')
IRWIN AND JOAN JACOBS
CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

Information-Theoretic Sneak-
Path Mitigation in Memristor
Crossbar Arrays

Yuval Cassuto, Shahar Kvatinsky
and Eitan Yaakobi

CCIT Report #864

July 2014
_~y
EEmER® FElectronics
mEmm=n Computers DEPARTMENT OF ELECTRICAL ENGINEERING
mmmes COmmunications TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL

gitta
Typewritten Text

gitta
Typewritten Text

gitta
Typewritten Text

gitta
Typewritten Text

gitta
Typewritten Text

gitta
Typewritten Text

gitta
Typewritten Text

gitta
Typewritten Text

gitta
Typewritten Text

CCIT Report #864 July 2014 .

Information-Theoretic Sneak-Path Mitigation in
Memristor Crossbar Arrays

Yuval CassutoSenior Member, IEEE,Shahar Kvatinskystudent Member, IEEEand
Eitan Yaakobi,Member, IEEE

Abstract

In a memristor crossbar array, functioning as a memory amagnemristor is positioned on each row-column
intersection, and its resistance, low or high, represemtsldgical states. The state of every memristor can be sensed
by the current flowing through the memristor. In this work, stedy the sneak path problem in crossbar arrays, in which
current can sneak through other cells, resulting in readingong state of the memristor. Our main contributions are
modeling the error channel induced by sneak paths, a nevaciesization of arrays free of sneak paths, and efficient
methods to read the array cells while avoiding sneak pathheath read method we match a constraint on the array
content that guarantees sneak-path free readout, andnitetethe resulting capacity.

Index Terms

Codes for memories, sneak paths, constraint codes, Z dhanemristors, resistive memories, crossbar arrays.

|. INTRODUCTION

The memristor technology [14] allows packing storage cellsan unprecedented density, over a simple crossbar
structure. The blessing of high storage density and awthital simplicity comes with a major caveaata-dependent
behavior[12]. The read accuracy, speed, and power consumption inrist@mstorage may all vary significantly
depending on the instantaneous data stored in the crosshgr @his is clearly an undesired property for a storage
medium, and a motivation for data representations thatrerthiat the physical content of the array corresponds to
a well-behaving device. Memristor storage has alreadyvatetd a novel data representation for one instantiation of
the data-dependence problem [9]. Here we address anothesigaificant data-dependent phenomenon caleeik
paths[12], causing the read correctness to depend on the arragrdofhe importance of the sneak-path problem
can be sensed by the significant body of research addressiegently in the device and circuit literature [4]-[6],
(8], [11], [12], [17], [18].

To understand the sneak-path problem in memristor arragsfirat show a simplified schematic of a memristor
array in Fig. 1(a). Each row-column pair is connected by a@stasthat can be in either the high-resistance state

! \ \ ! T 0 T 0
2 2
\ \ 0 1 0 1
3 3
\ \ 0 1 0 1
4 4 i
x \ 0f' 0 T 0
1 2 3 4 1 2 3 4

@ (b)

Fig. 1. (a) A memristor array as an array of programmed resistors itewhigh resistance, black: low resistance. The high-
resistance cell at locatiof4, 1) has a sneak-path in parallel (plotted dashed), causing lietoead as low-resistance. (b) The
corresponding logical values of the memristor array. THeioghe square frame has a sneak-path comprising of the tbedls
marked in circles.

Yuval Cassuto is with the Department of Electrical Engimegr Technion — Israel Institute of Technology, Haifa I$rgemail: ycas-
suto@ee.technion.ac.il).

Shahar Kvatinsky is with the Department of Electrical Emgiring, Technion — Israel Institute of Technology, Haifaa&d (email:
skva@tx.technion.ac.il).

Eitan Yaakobi is with the Department of Computer Sciencechiiion — Israel Institute of Technology, Haifa Israel (elmai
yaakobi@cs.technion.ac.il).

The work of Y. Cassuto was supported in part by the Europeanridarie Curie CIG grant, by the Intel Center for Computimgelligence,
and by the Israeli Ministry of Science and Technology. Thekwaf E. Yaakobi was supported in part by the ISEF Foundatiot lay the Lester
Deutsch Fellowship. Part of the results in the paper wersgmted at the IEEE International Symposium on Informatibedry, Istanbul Turkey,
July 2013 (reference [1]).

lesley
CCIT Report #864 July 2014

(marked white) or the low-resistance state (marked bldokirig. 1(b) appear the corresponding logical values of the
cells: logical "0” for the high-resistance state, and la@ditl” for the low-resistance state. The sneak-path problem
occurs when a resistor in the high-resistance state (wikitgging read, while a series of resistors in the low-reststa
state (black) exists in parallel to it, thereby causing it erroneously read as low-resistance. It is shown by the
dashed line in Fig. 1(a) that the white resistor in (row,owmh) location(4, 1) has a sneak path that traverses the
black resistors in locationgl, 3), (1,3) and (1, 1). This dashed path is in parallel to the main current patflof)
marked by a solid line.

In this paper we seek to combat memristor-array sneak pathg information-theoretic techniques. We first note
that such an attempt was already presented in [16] by forttiegiumber of zeros and ones in every row and column
to be the same. While this gives an elegant intuitive sotutitat can reduce the sneak path effect, our objective
in this paper is to give a systematic information-theorstiedy of the sneak-path problem and its mitigation. We
begin the information-theoretic treatment of sneak pathSection Il by formulating sneak-path errors as a special
kind of aZ channelin which the (one-directional) transition probabilityminds on the array dimensions and on the
distribution of the written bits. We give a precise closedni calculation of the transition probability as a functiah
these parameters. This formulation of sneak-path arragsraschannels lays the foundation to coding for mitigating
sheak-path errors.

An alternative approach to mitigating sneak paths is to ialte them altogether by a proper constraint code.
This approach is the subject of Sections Il and IV. Here wegdivorks to restrict the written bits in the array
to bit assignments that do not induce any sneak path to ahyTded number of sneak-path free assignments to
an m x n memristor array was calculated by Sotiriadis in [13]. Ountecibutions to the study of the sneak-path
constraint are enabled by a new succinct characterizafian@ak-path free arrays, which we give in section Il
Then in Section 1V, we give a capacity-achieving efficientaher that maps unrestricted information to sneak-path
free arrays. In Section V, we depart from the full-array moaled consider two methods to avoid sneak paths by
selectively grounding array rows. These methods enablkdadff between high power consumption (grounding many
rows increases read power) and low storage capacity (giogrieéw rows enforces harder constraints and reduces
capacity, in particular ungrounded full array results imozeapacity [13]). To the second grounding method we
match a parametrized constraint, and calculate the regut@pacity. In this method, it turns out that-@imensional
(d, o0) run-length limited constraint provides sufficiency, and pveve that it also has the same capacity. The most
interesting contribution from practical standpoint istthenong these two approaches it is better to read a memristor
array by grounding all rows outside a symmetric set of rowmiad the read row.

Il. ANALYSIS OF ERRORS DUE TOSNEAK PATHS

We start the information-theoretic treatment of sneak phthexamining the errors that they cause, and calculating
the resulting error probabilities. In this section and tilglbout the paper we assume that a resistive cell at location
(i,4) programmed to the “0” state (high resistance) is read inreasobeing at the “1” state (low resistance) when
it is affected by at least one sneak path of any length, heret exists a path as defined in Definition 1.

Definition 1. Given a binary arrayA of sizem x n, we say that there issneak pathof length2k + 1 affecting the cell
at position(i, j) if a; ; = 0 and there existk positive integer$ < ry,...,ry < mandl < ci,...,c; < n forsome
k > 1 such that the followin@k + 1 cells satisfy

Qic; = Qryer = Qryep = 7" = Qry_y,cp = Qry,e = Qryj = L

The sneak path is a closed path originating from and retgrtai(i, j) and traversing “1"-state cells through alternating
vertical and horizontal steps. The integers. .., andcy, ..., c; are, respectively, the row and column indices of
the traversed cells.

A. Calculating the sneak-path bit-error probability

In anm x n array we want to calculate the probability that a certainbilt be in error due to one or more sneak
paths affecting it. To this end we restrict ourselves to knEths of lengtl8 (X = 1 in Definition 1), and define that
a bit will be in error due to sneak path if the following two clitions are met:

1) The bit value 9.
2) The bit location(z, j) has at least one combinatien, r; that induces a sneak path defined by

Qic; = Qryeqp = Aryj = 1. (1)

According to the definition of sneak path given in (1), we onbnsider in the analysis sneak paths witltells,
which is a special case of thig: + 1-cell sneak path given in Definition 1. We do so for two reasdhse is that
sneak paths with more than(5, 7, etc.) cells are less prone to errors because of their higdséstance. The second
is that analyzing longer sneak paths is much more difficalSéction Il we show that when determining sneak-path
existence in a fulln x n array, it is sufficient to consided-cell sneak paths as in (1).

A bit error due to sneak paths can thus be characterized ttsing channel depicted in Figure 2. If0ais written,
it is read in error with probabilityP, the probability that there is a sneak path affecting it. If & written, it is
always read correctly.

1 [} 1
write P read
0 ® O
1-P

Fig. 2. Sneak-path read errors as a Z channel. A writiéa read a9 if no sneak path affects it and dsotherwise. A written
1 is always read correctly.

It is now our objective to calculate the sneak-path tramsiprobability 7. The main challenge in finding stems
from the fact that there are many possibler; combinations, and multiple of them may exist simultanepuist
the same array assignment. We now define the problem formally

Problem 2. Given an array of dimensions x n, where bits are written to array locations such WPe(u; ; = 1) = g,
Pr(a;; =0) =1—g, i.i.d. forall (i, j). What is the probability° that a0-written array bit is read in error due to sneak
path?

It is clear that the answer to Problem 2 depends on the pagametor example, it is possible to trivially make the
sneak-path transition probability identically zero bytiset ¢ = 0 (hence having nds in the array to create sneak
paths). However, this would not be a wise choice as the iagutiformation rate is zero. The sneak-path transition
probability also depends on the array dimensions, henceeveemoteP as P(m,n, q).

Theorem 3. The transition probability due to sneak paths imarx n array with parameter equals

m—1n—1
P(m,n,q) =1—- Z Z (mu_ 1) (TL; 1) qu+v(1 _ q)m—l—u-ﬁ-n—l—v-ﬁ-uv. (2)

u=0 v=0

Proof: The proof proceeds by summing the probabilities of bit assignts for which there iso sneak path
affecting cell (7, j). Taking the complement yieldB(m,n, q).
We consider a locatiorfi, j) where the bit value i$). Suppose columg haswu 1s in row locations taken from
{1,...,m} \ 4, and rowi hasv 1s in column locations taken frofil,...,n} \ j. Then in order for cell(s, j) to
have no sneak path, each intersection afia column; with a1 in row i must have & value. An example for an
array with no sneak path for celf, j) = (1,1) is given in Figure 3.

The probability that all these intersections hégeis (1 — ¢)“*. Now all that is needed to obtain the second term

of (2) is to sum over alk from 0 to m — 1 and allv from 0 to » — 1 and weight with their respective probabilities.

Theorem 3 gives an exact closed-form expression for theghibty that randomly selecting the: x n array bits
i.i.d. with parametel; will result in at least one sneak path affecting locationy). Note that the same expression
applies to any array location, as (2) does not depend.gn. This implies a simple coding scheme where the encoder
chooses a biag, and obtains information reliability given by (2). It is iragant to observe that for two locations
(i1,71) and(iz, j2) on the same array, sneak-path error eventiatendependentor example, ifi; = i», knowing
that (i1, j1) has a sneak path makes a sneak path#farjz) more likely.

It may be the case in practice that one sneak path is not sufffitd cause a bit error. Rather, the sensing circuit
may have sufficient margins to tolerate up to— 1 sneak paths affecting an array location, in which case a bit
error due to sneak paths requires at ldastneak paths affecting the same array location. For this wasderive a
generalized expression for the bit-error probability doid.tor more sneak paths.

0 0 1 T
2

1 X 0 0
3 1 SR

Fig. 3. An example of an array with no sneak path for agll 1). Given 0/1 assignments in row = 1 and column; = 1, the
intersections of thd-rows with thel-columns must be set to zeros. In the rest of the array latstite value can be arbitrary,
marked with X

Theorem 4. The transition probability due th or more sneak paths in am x n array with parameter equals

(m—=1)(n—1) m—1n—1

Pr(m,n,q) = l; Sy (m; 1) (n; 1>qu+v+l(1 gyt (ulv> ®3)

u=1 v=1

Proof: Givenu 1s in columnj andwv 1s in row ¢, an array will inducel sneak paths on locatiof, j) if it
has exactlyl 1s out of theuwv cells that intersect d-row of column; and al-column of rowi. There are(“l”)
combinations to choose theéds. To restrict to exactly 1s in the probability expression, we add (on top of (2))
to the exponent of to getg"**+! anduv — [to the exponent of — ¢ to get(1 — ¢)™ 1 ~vwtn-l-v+uw=l Symming
for all [greater or equal td. yields (3). [|

One can verify tha?(m,n, q) = P1(m,n, ¢), hence Theorem 3 is a special case of Theorem 4.

B. Asymptotic analysis

In this section we move to analyze the sneak-path transgfobability when the array dimensions andn tend
to infinity. This analysis will help finding out whether rdbi@ readout is possible in the limit of large memory arrays.
We will explore the case where both andn tend to infinity, and then the case where onergh tends to infinity
while the other is a constant. The first question we pose idhvelnave can store bits reliably on arrays with bath
andn tending to infinity. The following theorem answers this dimsto the negative.

Theorem 5. The transition probability?(m, n, q) tends tol if m andn tend to infinity, for any constant

Proof: As we did in the proof of Theorem 3, we will look at the complemhef P(m,n,q) and prove that
it tends to0 for m andn tending to infinity. Suppose that columynis assigned a particular vectar with weight
u = 1. Then the probability that there is no sneak path conditiomew in columnj is given by

n—1

L= P, glu) = 3 <”; 1)qv<1 — - g @)

v=0

The power ofg in (4) is the number ofis in row i and the first power ofl — ¢ is the number of0s in row :.
The second power of — ¢ is the number of zeros required to not have sneak path whemwéght of u is 1.
Simplification of (4) yields

1= P(m,n,qlu)=(1-q)" " 1+¢)" ' =(1-¢)""" — 0. (5)
It is clear that for any vectoa’ in column; with weightu > 1, the probability of having no sneak path conditioned
on u’ similarly tends to0. (Intuitively, more1s in columnj mean fewer assignments to the remaining bits that do
not cause sneak-path.) Hence the probability of no snedkqmatditioned on the weight of columhbeing greater
or equal tol tends to0 asn tends to infinity. To prove that the same applies even witltoutditioning, we observe
that the probability that colump has weight0 (u’ is the all-zero vector) tends @ asm tends to infinity. This
completes the proof. |

To overcome the impossibility result of Theorem 5, we resorthe solution of physically limiting the sneak-path
effect to a constant numbérof rows. Instead of being vulnerable to sneak paths framows, wherem tends to
infinity, we now only consider a subset of rows of sizewhereb is a constant. Practically speaking, reducing the
number of rows per array is simple, but incurs some impleat&nt cost. The number of colummsis assumed as
before to be large, and tending to infinity in the analysis. 88 suchb x n arrayssemi-infinite For a constant
numberb of rows (which include rowi andb — 1 additional rows), the probability that columjnhas all0s equals

(1—q "
Since all0s in columnj guarantees that there are no sneak paths, we can bound fowa e transition probability
P(bvnaq) < 1- (1_Q)b71' (6)

The bound (6) applies to any, and becomes tighter astends to infinity. For the forthcoming analysis, we use the
notation P for this upper bound on the transition probability

PA21-(1-¢b L.
Using this upper bound, we next calculate the capacity @dbkd storage on semi-infinite arrays with sneak paths.

C. Capacity of semi-infinite arrays with sneak paths

In this sub-section we seek to find the information capacitgemi-infinite arrays with sneak paths. Bits stored
on such arrays are subject to errors due to sneak-pathshandapacity — denoted'(b) — gives the amount of
information that can be stored reliably on one physicalyabia (hence0 < C(b) < 1). Information theoretically,
errors due to sneak paths in semi-infinite arrays are modsslieg the Z channel depicted in Figure 2. The uniqueness
of sneak-path errors over a standard Z channel is that thsiti@n probability? depends on the input distribution
through the parametey. Accordingly, the calculation of the channel capacity wied to consider this coupling
between the input and the channel.

Proposition 6. The capacity of the semi-infinite sneak-path array witbws is given by

C(b) = argmax, {H [(1 —¢)(1 = P(q))] — (1 —q)H [P(q)]}, @)
where
Plg)=P=1-(1-¢"",
andH (-) is the binary entropy function.

Proof: This is the standard Z-channel capacity, only with subbituof the coupled transition probability
P(q) =1— (1 - ¢)*~! and maximization ovey. |

We calculated the capacity for several value$ afnd listed them in Table I. For eadhthe second column lists the
resulting capacity, and the third column shows thealues at which the respective capacities are obtained.

[6][C(b) | optimalq |
2 || 0.383 0.287
3 || 0.245 0.203
4 || 0.181 0.157
5 || 0.143 0.128
TABLE |

THE CAPACITY OF SEMFINFINITE SNEAK PATH ARRAYS FOR DIFFERENT VALUES OF.

D. Discussion

There are a few insights to take from the results of this sacfrirst, it is clear from Table | that even for semi-
infinite arrays the capacity is very low — quite away frdmHence one cannot expect high-rate reliable storage
without taking extra measures to combat sneak paths. Secluedto the dependence between sneak-path errors
within the array, sneak-path error-correction coding setecbe performedcross arraygi.e., each bit in a codeword
is assigned to a different array), so that errors within aecbtbck can be assumed i.i.d. It is possible to assign
multiple array bits to the same code block so long as the @ependence is accommodated into the error model.
Third, the storage rate may be made much higher by reducitigrh@ndn to finite values that give small transition
probabilities, which can be calculated by (2).

IIl. CHARACTERIZATION OF SNEAK-PATH FREE ARRAYS

The approach manifested in the previous section is to regaedk paths as a source of errors, and using error-
correcting codes to combat them. Now in this section we erpdm alternative approach of constraining the array to
bit assignments that do not have areak path for any cell, j). Such an approach would give a complete solution
to the sneak-path problem without need to employ erroremtimg codes.

To obtain sneak-path free arrays, let us first define fornaally mathematically the required constraint. Recall that
for a cell at location(z, j) that is programmed to “0” a sneak path is defined accordingefiniion 1. Hence we
say that an arrayl satisfies thesneak-path constraintif no cell within it has a sneak patbf any length In these
cases we call the array a sneak-path-free array.

The sneak-path constraint was already introduced andestuid{13] with application to nanowire resistive crossbar
switching networks (R-CSNs). This previous work addresbedsame problem of high-resistance cells being “short-
circuited” by paths of cells at low-resistance state. Thetoutions of [13] include an exact count of the number
of "0”, "1” m x n arrays that are distinguishable by measuring resistantieeaarray row/column terminals. This
count can be easily seen to be identical to the number ohdissineak-path-free arrays. However, the more refined
characterization of the sneak-path constraint pursued hkows obtaining superior storage information rates for
more general sneak-path problems motivated by memristaysrFor completeness and clarity we include in the
presentation results for the simple sneak-path model, twtém be implied by results in [13].

For the ability to extend sneak-path-free coding resultstwe general models, it is useful to represent the sneak-
path constraint by a new, more succinct constraint, whidatés shown to be equivalent. It turns out that the existence
of sneak paths of any length in a memristor array can be pgbrfeltaracterized by an abstract constraint, which we
call theisolated zero-rectangle constraint

Definition 7. A binary arrayA has anisolated zero rectanglaf there are four positive integeis # i, andj; # jo
such that

iy gy T Qi g T iy + Ay gy = 3.

That is, the value of exactly one out of the four cells in theaagle formed by these four positions is zero.

Note the similarity between Definition 7 and Definition 1 fdretspecial case of = 1. The difference is that
Definition 1 characterizes sneak paths affecting the paaticcell at location(i, j), while Definition 7 characterizes
the existence of sneak paths affectarg/cell in the array. An arrayl satisfies thésolated zero rectangle constraint

if it has no isolated zero rectangles and then it is calledsalated zero rectangle free array

According to the last definition, a "0” belongs to an isolateto rectangle if it is part of any rectangle in the
array, all of whose remaining vertices are "1"s. For examitie cell in the(4, 1) location in Fig. 1(b) belongs to an
isolated zero rectangle because it is part of a rectanglekédaby a dashed line) with three "1"s at locatiofis1),
(1,3) and (4, 3). There are no other isolated zero rectangles in the array.

Next we show that a memristor array is free of sneak paths pflemgth if and only if it has no isolated zero-
rectangles. Note that sneak paths may consist of any odd ewoflzells greater than one, not necessarily three as in
the rectangle case. However, this property tells us thaangtes, i.e. sneak paths of length three, provide a complet
characterization of the existence of sneak paths.

Theorem 8. The sneak path constraint and the isolated zero rectangétraint are equivalent.

Proof: We will show that an array has a sneak path if and only if it hadsalated zero rectangle. We show
only one direction as the other one is immediate.

Let us assume to the contrary that there exists an atrahich has a sneak path affecting thiej) cell and yet
it satisfies the isolated zero rectangle constraint. Fiog thata; ; = 0 and there is a path as defined in Definition 1
starting at thei-th row and ending at thg-th column. Assume the vertices of this path are the cellsoattipns
(i,¢1), (r1,¢1), (r1,¢2)5 - oy (P15 Ck), (r&, i), (ri, j) for somek > 1, and these array cells have value "1".

We will show by induction that for for alll < h < k, a,, ., = 1. This property holds fo. = 1 since the
(r1,c1) cell is part of the sneak path. Assume the claim is true foreson< h < k, that is,a,, ., = 1. We will
show thata,, ,, ., = 1 as well. Note that the vertices,cny1), ("1, cny1) belong to the sneak path and hence
Qrp cpner = Orpyyenn = 1. Therefore, in the rectangle formed by the vertices

(Thycha1)s (Thyc1), (That, erg1), (P, 1)

the first three cells have value one. Therefore, accordintpecassumption that there is no isolated zero rectangle
we conclude that,., ,, ., = 1.

From the last claim we get in particular that, ., = 1. Since the vertice§i, c1), (%,) belong to the sneak path,
we haves; ., = a,, ; = 1 and since the sneak path affects the cell at positiof) we also have:,; ; = 0. Therefore,
there exists a sneak-path with three céllsc;), (rx, 1), (rx, 7) in contradiction with the assumption that there are
no isolated zero rectangles. [|

From the isolated zero rectangle characterization it idigdphat for sneak paths to not exist in the array, the "1”
cell locations in any pair of rows (or columns) must haveeittull overlap or no overlap. For example, rows 2, 3 in
Fig. 1(b) have full overlap of "1"s, rows 2, 4 have no overldg’®’s, and thus no sneak paths exist between these
row pairs. However, rows 1, 4 have neither full-overlap noraverlap, and thus introduce a sneak path.

Lemma 9.An arrayA is an isolated zero rectangle free array if and only if thes’it’'every two rows either completely
overlap or are disjoint.

Proof: It is clear that the condition is sufficient. If "1"s either ropletely overlap or have no overlap between
every pair of rows, then every rectangle has eithér 2 or 4 "1"s.

To prove necessity, assume to the contrary that the conditi@s not hold. That is, there are two rows, sayittte
and j-th rows, such that the ones in these rows neither overlaparedisjoint. Assume without loss of generality
that there are more ones in thwh row and assume that there de> 2 ones in positiond, ..., ¢;. Since the ones
in the two rows are not disjoint, there 1s< k& < ¢; such thata; , = 1, and since they do not fully overlap, there is
1 < h <4, h#k such thata; , = 0. Thus, the rectangle formed by the vertigds, k), (¢, k), (4,k), (j, h)} is an
isolated-zero rectangle and so the arrhyloes not satisfy the isolated zero rectangle constraint. [|

Let N(m,n) be the number ofn x n arrays satisfying the isolated zero-rectangle constréintexact count of
N(m,n) (for an equivalent constraint) is derived in [13]. For th&esaf completeness, we provide a proof of the
result that uses the isolated zero rectangle constrainitaradharacterization in Lemma 9.

First, we denote by (k,) the number of distinct ways that a setloElements can be partitioned intamonempty
subsets, where it is known that

1 < 1 <&
_ - th = = —)k,
= g ()¢ = g (e
=0 t=0
This is known as the Stirling number of the second kind [15].

Lemma 10. The valueN (m,n) is expressed by

N(m,n) =1+ minié (”Z) <7;> mi“{mf”_” S(m —i,0)S(n — j,0)0.

1=0 j= =1

Proof: Assume A is an array which satisfies the isolated zero-rectangletng which is not the all zero
array. Assume thatl hasi zero rows andj zero columns wher® <i<m —1and0 < j <n — 1. There are(T)
options to choose these rows a(ﬂ) to choose the columns. After removing thesews and; columns we obtain
an(m —1i) x (n—j) array A’ with no zero rows or zero columns.

According to Lemma 9, the rows o’ can be partitioned into some< ¢ < m — ¢ sets such that the rows in
every set are identical. The number of distinct ways to pantithe m — i rows into¢ nonempty sets i$(m — ¢, ¢).
Note that if the rows are either identical or their "1” posits do not overlap then the same property holds for the
columns. Therefore, the columns can be partitioned intmnempty sets, where < ¢ < n — j and the number of
such options is similarly5(n — j, ¢). Finally, there are! options to match between tHesets of rows and sets of
columns, yielding the expression

m—1n—1 m n min{m—i,n—j}
S(M(1) X stm-iose-ion
im0 j—o N/ \J =1

for the number of possible arrays Together with the all zero array, we get the result statethénlemma. [|

The second, more compact, expression #fm,n) in [13] can similarly be obtained using the isolated zero
rectangle constraint.

Lemma 11.The valueN (m,n) can be expressed by

min{m,n}

N(m,n)= > Sm+1,0+1)Sn+1,0+1)L.
=0

Proof: The proof is very similar to the one given in Lemma 10. Thisdime add one more zero column and
one more zero row so the array sizgig+ 1) x (n+1). Assume thatd is an(m+1) x (n+ 1) array which satisfies
the isolated zero rectangle constraint and its last row ahgmn are all zeros. According to Lemma 9, the rows of
A can be partitioned into groups such that all the rows in egeoyp are identical. The columns are partitioned as
well into nonempty disjoint sets. Since the last row and tadtimn are all zeros there is definitely a set of columns
corresponding to a set of rows which are all zerod. dbrresponds to the number of sets of nonzero rows, then there
areS(n+1,¢+ 1) options to partition the columns ar{m + 1, ¢+ 1) options to partition the rows. Since the last
set of rows and the last set of columns correspond to the éastrow and last zero column we only need to match
between the sets of non-zero columns arfdsets of non-zero rows. Hence, we get that the number of sualsar
is given by

min{m,n}
> Sm+1,0+1)S(n, 0+ 1)L,
=0
[|

Unfortunately, the asymptotic behavior of the valNiém, n) for m andn large enough states thiaig, N (m,n) ~
(m+n)log,(m+n) in case bothn andn approach infinity and the ratia/n approaches some positive number [13].
Thus, under these conditions it is derived that

1Og2 N(mv n)

— 0, (8)
mn

which implies a0 asymptotic storage capacity. In fact, this behavior hotatsafl values ofr andn which approach
infinity (that is, the ratiom/n does not have to approach to a positive number). This inectitat the sneak path
constraint is too strong, and we need to find milder ways tadasneak paths without ending up with zero capacity.
This will be the topic of Section V.

IV. ENCODING OF SNEAK PATH FREE ARRAYS

Even though the asymptotic storage capacity of the snedk qatstraint approaches zero for and n large
enough, the encoding problem of such arrays is still imprtaor simplicity we assume in this section that m
and they are both large enough.

In [13], a low complexity and very efficient mapping was prasel, and the number of information bits that this
mapping can carry is logn (for simplicity it was assumed that is a power of two but that can be easily modified
for arbitrary n). However, according to the derivations in [13], the numbgits that can be represented by all
sneak-path free arrays is rougty logn. Thus, the mapping in [13] reaches approximately only a ¢iatifie number
of bits that could be stored.

We show here another mapping that even though has highedieigcand decoding complexities, can asymptotically
reach the maximum number of bits that can be represented®nilegn. To simplify the mapping presentation, we
dropped all floor and ceiling functions, so some of the vakresnot necessarily integers as required. This may incur
a small loss in the number of stored bits, however this loseedigible.

Let S; be the set of all partitions of the numbefs, ..., n} into L groups, each consisting df numbers.
Alternatively, we can treab; as the set of all multipermutations ovér numbers where each number appears
times. The size of5; is

n'

)

Assume for now that there is a one-to-one mapping with efftogcoding and decoding maps

51 = |Sl| =

Fy {0,185 5 G

between all binary vectors of lengthgs; and S;. Let Sy be the set of all permutations @ numbers, s, =
|S2] = LI, and similarly, assume that there is a mapping with effice@rtoding and decoding maps

FQ : {O, 1}10g32 — SQ.

Our approach follows the proof of Lemma 10, which uses thend anly if condition in Lemma 9. We encode
only arrays where the rows, columns are partitioned ihtsets ofn/L rows, columns, respectively. Thus, every
array is represented by: 1) a partition of the rows, thatnselement fromsS,, 2) a partition of the columns, again,
an element front;, and 3) a mapping between tliesets of rows and. sets of columns, i.e., an element frafy.
The encoding and decoding maps will be clear from the engpdimd decoding of the mappindg and Fs.

The number of bits that can be stored by this constructiofVis= log (s1 - s1 - s2) = 2logs; + logss. We
approximate this value while takinigg m! ~ mlog m for m large enough. Therefore,

n!

=2logn! —2Llog ((%)') —log (L)

~ 2nlogn — 2L - %bg (%) — Llog (L)

N = 2log sy —|—1og52—21og<)—i—log(L!)

= 2nlogn — 2nlog (%) — Llog (L) = (2n — L)log(L).

If we choosel = —2— we get

logn

n n
N =(2n- 1ogn)10g (logn) '

and forn large enough

o0 21 logn

Thus this mapping will be asymptotically optimal. We finailpte that the functiong; and I, have efficient
implementations. This can be done by different methodsierenumerations of permutations and multipermutations;
see for example [2] and chapter 5.1 in [7].

V. REPRESENTATIONS TRADING OFF SNEAK PATHS AND POWER CONSUMRaN

One way to eliminate memristor sneak paths without respttinany information-theoretic tools is by electrically
grounding all rows except the one being read [12]. The probdéth grounding all other rows is that it significantly
increases the power consumption of the read operation duewter equivalent resistance through which flows
the measurement current. Without information theoretalstothis suggests a tradeoff between power consumption
(from grounded rows) and read errors (from sneak pathsgriddtively, we propose to replace the power-correctness
tradeoff with a power-density one, by combining partialgrding with sneak-path constraint codes. The key idea is
to specify how many of the rows will be grounded in a read of@maand ensure that no sneak paths exist in the
part of the array remaining “active” in the non-grounded soBy doing that, we can control the power consumption
of the read operation while guaranteeing read accuracygeSinany of the cells will be deactivated in grounded
rows, maintaining sneak-path-free reads will be possitita good storage rates. There are several ways to obtain
sheak-path-free sub-arrays, each resulting in an integestformation-theoretic problem.

A. Grounding based upon fixed subsets

In this section we study the capacity assuming the array awslivided into disjoint subsets, and grounding alll
rows outside the subset of the read row. We will show that whersubset size is a constant, the capacity no longer
goes to zero as in the full array.

Assume the array size i& x n and letb be some positive integer which is a divisormaf Them rows are divided
into m /b disjoint subsets of consecutive rows. Then, any ofth® sub-arrays of sizé x n is required to satisfy
the isolated zero rectangle constraint. Since all theseastalys are disjoint and thus independent, we conclude that
the number of arrays will b&v(b,n)™/". Let us define the capacity of this constraint®y(b). Then, we get

Ci(b) = lim M: lim M'

m,n— o0 mn n—00 bn

We first prove lower and upper bound on the valueNgb, n).

Lemma 12.For anyb = o(n) andn large enough the following holds

b+ 1" =b"" < N(byn) < (b+1)!1S(n+1,b+1).

10

Proof: According to Lemma 11

n) =Y Sb+1,0+1)S(n+1,0+ 1)
£=0

> S(b+1,b+1)S(n+1,b+ 1)b!
SinceS(b+1,b+1) =1 and

b+1
b+1 n+1
Stn+1,b+1)= b+1|z < >b+1 i)

L o+ 1t — (b + 1)b"+1 b+ 1) =t
- (b+1)! B b! ’

we get

n _ pn+l
N(b,n) > Wb! — (b4 1) — L,
On the other hand, i6 = o(n) let us show that for. large enough the following holds for evety< ¢ < b

SO+1,+1)Sn+ 1,0+ 1) < S(n+ 1,0+ 1)d.
First note that

S(b+1,64+1)S(n+1,0+ 1)1

(é_’_ 1)b+1 ([_’_ 1)n+1 o= (f-i- 1)n+b
S+ 1) e+ o0
and we saw thas(n + 1,b+ 1) > L =" Now,
. . b + 1)
e R noo 01 (b + 1) — bn)

bl(l 4 1)ntP
< lim ——— 2
oo (b4 L)n — bt
_bl(e+ 1t (b+1)"
= 1 N 1 .
noo (b4 1)" mooo (b+ 1)m — bl
Let us evaluate every term independently under the assamgtatb = o(n)

i (b+1)" . 1
m - ———— = llm ——
n—oo (b+1)" — bl nooo g (b%)
. 1
m RN
1—b- <(1 - b-l—_l))
1
T T e
Similarly,
1 n+b 1 n+b
lim (e+1) lim (+1)
£+ 1)t (+1\""
<1 (+) b2b: lim L b2b
n—r00 (b =+ 1)n7b n—o00 “+

11

Therefore, we get that fot large enough
b
N(b,n) =Y Sb+1,+1)S(n,(+ 1)L!
=0
<O+1)Sn+1,b+1)0 =B+ DIS(n+1,b+1).

|
Now we are ready to calculate the capadity(d) for fixed values ofb.
Lemma 13. For any fixed, C,(b) = w.
Proof: According to Lemma 12
1 b+1)" —pntt
i 108V (b))) log (0+1))
n—r00 n n—o0 bn
tog (b+1)" (1-0(5%) "))
= lim
n—00 bn
b n
log(b+ 1) . log (1 —b (b+_1)) log(b+ 1)
=——"+ lim = .
b n—00 bn b
To prove the opposite inequality, again by Lemma 12 we get
!
lim log(N(b,n)) < lim log((b+ D!S(n+1,b+4 1))
n—o00 bn n—o0 bn
n+1
< lim log((b+ 1)) _ log(b + 1).
n—o00 bn b
[]

Finally, we note that very similarly the following propertylds forb = o(n),

. Ci(b) _
p o Teglry
b= o(n) b

B. Grounding sets based upon the read row

In this section we study the capacity assuming all rows aceirgited outside a subset of rows which depends
upon the read row. In particular, we study the case whereowlt routside a subset of odd sizenteredat the read
row are grounded. It turns out that a sufficient (but not nemeg condition to have a sneak-path free array in this
case is that each column satisfies some run-length limitéd)(|B3] constraint, which depends on the number of
ungrounded rows.

Under this model, we say that there ishaentered-path, whereb is odd, affecting the cell in positiofy, j) if
a;,; = 0 and there is a path as defined in Definition 1 which can be cahfieeween the(i — >>1)-th row and

the (i + 51)-th row. That is, for some: > 1, there exist2k positive integeranax{i — 25,1} < ry,...,r; <
min{i + %,m}, 1<ei,...,cr < nsuch that
Qi,cr = Qryer = Qryep = 0 = Qry_y,c = Qe = Qryj = L.

Thus, we say that an array satisfies theentered-path constraint if it has nob-centered-paths.

For any oddb > 1, we denote byN,(m,n;b) the number of arrays that satisfy theentered-path constraint and

we denote the capacity of this constraint ®y(b), so
log (V. ;b
o) =l JEN2lmnib)
m,n—oo mn

Furthermore, we say that an array has$-&olated zero rectangle if there are four positive integerg # io,
J1 # Jjo, and|iz — 41| < b — 1, such thata;, ;, + ai, j, + @i, j, + a4, j, = 3. An array A satisfies theb-isolated
zero rectangle constraint if it has nob-isolated zero rectangles and then it is callebtigolated zero rectangle free
array. Theb-isolated zero rectangle constraint is the same as theésbiero rectangle constraint from Definition 7
when applied to sub-arrays of with b rows.

12

It is a matter of simple observation to get to the followingrespondence between the centered path constraint
and the isolated zero rectangle constraint:

Lemma 14. Theb-centered-path constraint and #ﬂ? -isolated zero rectangle constraint are equivalent.

To proceed, let us recall the one-dimensional RLL constiraWe say that a binary sequence satisfies (the)
RLL constraint if the number of zeros between every two couee ones is at least and at mosk. The capacity
of the one dimensiondll, k) RLL constraint is denoted b{Z, ;. Next, we show that the capacity of tl@é;—l, 00)
RLL constraint is a lower bound 082 (b).

Lemma 15.For any odd, Cy(b) > (C%m.
Proof: This result follows from the observation that if every colusatisfies thé2>2, co) RLL constraint then

necessarily there are no pairs of ones in the same columrstainde less thaﬁg—1 rows. In particular, there is no

rectangle confined té;—l rows with an isolated zero. |

The reverse inequality ofi;(b) is proved in the next lemma.

Lemma 16.For any odd, Cy(b) < C%,oo-
Proof: Let B,, ,, be the number ofn x n arrays where every column satisfies (Iﬁgl, o0) RLL constraint. Let

A be ab-centered-path-free array. According to Lemma A4is a (HTl)-isolated zero-rectangle free array. Thus, as

in the proof of Lemma 9, in ever%‘—1 consecutive rows ofl, every two rows are either the same or their ones are

located at disjoint locations.

For a positive integer divisod of m, we define a mappindy : {0, 1}"*" — {0,1}™*", which transforms an
array A to Fy(A) as follows. Starting with the first rows of A, if there are identical rows among thedeows,
then the first row remains the same and the subsequent idertvwes are replaced with all-zero rows. Then the same
operation is performed on the new array with the next winddéw cows, between the second atd+ 1)-th row,
and so on until reaching the last window consisting of thé dasows.

Let A’ be the array resulting under this mapping with= b’;—l on the arrayA, that isA’ = Fb%] (A). The array
A’ holds the property that every column satisfies (th?l, o0) RLL constraint.

We note that this mapping is many to one, as there can be $éveemtered-path-free arrays which will be
mapped to the same array. Given an arrayd’ we can bound the number of arraylsthat are mapped to it.
Assuming the arrayl’ hasx zero rows, then each row can be identical to any of%ﬂe rows above it, or originally
all-zero. Since there am rows in the array, we can use a loose upper bound here (whithevsufficient for our
goal), and say that at most™ arrays will be mapped to the array/. Therefore, we get the following relation

Ny(m,n;b) <m™ - By, p.
Now we conclude that

log Na(m,n;b) log(m™ - Bpmn)

Ca(b) = lim < lim
m,n— oo mn m,n—o0 mn
) mlogm + log B, »

= lim

m,n— 00 mn

log Bm,n

= lim L = (CE 00"

m,n— 00 mn 2

|
From Lemma 15 and Lemma 16, we get that
Ca(b) = Cos

It turns out that the symmetric grounding set method is betten the one based upon fixed subsets. In other
words, we can prove the inequalif, (b) > C4(b).
Theorem 17.For all odd values ob, the following holds
Ca(b) = C1(b).

13

Proof: We need to show thae—. > 1°g(b+1) for odd values ofh. For b < 250 we numerically calculated
the values ofC,(b) and C2(b) to verlfy this mequallty Fom > 250, we use a property from Problem 3.3 in [10]
claiming that for every positive integen, C%,oo > loglmtl) particular, we choose: = |(b+ 2)/4| and get

b21+
h
et G > B0+ D/ 1) log(l(0+2)/4) + 1)
oo 2 Bd (b 2)/4) 3b/4 '

Thus, it is enough to show that
log([(b+2)/4] +1) > (3/4) - (log(b+ 1),
or
(b+2)/4> (b+1)%4

which holds forb > 250. [|

To conclude, we compare between the numerical values of dpacities of the two approaches we introduced
here forb < 11.

[b [Cath) == [Co(0) =Cor |
2 0.792 -
3 0.667 0.694
4 0.580 -
5 0.517 0.551
6 0.468 -
7 0.423 0.465
8 0.396 -
9 0.369 0.406
10 0.346 -
11 0.326 0.362

V1. CONCLUSION

This work offers a detailed study of the memristor sneakyaibblem through an information theoretic lens. The
electric interference due to sneak paths was formulatedring of abstract terms likehanne] constraint capacity
etc. This abstract view allows future work to construct newdes, and extend the results to additional sneak-path
models motivated by real memristor devices.

VIlI. ACKNOWLEDGMENTS

The authors thank Ron M. Roth for pointing reference [13]Hheirt attention, and an anonymous reviewer who
found a flaw in the original proof of Lemma 16.

REFERENCES

[1] Y. Cassuto, S. Kvatinsky, and E. Yaakobi. Sneak-pathstramts in memristor crossbar arrays. |EEE International Symposium on
Information Theory ISIT 2013.
[2] T.M.Cover, “Enumerative source encodind2EE Trans. Inf. Theoryvol. 19, no. 1, pp. 73-77, January 1973.
[3] K.S. Immink. Coding techniques for digital recorder$rentice-Hall, College Div., 1991.
[4] C.-M. Jung, J.-M. Choi, and K.-S. Min, “Two-step write lmme for reducing sneak-path leakage in complementary istemarray,”
Nanotechnology, IEEE Transactions,oml. 11, pp. 611-618, May 2012.
[5] S. Kannan, J. Rajendran, R. Karri, and O. Sinanoglu, &&rmath testing of memristor-based memories,VibS| Design and 2013 12th
International Conference on Embedded Systems (VLSIDg 261h International Conference ppp. 386-391, Jan 2013.
[6] K.-W. Kim, S. Gaba, D. Wheeler, J. Cruz-Albrecht, H. TatN. Srinivasa, and W. Lu, “A functional hybrid memristoossbar-array/CMOS
system for data storage and neuromorphic applicatiddario Lettersvol. 12, no. 1, pp. 389-395, 2012.
[7] D.E.Knuth, The Art of Computer Programming, Volume 3: Sorting and Seag; Addison-Wesley, 1998.
[8] J. Liang and H.-S. Wong, “Cross-point memory array withoell selectors — device characteristics and data stquagiern dependencies,”
Electron Devices, |IEEE Transactions,orol. 57, pp. 2531-2538, Oct 2010.
[9] E. Ordentlich and R.M. Roth. Low complexity two-dimeasal weight-constrained codedEEE Transactions on Information Theory
58(6):3892—-3899, 2012.
[10] R.M. Roth, Coding for Storage System3echnion Lecture Notes.
[11] J. Shin, I. Kim, K. Biju, M. Jo, J. Park, J. Lee, S. Jung, Mge, S. Kim, S. Park, and H. Hwang, “Tio2-based metal-instmetal selection
device for bipolar resistive random access memory crosg-pgplication,” Journal of Applied Physi¢svol. 109, no. 3, 2011.
[12] S. Shin, K. Kim, and S. Kang. Analysis of passive menwéstdevices array: data-dependent statistical model alfehdeptable sense
resistance for RRAMsProceedings of the IEEEL00(6):2021-2032, 2012.

P.P. Satiriadis, “Information capacity of nanowireossbar switching networksfEEE Transactions on Information Theoryol.52, no. 7,
pp. 3019-3032, July 2006.

D. Strukov, G. Snider, D. Stewart, and R.S. Williamsh&'missing memristor foundNature vol.,453, pp. 80-83, May 2008.

J. van Lint and R. WilsonA Course in Combinatorics, second editionCambridge UK: Cambridge University Press, 2001.

P.O. Vontobel, W. Robinett, P.J. Kuekes, D.R. StewdrBtraznicky, and R.S. Williams, “Writing to and readingrfr a nano-scale crossbar
memory based on memristor$yanotechnologyvol. 20, October 2009.

J. Yang, M.-X. Zhang, M. Pickett, F. Miao, J. Strachan-BV Li, W. Yi, D. Ohlberg, B. Choi, W. Wu, J. Nickel, G. Medeis-Ribeiro, and
R.S. Williams, “Engineering nonlinearity into memristdms passive crossbar applicationg\pplied Physics Letterssol. 100, no. 11, 2012.
M. Zidan, H. H. Fahmy, M. Hussain, and K. Salama, “Mermishased memory: The sneak paths problem and solutibfisfoelectronics
Journal vol. 44, no. 2, pp. 176 — 183, 2013.

	a.pdf
	IRWIN AND JOAN JACOBS

