). Finally, there areℓ! options to match between theℓ sets of rows andℓ sets of
columns, yielding the expression

m−1
∑

i=0

n−1
∑

j=0

(

m

i

)(

n

j

)min{m−i,n−j}
∑

ℓ=1

S(m− i, ℓ)S(n− j, ℓ)ℓ!,

for the number of possible arraysA. Together with the all zero array, we get the result stated inthe lemma.

The second, more compact, expression forN(m,n) in [13] can similarly be obtained using the isolated zero
rectangle constraint.
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Lemma 11.The valueN(m,n) can be expressed by

N(m,n) =

min{m,n}
∑

ℓ=0

S(m+ 1, ℓ+ 1)S(n+ 1, ℓ+ 1)ℓ!.

Proof: The proof is very similar to the one given in Lemma 10. This time we add one more zero column and
one more zero row so the array size is(m+1)× (n+1). Assume thatA is an(m+1)× (n+1) array which satisfies
the isolated zero rectangle constraint and its last row and column are all zeros. According to Lemma 9, the rows of
A can be partitioned into groups such that all the rows in everygroup are identical. The columns are partitioned as
well into nonempty disjoint sets. Since the last row and lastcolumn are all zeros there is definitely a set of columns
corresponding to a set of rows which are all zeros. Ifℓ corresponds to the number of sets of nonzero rows, then there
areS(n+1, ℓ+1) options to partition the columns andS(m+1, ℓ+1) options to partition the rows. Since the last
set of rows and the last set of columns correspond to the last zero row and last zero column we only need to match
between theℓ sets of non-zero columns andℓ sets of non-zero rows. Hence, we get that the number of such arrays
is given by

min{m,n}
∑

ℓ=0

S(m+ 1, ℓ+ 1)S(n, ℓ+ 1)ℓ!.

Unfortunately, the asymptotic behavior of the valueN(m,n) for m andn large enough states thatlog2 N(m,n) ≈
(m+n) log2(m+n) in case bothm andn approach infinity and the ratiom/n approaches some positive number [13].
Thus, under these conditions it is derived that

log2 N(m,n)

mn
−→ 0, (8)

which implies a0 asymptotic storage capacity. In fact, this behavior holds for all values ofm andn which approach
infinity (that is, the ratiom/n does not have to approach to a positive number). This indicates that the sneak path
constraint is too strong, and we need to find milder ways to avoid sneak paths without ending up with zero capacity.
This will be the topic of Section V.

IV. ENCODING OFSNEAK PATH FREE ARRAYS

Even though the asymptotic storage capacity of the sneak path constraint approaches zero form and n large
enough, the encoding problem of such arrays is still important. For simplicity we assume in this section thatn = m
and they are both large enough.

In [13], a low complexity and very efficient mapping was presented, and the number of information bits that this
mapping can carry isn logn (for simplicity it was assumed thatn is a power of two but that can be easily modified
for arbitraryn). However, according to the derivations in [13], the numberof bits that can be represented by all
sneak-path free arrays is roughly2n logn. Thus, the mapping in [13] reaches approximately only a halfof the number
of bits that could be stored.

We show here another mapping that even though has higher encoding and decoding complexities, can asymptotically
reach the maximum number of bits that can be represented, i.e. 2n logn. To simplify the mapping presentation, we
dropped all floor and ceiling functions, so some of the valuesare not necessarily integers as required. This may incur
a small loss in the number of stored bits, however this loss isnegligible.

Let S1 be the set of all partitions of the numbers{1, . . . , n} into L groups, each consisting ofnL numbers.
Alternatively, we can treatS1 as the set of all multipermutations overnL numbers where each number appearsL
times. The size ofS1 is

s1 = |S1| =
n!

(

n
L

)

!L · L!
.

Assume for now that there is a one-to-one mapping with efficient encoding and decoding maps

F1 : {0, 1}log s1 → S1

between all binary vectors of lengthlog s1 andS1. Let S2 be the set of all permutations ofL numbers, sos2 =
|S2| = L!, and similarly, assume that there is a mapping with efficientencoding and decoding maps

F2 : {0, 1}log s2 → S2.
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Our approach follows the proof of Lemma 10, which uses the if and only if condition in Lemma 9. We encode
only arrays where the rows, columns are partitioned intoL sets ofn/L rows, columns, respectively. Thus, every
array is represented by: 1) a partition of the rows, that is, an element fromS1, 2) a partition of the columns, again,
an element fromS1, and 3) a mapping between theL sets of rows andL sets of columns, i.e., an element fromS2.
The encoding and decoding maps will be clear from the encoding and decoding of the mappingsF1 andF2.

The number of bits that can be stored by this construction isN = log (s1 · s1 · s2) = 2 log s1 + log s2. We
approximate this value while takinglogm! ≈ m logm for m large enough. Therefore,

N = 2 log s1 + log s2 = 2 log

(

n!
(

n
L

)

!L · L!

)

+ log (L!)

= 2 logn!− 2L log
((n

L

)

!
)

− log (L!)

≈ 2n logn− 2L ·
n

L
log
(n

L

)

− L log (L)

= 2n logn− 2n log
(n

L

)

− L log (L) = (2n− L) log(L).

If we chooseL = n
logn we get

N = (2n−
n

logn
) log

(

n

logn

)

,

and forn large enough

lim
n→∞

N

2n logn
= 1.

Thus this mapping will be asymptotically optimal. We finallynote that the functionsF1 and F2 have efficient
implementations. This can be done by different methods for the enumerations of permutations and multipermutations;
see for example [2] and chapter 5.1 in [7].

V. REPRESENTATIONS TRADING OFF SNEAK PATHS AND POWER CONSUMPTION

One way to eliminate memristor sneak paths without resorting to any information-theoretic tools is by electrically
grounding all rows except the one being read [12]. The problem with grounding all other rows is that it significantly
increases the power consumption of the read operation due tolower equivalent resistance through which flows
the measurement current. Without information theoretic tools, this suggests a tradeoff between power consumption
(from grounded rows) and read errors (from sneak paths). Alternatively, we propose to replace the power-correctness
tradeoff with a power-density one, by combining partial grounding with sneak-path constraint codes. The key idea is
to specify how many of the rows will be grounded in a read operation, and ensure that no sneak paths exist in the
part of the array remaining “active” in the non-grounded rows. By doing that, we can control the power consumption
of the read operation while guaranteeing read accuracy. Since many of the cells will be deactivated in grounded
rows, maintaining sneak-path-free reads will be possible with good storage rates. There are several ways to obtain
sneak-path-free sub-arrays, each resulting in an interesting information-theoretic problem.

A. Grounding based upon fixed subsets

In this section we study the capacity assuming the array rowsare divided into disjoint subsets, and grounding all
rows outside the subset of the read row. We will show that whenthe subset size is a constant, the capacity no longer
goes to zero as in the full array.

Assume the array size ism×n and letb be some positive integer which is a divisor ofm. Them rows are divided
into m/b disjoint subsets of consecutive rows. Then, any of them/b sub-arrays of sizeb × n is required to satisfy
the isolated zero rectangle constraint. Since all these sub-arrays are disjoint and thus independent, we conclude that
the number of arrays will beN(b, n)m/b. Let us define the capacity of this constraint byC1(b). Then, we get

C1(b) = lim
m,n→∞

log
(

N(b, n)m/b
)

mn
= lim

n→∞

log (N(b, n))

bn
.

We first prove lower and upper bound on the value ofN(b, n).

Lemma 12.For anyb = o(n) andn large enough the following holds

(b+ 1)n − bn+1 6 N(b, n) 6 (b + 1)!S(n+ 1, b+ 1).
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Proof: According to Lemma 11

N(b, n) =

b
∑

ℓ=0

S(b+ 1, ℓ+ 1)S(n+ 1, ℓ+ 1)ℓ!

> S(b + 1, b+ 1)S(n+ 1, b+ 1)b!

SinceS(b+ 1, b+ 1) = 1 and

S(n+ 1, b+ 1) =
1

(b + 1)!

b+1
∑

i=0

(−1)i
(

b+ 1

i

)

(b + 1− i)n+1

>
(b+ 1)n+1 − (b+ 1)bn+1

(b+ 1)!
=

(b + 1)n − bn+1

b!
,

we get

N(b, n) >
(b + 1)n − bn+1

b!
b! = (b + 1)n − bn+1.

On the other hand, ifb = o(n) let us show that forn large enough the following holds for every0 6 ℓ < b

S(b+ 1, ℓ+ 1)S(n+ 1, ℓ+ 1)ℓ! 6 S(n+ 1, b+ 1)b!.

First note that

S(b+ 1, ℓ+ 1)S(n+ 1, ℓ+ 1)ℓ!

6
(ℓ+ 1)b+1

(ℓ+ 1)!
·
(ℓ + 1)n+1

(ℓ + 1)!
· ℓ! =

(ℓ+ 1)n+b

ℓ!
,

and we saw thatS(n+ 1, b+ 1) > (b+1)n−bn+1

b! . Now,

lim
n→∞

(ℓ+1)n+b

ℓ!
(b+1)n−bn+1

b!

= lim
n→∞

b!(ℓ+ 1)n+b

ℓ! ((b+ 1)n − bn+1)

6 lim
n→∞

b!(ℓ+ 1)n+b

(b+ 1)n − bn+1

= lim
n→∞

b!(ℓ+ 1)n+b

(b + 1)n
· lim
n→∞

(b+ 1)n

(b+ 1)n − bn+1
.

Let us evaluate every term independently under the assumption thatb = o(n).

lim
n→∞

(b+ 1)n

(b + 1)n − bn+1
= lim

n→∞

1

1− b ·
(

b
b+1

)n

lim
n→∞

1

1− b ·

(

(

1− 1
b+1

)b
)n/b

= lim
n→∞

1

1− b · e−n/b
= 1.

Similarly,

lim
n→∞

b!(ℓ+ 1)n+b

(b+ 1)n
6 lim

n→∞

(ℓ+ 1)n+b

(b+ 1)n−b

6 lim
n→∞

(ℓ + 1)n−b

(b+ 1)n−b
· b2b = lim

n→∞

(

ℓ+ 1

b+ 1

)n−b

· b2b

= lim
n→∞

(

1−
b − ℓ

b+ 1

)n−b

· b2b 6 lim
n→∞

(

1−
1

b+ 1

)n−b

· b2b

lim
n→∞

(

(

1−
1

b+ 1

)b
)

n

b
−1

· b2b

= lim
n→∞

e−
n

b
+1 · b2b = 0
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Therefore, we get that forn large enough

N(b, n) =
b
∑

ℓ=0

S(b+ 1, ℓ+ 1)S(n, ℓ+ 1)ℓ!

6 (b + 1)S(n+ 1, b+ 1)b! = (b+ 1)!S(n+ 1, b+ 1).

Now we are ready to calculate the capacityC1(b) for fixed values ofb.

Lemma 13.For any fixedb, C1(b) =
log(b+1)

b .

Proof: According to Lemma 12

lim
n→∞

log(N(b, n))

bn
> lim

n→∞

log
(

(b + 1)n − bn+1
)

bn

= lim
n→∞

log
(

(b + 1)n
(

1− b
(

b
b+1

)n))

bn

=
log(b+ 1)

b
+ lim

n→∞

log
(

1− b
(

b
b+1

)n)

bn
=

log(b + 1)

b
.

To prove the opposite inequality, again by Lemma 12 we get

lim
n→∞

log(N(b, n))

bn
6 lim

n→∞

log((b + 1)!S(n+ 1, b+ 1))

bn

6 lim
n→∞

log((b + 1)n+1)

bn
=

log(b + 1)

b
.

Finally, we note that very similarly the following propertyholds forb = o(n),

lim
b → ∞
b = o(n)

C1(b)
log(b+1)

b

= 1.

B. Grounding sets based upon the read row

In this section we study the capacity assuming all rows are grounded outside a subset of rows which depends
upon the read row. In particular, we study the case where all rows outside a subset of odd sizecenteredat the read
row are grounded. It turns out that a sufficient (but not necessary) condition to have a sneak-path free array in this
case is that each column satisfies some run-length limited (RLL) [3] constraint, which depends on the number of
ungrounded rows.

Under this model, we say that there is ab-centered-path, whereb is odd, affecting the cell in position(i, j) if
ai,j = 0 and there is a path as defined in Definition 1 which can be confined between the(i − b−1

2 )-th row and
the (i + b−1

2 )-th row. That is, for somek > 1, there exist2k positive integersmax{i − b−1
2 , 1} 6 r1, . . . , rk 6

min{i+ b−1
2 ,m}, 1 6 c1, . . . , ck 6 n such that

ai,c1 = ar1,c1 = ar1,c2 = · · · = ark−1,ck = ark,ck = ark,j = 1.

Thus, we say that an array satisfies theb-centered-path constraint if it has nob-centered-paths.

For any oddb > 1, we denote byN2(m,n; b) the number of arrays that satisfy theb-centered-path constraint and
we denote the capacity of this constraint byC2(b), so

C2(b) = lim
m,n→∞

log (N2(m,n; b))

mn
.

Furthermore, we say that an array has ab-isolated zero rectangle if there are four positive integersi1 6= i2,
j1 6= j2, and |i2 − i1| 6 b − 1, such thatai1,j1 + ai1,j2 + ai2,j1 + ai2,j2 = 3. An arrayA satisfies theb-isolated
zero rectangle constraint if it has nob-isolated zero rectangles and then it is called ab-isolated zero rectangle free
array. Theb-isolated zero rectangle constraint is the same as the isolated zero rectangle constraint from Definition 7
when applied to sub-arrays ofA with b rows.
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It is a matter of simple observation to get to the following correspondence between the centered path constraint
and the isolated zero rectangle constraint:

Lemma 14.Theb-centered-path constraint and theb+1
2 -isolated zero rectangle constraint are equivalent.

To proceed, let us recall the one-dimensional RLL constraint. We say that a binary sequence satisfies the(d, k)
RLL constraint if the number of zeros between every two consecutive ones is at leastd and at mostk. The capacity
of the one dimensional(d, k) RLL constraint is denoted byCd,k. Next, we show that the capacity of the( b−1

2 ,∞)
RLL constraint is a lower bound onC2(b).

Lemma 15.For any oddb, C2(b) > C b−1

2
,∞.

Proof: This result follows from the observation that if every column satisfies the( b−1
2 ,∞) RLL constraint then

necessarily there are no pairs of ones in the same column at distance less thanb−1
2 rows. In particular, there is no

rectangle confined tob+1
2 rows with an isolated zero.

The reverse inequality onC2(b) is proved in the next lemma.

Lemma 16.For any oddb, C2(b) 6 C b−1

2
,∞.

Proof: Let Bm,n be the number ofm×n arrays where every column satisfies the( b−1
2 ,∞) RLL constraint. Let

A be ab-centered-path-free array. According to Lemma 14,A is a ( b+1
2 )-isolated zero-rectangle free array. Thus, as

in the proof of Lemma 9, in everyb+1
2 consecutive rows ofA, every two rows are either the same or their ones are

located at disjoint locations.

For a positive integer divisord of m, we define a mappingFd : {0, 1}m×n → {0, 1}m×n, which transforms an
arrayA to Fd(A) as follows. Starting with the firstd rows of A, if there are identical rows among thesed rows,
then the first row remains the same and the subsequent identical rows are replaced with all-zero rows. Then the same
operation is performed on the new array with the next window of d rows, between the second and(d + 1)-th row,
and so on until reaching the last window consisting of the last d rows.

Let A′ be the array resulting under this mapping withd = b+1
2 on the arrayA, that isA′ = F b+1

2

(A). The array

A′ holds the property that every column satisfies the( b−1
2 ,∞) RLL constraint.

We note that this mapping is many to one, as there can be several b-centered-path-free arraysA which will be
mapped to the same arrayA′. Given an arrayA′ we can bound the number of arraysA that are mapped to it.
Assuming the arrayA′ hasx zero rows, then each row can be identical to any of theb−1

2 rows above it, or originally
all-zero. Since there arem rows in the array, we can use a loose upper bound here (which will be sufficient for our
goal), and say that at mostmm arrays will be mapped to the arrayA′. Therefore, we get the following relation

N2(m,n; b) 6 mm · Bm,n.

Now we conclude that

C2(b) = lim
m,n→∞

logN2(m,n; b)

mn
6 lim

m,n→∞

log(mm · Bm,n)

mn

= lim
m,n→∞

m logm+ logBm,n

mn

= lim
m,n→∞

logBm,n

mn
= C b−1

2
,∞.

From Lemma 15 and Lemma 16, we get that

C2(b) = C b−1

2
,∞.

It turns out that the symmetric grounding set method is better than the one based upon fixed subsets. In other
words, we can prove the inequalityC2(b) > C1(b).

Theorem 17.For all odd values ofb, the following holds

C2(b) > C1(b).
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Proof: We need to show thatC b−1

2
,∞ > log(b+1)

b for odd values ofb. For b < 250 we numerically calculated
the values ofC1(b) andC2(b) to verify this inequality. Forb > 250, we use a property from Problem 3.3 in [10]
claiming that for every positive integerm, C b−1

2
,∞ > log(m+1)

b−1

2
+m

. In particular, we choosem = ⌊(b + 2)/4⌋ and get

that

C b−1

2
,∞ >

log(⌊(b+ 2)/4⌋+ 1)
b−1
2 + ⌊(b+ 2)/4⌋

>
log(⌊(b + 2)/4⌋+ 1)

3b/4
.

Thus, it is enough to show that
log(⌊(b + 2)/4⌋+ 1) > (3/4) · (log(b+ 1),

or
(b + 2)/4 > (b + 1)3/4,

which holds forb > 250.

To conclude, we compare between the numerical values of the capacities of the two approaches we introduced
here forb 6 11.

b C1(b) =
log(b+1)

b C2(b) = C b−1

2
,∞

2 0.792 -
3 0.667 0.694
4 0.580 -
5 0.517 0.551
6 0.468 -
7 0.423 0.465
8 0.396 -
9 0.369 0.406
10 0.346 -
11 0.326 0.362

VI. CONCLUSION

This work offers a detailed study of the memristor sneak-path problem through an information theoretic lens. The
electric interference due to sneak paths was formulated in terms of abstract terms likechannel, constraint, capacity
etc. This abstract view allows future work to construct new codes, and extend the results to additional sneak-path
models motivated by real memristor devices.
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