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On-Line Fountain Codes with Low Overhead
Yuval Cassuto,Member, IEEE,and Amin Shokrollahi,Fellow, IEEE

Abstract

An on-line fountain code is defined as a fountain code for which an optimal encoding strategy can be found efficiently given
any instantaneous decoding state. This property is important for data distribution in practical networks. In this paper we formalize
the problem of on-line fountain code construction, and propose new on-line fountain codes that outperform known ones inhaving
factor 3-5 lower redundancy overhead. The bounding of the code overhead is carried out using analysis of the dynamics of
random-graph processes.

Index Terms

Fountain codes, rateless codes, on-line codes, codes with feedback, random graphs.

I. I NTRODUCTION

Fountain coding was proposed [3] for efficient distributionof data in lossy networks, with the goal to allow information
transmission that is oblivious to losses of individual packets. Fountain codes that meet this goal with negligible overhead were
found [10], and later improved in complexity [11]. These works, and others that followed, specify methods to encode (and
decode) data blocks at the sender (and receiver) nodes, and prove upper bounds on the average overhead in the case of random
losses.

Low overhead is clearly an important code-design objective, but some applications may find it insufficient on its own, with
system performance being dominated by other properties of the code. The long code blocks and fixed pre-defined encoding
procedures of the aforementioned fountain codes result in high decoding latency, and no way for the receivers to controlor
even monitor the progress of the data reception. In addition, packet losses in the network may not be all random, further
exacerbating the risks of a long batch transmission designed for pure-random losses. A practical fountain code should thus
balance low redundancy overhead with anon-line ability to adapt the code to instantaneous network conditions.

In the framework developed in this paper, a fountain code is calledon-line if given an arbitrary decoding state at the receiver,
the optimal encoding strategy at the sender can be found efficiently. This is a much stronger property than conventional
fountain codes, which only guarantee optimality for the initial state of decoding. The importance of the on-line property is
that it guarantees optimal performance even at states that differ significantly from the expected under random losses, e.g.
due to an adversary or extremely unfortunate circumstances. As it turns out, there are known fountain codes with the on-line
property such asgrowth codes[8] and real-time oblivious codes[2], (see also [5]). However, these codes suffer from very
high redundancy overheads.

The codes proposed here attain the on-line property with significantly lower overhead, between factor3 and factor5 lower
compared to the previously known codes [8],[2]. This significant improvement is achieved by representing the decoding state
as auni-partite graph, and using the graph structure to efficiently find the optimal coding strategy at the current state. The
simple graph representation also allows to analyze the coding overhead, building on fundamental results from random-graph
theory [6]. The contributions of the paper include the first formalization of the on-line property for fountain codes (Section II),
the development of the uni-partite view of fountain codes (Section III), an on-line fountain code construction using anefficient
algorithm to find the optimal coding strategy (Section IV), and bounding the overhead of a simplified construction by analyzing
the dynamics of random graphs (Section V).

There are many potential applications for on-line fountaincodes. One is data distribution in the presence of intermittent
adversaries, which bring receivers to arbitrarily bad decoding states and then leave them to recover. Another important
application is for distributed storage, where code symbolsare distributed among multiple nodes, and the on-line property
gives sufficient transparency to control the long-term recoverability of the data given an instantaneous node-failurestate.

II. ON-L INE FOUNTAIN CODES

Block rateless fountain codes, such as LT [10] and Raptor [11] codes, are designed forbatchtransmission of coded symbols.
These codes aim at minimizing the number of coded symbols required to successfully decode the entire code block with high
probability. Given a current state of code symbols already received at a receiver node, batch fountain codes do not address the
minimization of code-symbol transmissions until completedecoding. It has been recognized in prior work that not considering
the current state of already received symbols results in sub-optimal performance in many practical scenarios. Severalworks
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have proposed adaptations to batch fountain codes, mostly LT codes, that do consider the current decoding state for the choice
of subsequent code symbols to transmit. A partial list of such coding schemes includes [9], [7], [12]. The outcome of these
schemes is that faster decoding can be achieved by feeding decoding-state information from the receiver back to the transmitter.
In this paper we make another step in this direction and look for coding schemes for which theprovably optimalcoding strategy
can be found given an arbitrary decoding state. The ability to efficiently find the optimal coding strategy given the current state
is very important in practical applications, since it guarantees fast decoding at any point of time without any assumption on
the past behavior of the encoder and channel. Fountain codeswith known optimal coding strategies given the current decoding
state are called hereinon-line fountain codes. No matter how unusual or unfortunate previous encodings and transmissions
have been, from the current state onward on-line fountain codes guarantee optimal performance. This property is maintained
even if the code-symbol losses till this point are maliciously set by an adversary. Before giving a formal definition of the
on-line property, we make the termsfountain codeandcoding strategymore precise.

Definition 1. A fountain codehas a block ofk input symbols, an encoder and a decoder. The encoder generates code symbols
by taking eXclusive-OR (XOR) operations on subsets of inputsymbols. The decoder processes the received code symbols and
outputs thek input symbols.

Definition 2. A coding strategyof a fountain code is a set of specifications according to which the encoder chooses the subsets
of input symbols to XOR for generation of code symbols.

A coding strategy is selected from a pre-defined universe of permissible strategies. For example, in fountain coding schemes
it is common to only consideruniform coding strategies, which allow to vary the degree (number ofoperands) of the XOR
operations, but require to select the XOR operands uniformly from thek input symbols. The reasoning behind only considering
uniform fountain codes is that non-uniform codes require encoders that are much more complex in optimizing their outputs,
and much more informed about the decoding states of the receivers.

Definition 3. A fountain code is calledon-line if given an arbitrary decoding state at the receiver, it can find the optimal coding
strategy efficiently.

It is important to emphasize that the coding strategy at the encoder is matched to the decoder of the fountain code. Hence
optimality of the coding strategy is established for the particular decoder used by the fountain code.

A fountain code with the on-line property was proposed by Kamra et. al in [8] (called growth code), and independently by
Beimel et. al in [2] (called real-time oblivious code). In this code, with each received code symbol the decoder attemptsto
decode an input symbol not previously known to it, and discards the code symbol if this attempt fails. For this decoder, the
optimal degree for a code symbol drawn by the encoder is the one that maximizes the probability that a new input symbol
will become known following the receipt of the code symbol. This optimal degree was given in [8] and [2] as a function of
the current number of decoded symbols at the receiver. Knowing the optimal degree immediately defines the optimal coding
strategy at the sender as using this optimal degree in subsequent generations of code symbols. Since this optimal strategy is
known for any decoding state (number of decoded symbols), this fountain code has the on-line property. However, in this code
the on-line property comes with a prohibitive cost in redundancy. In [2] a redundancy of 100% is suggested, i.e.,2k received
code symbols are needed to decode thek input symbols with high probability. It is possible to provethat the redundancy of
this code is lower bounded byln 2 ≈ 0.69. This is shown in Section V-C where we compare this known codeto an improved
code that achieves the on-line property with a much more reasonable cost of redundancy.

III. F OUNTAIN CODES ONUNI-PARTITE GRAPHS

To obtain on-line fountain codes with lower redundancy thanbest known codes, we now define a simple graph structure on
which fountain codes can be made on-line with lower redundancy. The canonical representation of fountain codes throughout
the literature is as bi-partite graphs. Nodes of one type,input nodes, represent thek input information symbols; nodes of
another type,code nodes, represent the code symbols. An edge between an input nodexi and a code nodeyj marks that input
symbolxi is one of the summands1 of code symbolyj. For example, Figure 1 depicts the following code symbols

y1=x1+x2, y2=x2+x3, y3=x1+x3, y4=x4+x5, y5=x6.

When all of the degrees of code nodes are2 or less, the code can be equivalently represented by a uni-partite graph. For
the example above, the corresponding uni-partite graph is given in Figure 2. In the uni-partite graph, two nodes are connected
with an edge if there is a code symbol that is the sum of the corresponding two input symbols. A node is colored black if
it is known to the decoder (and white otherwise). There are noedges incident on black nodes. In the example, symbolx6 is
black thanks to the code symboly5 = x6.

Definition 4. A (uni-partite)decoding graphis a representation of a collection of code symbols comprising
1) A code symbolxi for every black nodei.

1For convenience we regard the XOR operations as additions modulo 2.
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y1 y2 y3 y4 y5

Figure 1. A fountain code as a bi-partite graph. Code symbols (square nodes) are XORs of input symbols (circle nodes).
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Figure 2. A fountain code as a uni-partite graph.

2) A code symbolxi + xj for every edge(i, j).

The advantage of the uni-partite view of a fountain code is that it can carry the full state of code symbols with degree up
to 2, over a simple structure that allows finding the optimal coding strategy using graph-theoretic notions. Note that the fact
that the decoding graph at thereceiveronly represents degree-2 code symbols does not mean that the thesenderis restricted
to using exclusively degree-2 code symbols.

A. Implicit edges and the the connected-component enumerator

In addition to edges representing explicit code symbols received from the channel, edges can be added between every pair
of nodes that isconnectedin the graph. These edges can be derived by summing all code symbols along a connecting path,
canceling out all intermediate input symbols on the path. For example, the explicit edge betweenx1 andx3 in Figure 2 is
redundant, since it could have been obtained by summing up the symbols(x1 +x2)+ (x2 +x3). Thus from the perspective of
the receiver, the state of decoding is fully described by theconnected componentsin the decoding graph and the set of black
nodes. (A connected component in a graph is a set of vertices,all of which are connected by paths of edges, and none of
which is connected to any vertex outside the component.). The remainder of the section is devoted to setting up notation for
characterizing the decoding state through the decoding graph’s connected components. This notation will be used in thenext
sections to define and analyze coding strategies for on-linefountain codes.

Suppose the decoding graph at a given instant hasA black nodes andAi connected components of sizei, wherei ranges
from 1 to the maximal component size (6 k). Then the decoding state can be represented by thecomponent enumerator
polynomial, given by

A(x) = A+
k
∑

i=1

Aix
i.

The total number of components is

#components =

k
∑

i=1

Ai = A(1)−A. (1)

Since the connected components partition the graph nodes that are not black,

A′(1) =

k
∑

i=1

iAi = k −A. (2)

The average component size in the graph can thus be calculated as

L =
k −A

#components
=

k −A

A(1)−A
=

A′(1)

A(1)−A(0)
.

There is a clear correspondence between the structure of thedecoding graph and the dimension of the linear subspace
spanned by the received code symbols.

Proposition 1.LetG ⊂ {0, 1}k be the linear subspace spanned by the code symbols of a decoding graphG. The dimension ofG
is given by

dim(G) = k −#components(G).
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Proof: Each black node inG contributes one independent vector to the span of the code symbols. In addition, each connected
component of sizei contributes to the spani− 1 independent vectors. Anyi− 1 edges of a spanning tree for the component
can give thei − 1 independent degree-2 vectors. Summing the contributions of black and white nodes, we get

dim(G) = A+

k
∑

i=1

(i − 1)Ai = A+

k
∑

i=1

iAi −
k
∑

i=1

Ai = k −#components,

where the last equality follows from the second equality of (2) and the first equality of (1).
Proposition 1 implies that increasing the dimension of the code symbols’ span at the decoder is equivalent to eliminating a
connected component from the decoding graph. This feature will be the key for finding the optimal coding strategy in the
on-line fountain code presented in the next section.

After defining the component-enumerator polynomial and detailing some of its properties, we turn to endow it with an
operator that will become useful later.

Definition 5. Given a component-enumerator polynomialA(x), letA↓t(x) be the polynomial with coefficients specified as

A↓t
i =

{

max(At − 1, 0) i = t

Ai otherwise

thusA↓t(x) has all of its coefficients identical toA(x), except for the coefficientAt which is decreased by one, if not already
zero.

IV. A N ON-L INE FOUNTAIN CODE CONSTRUCTION

The on-line fountain code proposed in this section follows from the simple observation that if a code symbol corresponds
to an edge added between a black node and a white node in the decoding graph, then all the nodes in the white node’s
connected component will be colored in black. For example, in Figure 2 a symbolx4 + x6 would decodex4 andx5, both in
the component ofx4. First x4 is recovered by subtracting the knownx6 from x4 + x6, and thenx5 is found by subtracting
x4 from x4 + x5. Another important simple observation is that if a code symbol corresponds to an edge added between two
white nodes, then the connected components of the two nodes (if not already in the same component) are merged to a single
component.

In our on-line fountain code, the coding strategy will seek to maximize the probability of either coloring a component in
black, or merging two distinct components. Both options eliminate a connected component in the graph, and by Proposition 1
either will increase by one the dimension spanned by the codesymbols. We refer to such increase in dimension asdecoding
progress. Hence given a current decoding state presented as a decoding graphG, decoding progress is achieved if a newly
received code symbol results in either of the following two outcomes

1) An edge coloring a component in black.
2) An edge connecting two distinct components.

All other cases either provide redundant information (symbol sums already known to the receiver), or cannot be handled by
the uni-partite scheme (sum relations involving more than two components). We thus seek to maximize the probability that
one of the events 1 and 2 occurs, given the instantaneous decoding state. A more concrete (but equivalent) definition of events
1 and 2, respectively, is
Case 1A received code symbol sums an odd number of input symbols from a single component, with other components
contributing even numbers of input symbols, in addition to any number (even or odd) of black symbols.
Case 2A received code symbol sums odd numbers of input symbols fromtwo components, with other components contributing
even numbers of input symbols, in addition to any number (even or odd) of black symbols.
Case 1 and Case 2 result in 1 and 2 above, respectively, because the sum of an even number of summands from the same
component is known at the decoder, and can be canceled; also known is the sum of any number (even or odd) of black symbols.

Denote byP1(m,A) andP2(m,A) the probabilities that a uniformly selected degree-m code symbol results in a Case 1
and Case 2 event, respectively. The argumentA is the component enumerator polynomial of the graphG at the receiver. Then
we can define our on-line fountain code as follows.

Construction 1. The code is defined on a block ofk input symbols.
Decoder:

1) Initialize the decoding graph as a graph withk white nodes and no edges.
2) If a received code symbol falls under Case 1 or Case 2, update the decoding graph. Otherwise discard the code symbol.

Encoder:
Given the current decoding state presented as a graph with component enumerator polynomialA, the coding strategy is set to
drawing uniformly at random code symbols with degreem̂, where

m̂ = argmaxm [P1(m,A) + P2(m,A)] . (3)
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To show that Construction 1 defines an on-line fountain code,we need to prove that the coding strategy given in (3) is optimal.

Proposition 2. Let G ⊂ {0, 1}k be the linear subspace spanned by the code symbols of the current decoding graphG with
component enumeratorA. Let v ∈ {0, 1}k be the next code symbol drawn by the encoder, andG′ ⊂ {0, 1}k the linear subspace
spanned by the code symbols afterv is processed by the decoder. Then the expected dimension ofG′ is maximized ifv is drawn
according to the coding strategy of(3).

Proof: If v falls under Case 1 or Case 2, then exactly one connected component is eliminated from the decoding graph. In
Case 1 a component turns black, and in Case 2 two components are merged to one. According to Proposition 1, eliminating a
component amounts to increasing the dimension by one. If neither of Case 1 or Case 2 applies tov, then there is no change
in the connected components, and the dimension ofG′ remains the same as the dimension ofG. So overall, for degreem
code symbols we have

E [dim(G′)] = dim(G) + 1 · [P1(m,A) + P2(m,A)] + 0 · [1− P1(m,A) − P2(m,A)].

And clearly maximizing the expectation is achieved by maximizing P1(m,A) + P2(m,A) over allm.
To calculate the decoding-progress probabilitiesP1(m,A) andP2(m,A), we need to count the number of degree-m code
symbols that result in Case 1 and Case 2 symbols, respectively.

Given a component enumerator polynomialA(x), let N1(m,A) denote the number of degree-m code symbols that color
a component in black (Case 1), and letN2(m,A) similarly denote the number of degree-m code symbols that connect two
distinct components (Case 2). Assuming the degree-m code symbol is drawn uniformly at random, we have the relations

Pl(m,A) =
Nl(m,A)
(

k
m

) , for l∈{1, 2}. (4)

A. Exact calculation ofP1

We start off with counting Case 1 combinations. We establisha recursive formula for this count in a theorem following a
series of lemmas. The following definitions will turn out useful.

Definition 6. Denote byOEs(j,A) the number of combinations ofj symbols that have an odd number of symbols in one
component, and even numbers (including zero) of symbols in all other components, given a component enumeratorA(x).

The symbolOEs chosen for Definition 6 stands forOdd-Evens.

Definition 7. Denote byEs(j,A) the number of combinations ofj symbols that have even numbers (including zero) of symbols
in all components, given a component enumeratorA(x).

The symbolEs chosen for Definition 7 stands forEvens. The first lemma ties the functionOEs from Definition 6 with Es

from Definition 7.

Lemma 3.LetA(x) be a component enumerator polynomial, andj an integer satisfyingj 6 k. Then

OEs(j,A) =

j
∑

i=1

i odd

k
∑

t=i

At

(

t

i

)

Es(j − i,A↓t). (5)

Proof: i in the outer sum is the number of input symbols in the component that contains an odd number of input symbols
in the degree-j code symbol;t in the inner sum is the size of this component. The functionEs is invoked on the remaining
j − i input symbols and on the polynomialA↓t, to exclude the component chosen to have an odd number of symbols. The
multiplicative coefficient ofEs is the number of size-t components in the graph, times the number ofi-subsets of the size-t
component.
The next lemma gives a recursive formula forEs. CountingEs is established by successively choosing a connected component
with an even non-zero number of symbols, then removing this component from the enumerator and continuing recursively.

Lemma 4. Let A(x) be a component enumerator polynomial, andj an integer satisfyingj 6 k. Define a3-argument function
Es(j,A, d) with the following relation to the original functionEs(j,A)

Es(j,A, 1) , Es(j,A).

ThenEs(j,A) can be calculated by invoking the following recursive formula with d = 1:
for j > 0

Es(j,A, d) =
1

d

j
∑

i=2

i even

k
∑

t=i

At

(

t

i

)

Es(j − i,A↓t, d+ 1). (6)
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for j = 0
Es(0,A, d) = 1 .

Proof: Let us first naı̈vely apply a recursion similar to (5) toward the count ofEs(j,A). Since correction will be needed,
we useẼs(j,A) in the formula.

Ẽs(j,A) =

j
∑

i=2

i even

k
∑

t=i

At

(

t

i

)

Ẽs(j − i,A↓t). (7)

The result of the recursion in (7) is that each combination ofj symbols falling intor components, with non-zero even numbers
of symbols in each, is countedr! times. This is because anr-component combination is multiply-counted in every orderof
successive selection among ther components. So to get a correct count, we need to divide byr! the number of combinations
with r components, for each possibler.
This correction is achieved by the1/d factor adjoined to (6), such that anr-component combination count is successively
normalized by1

1 · 1
2 · . . . · 1

r
= 1

r! .
After showing exact recursive counts ofOEs(j,A) andEs(j,A) in Lemmas 3 and 4, respectively, we turn to show how to use
these counts to calculate the progress probabilityP1(m,A).

Theorem 5.Let A(x) be a component enumerator polynomial, andm an integer satisfyingm 6 k. Then the number of Case 1
degree-m code symbols can be counted exactly, and is given by

N1(m,A) =

m−1
∑

s=0

(

A

s

)

OEs(A,m− s).

Proof: By definition of Case 1, any numbers of black symbols can be included in the code symbol, and the requirement on
the remaining symbols is exactly as stated in the definition of OEs (Definition 6). Hence we sum over alls, take all possible
size-s subsets as black symbols, and applyOEs to the remainingm− s symbols.
Now that we established the count ofN1(m,A), we can obtainP1(m,A) using (4).

B. Exact calculation ofP2

Moving to count Case 2 combinations, we define another usefulcombinatorial function.

Definition 8. Denote byOOEs(j,A) the number of combinations ofj symbols that have odd numbers of symbols in two
components, and even numbers (including zero) of symbols inall other components, given a component enumeratorA(x).

The symbolOOEs stands forOdd-Odd-Evens. A recursive count forOOEs(j,A) is given in the next lemma.

Lemma 6.LetA(x) be a component enumerator polynomial, andj an integer satisfyingj 6 k. Then

OOEs(j,A) =
1

2

j
∑

i=1

i odd

k
∑

t=i

At

(

t

i

)

OEs(j − i,A↓t). (8)

Proof: i in the outer sum is the number of input symbols in thefirst (out of the two) component that contains an odd number
of input symbols in the degree-j code symbol;t in the inner sum is the size of this component. After choosingone component
with odd number of symbols, the remaining symbols need to divide to an odd number in one component, and even numbers in
all the rest. Hence the functionOEs(j,A) from (5) can be used. The1/2 factor cancels the double count of each combination:
there are two components with odd numbers of symbols, and identical combinations are obtained by reversing the selection
order of these components.

Now we reach a theorem similar to Theorem 5, this time forN2(m,A).

Theorem 7.Let A(x) be a component enumerator polynomial, andm an integer satisfyingm 6 k. Then the number of Case 2
degree-m code symbols can be counted exactly, and is given by

N2(m,A) =
m−1
∑

s=0

(

A

s

)

OOEs(A,m− s).

Proof: The proof is essentially the same as in Theorem 5.s, as before, is the number of black symbols in the degree-m code
symbol. After choosing thes black symbols, the requirement on the remaining symbols is exactly as stated in the definition
of OOEs (Definition 8).
Now that we established the count ofN2(m,A), we can obtainP2(m,A) using (4).

The outcome of the exact calculations ofP1(m,A) andP2(m,A) through Theorems 5 and 7 is that we can efficiently
implement the optimal on-line encoder specified in (3).
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C. Example of optimal on-line encoding

The following (small) example serves to demonstrate how degrees are optimally chosen given the current decoding state.

Example 1.Suppose the current decoding state of a certain receiver is given by the component enumerator polynomialA(x) =
2+x2+x4. In other words, out of thek = 8 input symbols,2 are already decoded (black), and the remaining6 are divided to one
component of size2 and one of size4. For each possible degreem∈{1, . . . , k}, the receiver computes the probabilitiesP1(m,A),
P2(m,A), and the sum thereof. These values are given in TableI. The outcome of these calculations is that the optimal degree

m 1 2 3 4 5 6 7 8
P1 0.75 0.428 0.464 0.571 0.464 0.428 0.75 0
P2 0 0.286 0.286 0.229 0.286 0.286 0 0

P1+P2 0.75 0.714 0.75 0.8 0.75 0.714 0.75 0

TABLE I

DECODING-PROGRESS PROBABILITIES FOR DIFFERENT DEGREESm

for the current state iŝm = 4, which givesP1 +P2 = 0.8 (bold in TableI). To see how this value is obtained, we countN1(4,A)
andN2(4,A). To get an odd number of symbols in one component (Case 1) form = 4, we have the following possibilities:1
black and3 in the size-4 component,1 black,2 in the size-2 component and1 in the size-4 component, or1 black,2 in the size-4
component and1 in the size-2 component. These amount to2 · 4 = 8, 2 · 1 · 4 = 8 and2 · 6 · 2 = 24, respectively. Hence
N1(4,A) = 40. To get an odd number of symbols in two components (Case 2), wehave the following possibilities:3 in the size-4
component and1 in the size-2 component, or2 blacks,1 in the size-2 component and1 in the size-4 component. These amount to
4 · 2 = 8, and1 · 2 · 4 = 8, respectively. HenceN2(4,A) = 16. Since

(

k
4

)

= 70, we get

P1(4,A)+P2(4,A) =
N1(4,A)+N2(4,A)

(

k
4

) =
40+16

70
= 0.8.

V. A SIMPLIFIED ON-L INE FOUNTAIN CODE

In the previous section, an on-line fountain code was given where the receiving clients can efficiently calculate the optimal
degree at any stage of decoding. In this section, we leave theregime of strictly optimal degree choices, and consider a
simplified on-line fountain code that is simpler both for implementation and for analysis. With the simplified code, it isshown
that a simpler criterion than maximizingP1(m,A) + P2(m,A) precisely can with high probability give the optimal encoding
degrees at intermediate decoding stages. The main result pertaining to the simplified code is an upper bound on the redundancy
overhead, which is shown to be much lower than known on-line fountain codes.

A. Specification

In the simplified scheme, the encoding is first coarsely divided to two phases calledbuild-up and completion. In the
build-up phase the degree is set to constant2, and in the completion phase the client uses a simplified instantaneous-degree
optimization, which only depends upon the number of decoded(black) symbols. Note that while the chosen degrees depend on
the instantaneous number of decoded symbols, these degreesdo not optimize solely for higher probability of symbol decoding,
but rather jointly optimize the symbol-decoding probability andthe connectivity of the decoding graph. This is in contrast with
known schemes [8], [2] that only optimize for the former (andare thus much more costly in terms of overhead). A description
of the two-phase coding procedure now follows.
1) Build-up
At the build-up phase, the sender transmits uniform code symbols of degree2. These symbols add edges to the decoding graph
at the receiver. The build-up phase continues until a connected component of size|D| = β0k exists in the graph (0 < β0 < 1
is a parameter). Then the sender colors the large component in black by sending uniform degree-1 symbols until hitting the
large component for the first time. The expected number of degree-1 symbols required before hitting a component of size
linear in k is a small constant.
2) Completion
Given a graph withβk black vertices, choose the degreem̂ that maximizes the sum probabilityof cases 1’ and 2’ below.
Case 1’A received symbol sums a single white symbol withm− 1 black symbols.
Case 2’A received symbol sums two white symbols withm− 2 black symbols.
Symbols that fall into cases 1’ and 2’ are used to update the decoding graph. Other symbols are discarded.
A few remarks on the completion phase are now in place. Case 1’decodes at least one white symbol (the white symbol’s
component), and Case 2’ adds an innovating edge, i.e. an edgethat increases the dimension of the received subspace, unless
the two white symbols are in the same component. The motivation to consider cases 1’ and 2’, and not the more elaborate
cases 1 and 2 of Section IV is the following. The appeal of cases 1’ and 2’ is that their probabilities can be calculated based on
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β alone (as detailed in the next paragraph), without need to know the complete component enumerator. If the white connected
components are fairly small compared tok, then cases 1’ and 2’ are good approximations of cases 1 and 2 of Section IV, due
to the low probability of having multiple symbols in the samecomponent. This is shown analytically in Section V-B.

The two cases 1’ and 2’ at the completion phase are illustrated in Figure 3. Note that edges between white nodes do exist
in the graph, but the classification to Case 1’ and 2’ ignores these edges.

Case 1’

Case 2’

Other

Figure 3. Case 1’ and Case 2’ sought in the completion phase. Other cases (showed at the bottom) result in discarding the received symbol.

A formal specification of the simplified code is now given as Construction 2.

Construction 2. The code is defined on a block ofk input symbols.
Decoder:

1) Initialize the decoding graph as a graph withk white nodes and no edges.
2) If a received code symbol falls under Case 1’ or Case 2’, update the decoding graph. Otherwise discard the code symbol.

Encoder:
In the build-up phase: send uniformly distributed degree-2symbols.
After the build-up phase: send uniformly distributed degree-1 symbols until the largest component turns black.
In the completion phase: given the current decoding state presented as a fractionβ of black symbols, the coding strategy is set to
drawing uniformly at random code symbols with degreem̂, where

m̂ = argmaxm [P1′(m,β) + P2′(m,β)] , (9)

andP1′(m,β) andP2′(m,β) are the probabilities of Case 1’ and Case 2’, respectively.

Note thatP1′ and P2′ used in Construction 2 depend onm and β, the fraction of black symbols, but not on the full
component enumerator as in Construction 1 of Section IV.
Assuming selection ofm symbols from the size-k block with replacement, the expressions forP1′ andP2′ are given by

P1′(m,β) =

(

m

1

)

βm−1(1− β), (10)

P2′(m,β) =

(

m

2

)

βm−2(1− β)2. (11)

The values ofP1′ + P2′ as a function ofβ for differentm values are plotted in Figure 4.

2

3

4
5

6

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

β

P1′ + P2′

Figure 4. The sum probability of cases 1’ and 2’ as a function of the fraction of black symbols. Plotted form = 2, 3, 4, 5, 6.

The following theorem provides a lower bound onP1′ + P2′ , which will be used for analysis in the next sub-section.

Theorem 8.For anyβ, there exists âm such that

P1′(m̂, β) + P2′(m̂, β) > (1 +
√
2)e−

√
2 = 0.5869, (12)
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andm̂ is the uniquem that satisfies
√

(m− 1)(m− 2)√
2 +

√

(m− 1)(m− 2)
6 β <

√

m(m− 1)√
2 +

√

m(m− 1)
.

Proof: The proof will divide into two main parts. First we prove the bound when the valueβ is taken from an infinite
discrete sequence of real values. Then we show that the first part implies the bound at all points of the real-line segment[0, 1).
The sequence of discrete real values we consider in the first part contains all the valuesβ that satisfy

P1′(m,β) + P2′(m,β) = P1′(m+ 1, β) + P2′(m+ 1, β), (13)

for some integerm. Theseβ values are the transition points of the encoder from degreem to degreem+ 1, seen in Figure 4
as the intersections of two curves with adjacent labels. When we substituteP1′(m,β) from (10) andP2′(m,β) from (11)
into (13) and solve2 for β, we obtain

βm =

√

m(m− 1)√
2 +

√

m(m− 1)
. (14)

The valuesβm can be regarded as a sequenceB = {βm}∞m=1. The evaluation of the sequenceB is

B = {0, 0.5, 0.634, 0.710, 0.760, 0.795, ...},

and it tends to1 asm tends to infinity. To show the lower bound on points inB, we substitute the right-hand side of (14) as
β into (10) and (11), and obtain

P1′(m,βm) + P2′(m,βm) =
m+

√

2m(m− 1)− 1

m− 1
·
(

m2 −m−
√

2m(m− 1)

m2 −m− 2

)m

. (15)

Now reorganizing the right-hand side of (15) we obtain

P1′(m,βm)+P2′(m,βm) =

(

1 +

√

2m

m− 1

)

·
(

1−
√
2√

2 +
√

m(m− 1)

)m

>

(

1 +

√

2m

m− 1

)

·
(

1−
√
2√

2 +m− 0.6

)m

,

(16)
where the last inequality comes from the fact that

√

m(m− 1) > m − 0.6 for m > 1. It is clear that both terms in the
right-hand side of (16) are positive and monotone decreasing with m, and hence their product is also monotone decreasing
with m. This gives the bound

P1′(m,βm) + P2′(m,βm) > lim
m→∞

(

1 +

√

2m

m− 1

)

·
(

1−
√
2√

2 +m− 0.6

)m

= (1 +
√
2)e−

√
2 = 0.5869. (17)

Now that we proved the lower bound forβ values on the transitions fromm to m + 1, we move to the second part of the
proof, which extends the bound to allβ values. The idea of the second part is to show thatP1′(m,β) +P2′(m,β) is concave
for β ∈ (βm−1, βm). Concavity implies that for allβ ∈ (βm−1, βm)

P1′(m,β) + P2′(m,β) > min [P1′(m,βm−1) + P2′(m,βm−1),P1′(m,βm) + P2′(m,βm)] .

The concavity proof ofP1′(m,β)+P2′ (m,β) in (βm−1, βm) is direct, using elementary calculus. We take the second derivative
of P1′(m,β) + P2′(m,β) with respect toβ, and find that it is negative in the interval

m(m− 4) + 4−
√

(3m− 8)(m− 2)

m(m− 3)
< β <

m(m− 4) + 4 +
√

(3m− 8)(m− 2)

m(m− 3)
.

The concavity in the desired domain is established by showing that for all positive integersm > 3

m(m− 4) + 4−
√

(3m− 8)(m− 2)

m(m− 3)
< βm−1

and

βm <
m(m− 4) + 4 +

√

(3m− 8)(m− 2)

m(m− 3)
.

For m = 2, 3 similar concavity can be proved by first substitutingm in (10) and (11), and then taking the second derivative
and verifying its negativity in(βm−1, βm).
For the analysis upcoming in the next sub-section we need thefollowing corollary, showing thatP1′(m̂, β) andP2′(m̂, β)
individually tend to constants forβ → 1, and not just their sum.

2Equation (13) has in addition a trivial solutionβm = 1, for anym, which we ignore in the remainder of the proof.
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Corollary 9. For them̂ that attains(12) in Theorem8, bothP1′(m̂, β) andP2′(m̂, β) tend to constants asβ tends to1.

Proof: We examine the ratio betweenP1′(m̂, β) andP2′(m̂, β)

P1′(m̂, β)

P2′(m̂, β)
=

2β

(m̂− 1)(1− β)
.

Substitutingβm̂ from (14) yields
P1′(m̂, βm̂)

P2′(m̂, βm̂)
=

√

2m̂(m̂− 1)

m̂− 1
,

which tends to a constant aŝm tends to infinity. The ratio and the sum both tending to constants imply that each ofP1′(m̂, β)
andP2′(m̂, β) tends to a constant.

B. Overhead analysis

While the greatest appeal of on-line fountain codes is in thepresence of adversarial or other non-random losses, it is
important to analyze them in the case where losses are random. The objective of the forthcoming analysis is to show that the
on-line fountain codes proposed here have acceptable overheads, far below what existing on-line fountain codes require.
The analysis concentrates on the simplified code of Construction 2, because analyzing the optimal Construction 1 is challenging.
It is clear that the overhead will only decrease if the optimal code is used instead of the simplified one.

We begin at the build-up phase of Section V-A. Randomly chosen edges added in the build-up phase construct a random
graphG. To analyze the properties ofG, we use known results on random graphs found in [1, Ch.10]. Atthe end of the build-up
phase,G = G(k, p) is a random graph onk vertices, where each of thek(k− 1)/2 possible edges is taken with probabilityp.
We definep = c/k, and note the known relationship betweenc andβ0, the fractional size of the largest connected component,
as

β0 + e−cβ0 = 1. (18)

Hence for each specified component sizeβ0 < 1, there is a unique density parameterc > 1 that achieves it with high probability.
The following results from [1, Ch.10] will be found useful inanalyzing the completion phase.

Theorem 10. [1] Given c > 1 andβ0 < 1 with the relation given in(18), in a random graphG = G(k, c/k) the remainder
sub-graph outside the large component is itself a random graphG′ = G(t, d/t), wheret = (1− β0)k andd = c(1− β0) < 1.

We will also use the following classical results by Erdős and Rényi.

Corollary 11. [6] In a random graphG = G(k, c/k) with c > 1, almost always all the components except the large component
are of sizesO(log k). Furthermore, the number of small components that have cycles is vanishingly small.

With the properties ofG′ quoted above, we turn to analyze the completion phase. We start with a qualitative description
of the completion phase’s dynamics, then move to more precise statements. At the outset of the completion phase,G′ has
small tree components (including isolated vertices, whichare trivial trees). Case 1’ symbols move components out ofG′ to
the large (black) component, and Case 2’ symbols add edges inG′. SinceP1′(m̂, β) andP2′(m̂, β) are both constants of the
same order, a component ofG′ cannot grow much before it is colored black. This is because the probability to add an edge
touching a given component is similar to the probability to connect the same component to the large component. Now given
that the components ofG′ remain much smaller than a constant fraction ofk, the probability to introduce a cycle inG′ is
negligible. Thus with high probability a Case 2’ symbol is not redundant. The next theorem formally proves that with high
probability every Case 2’ symbol in the completion phase adds an innovating edge toG′.

Theorem 12.The probability that a cycle is introduced (by a Case 2’ symbol) to a component ofG′ before the component joins
the main component (by a Case 1’ symbol) tends to zero ask goes to infinity.

Proof: Let a random process take an event from{X,Y, ∗} at each discrete-time instancei. For X andY with respective
probabilitiesPX andPY , the probability thatX occurs beforeY is

∞
∑

i=0

(1− PX − PY )
iPX =

PX

PX + PY

.

(Any number of∗ events are allowed beforeX .) For a given component ofG′ with l vertices, we takeX to be the event
that a new code symbol is a Case 2’ edge that creates a cycle in the component, andY to be the event of a Case 1’ symbol
connecting the component to the large component.∗ represents all other events caused by a new code symbol. Thenwe write
the probabilityPX as

PX = P2′(m,β)

(

l

(1− β)k

)2

.
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The left multiplicand is the probability that the symbol is Case 2’; the right multiplicand is the probability that both ends of
the G′ edge fall on the size-l component. The right multiplicand can be interpreted as a conditional probability to doubly-hit
a component given the symbol is a Case 2’ symbol. Similarly, the probabilityPY is written as

PY = P1′(m,β)
l

(1 − β)k
. (19)

The left multiplicand is the probability that the symbol is Case 1’; the right multiplicand is the probability that the vertex of
G′ connected to the main component belongs to the sizel component. The probability thatX happens beforeY is then

PX

PX + PY

=
P2′(m,β)

P2′(m,β) + (1−β)k
l

P1′(m,β)
. (20)

It is clear that the expression in (20) tends to0 ask tends to infinity, so long asP1′(m,β) andP2′(m,β) are both constants
for anyβ, and in additionl is bounded from above by a function that iso(k). The former is proved in Corollary 9; the latter
is proved in the following lemma.

Lemma 13.The probability that aG′ component grows by more thanlog k vertices tends to zero ask goes to infinity.

Proof: The proof follows similar lines to the main theorem’s proof.For a given component ofG′ with l vertices, we now
takeZ to be the event that a new code symbol is a Case 2’ edge that connects the component to a different component within
G′. We have

PZ = P2′(m,β)

[

2
l

(1− β)k

[

1− l

(1− β)k

]]

< P2′(m,β)
2l

(1 − β)k
.

Y as before is the event of a Case 1’ symbol connecting that component to the large component. GivenPY in (19), the
probability thatZ occurslog k times beforeY occurs is thus at most

(

2P2′(m,β)

2P2′(m,β) + P1′(m,β)

)log k

,

which clearly tends to zero assuming constantPi′(m,β) probabilities for anyβ.
Since the components ofG′ at the beginning of the completion phase are of sizesO(log k) (Corollary 11), by Lemma 13 their
sizes remainO(log k) throughout the completion phase. This shows thatl = o(k), which is sufficient for (20) to go to zero.
This proves the theorem.
Theorem 12 implies that Case 2’ symbols are not redundant with probability tending to 1, hence we have the following result.

Theorem 14.The expected number of Case 1’ and Case 2’ symbols (combined)required to complete decoding in the completion
phase is

k(1− β0)

[

1− (1− β0)c

2

]

, (21)

in the limit of largek.

Proof: The number of symbols left to decode after the build-up phaseequalst, the number of vertices inG′. By the definition
of the build-up phase we have

t = k(1− β0). (22)

According to Theorem 10, the expected number of edges inG′ at the beginning of the completion phase is

1

2
td =

1

2
k(1− β0)(1 − β0)c. (23)

A classical result by Erdős and Rényi states the following.

Lemma 15.[6] In a random graphG′ = G(t, d/t) with d < 1, the expected number of connected components equals

t− td

2
+O(1),

where the termO(1) depends ond, but is a constant not growing witht.

Lemma 15 is implied by the well known fact that almost all of the vertices in a random graph withd < 1 are in connected
components that aretrees. Substitutingt from (22) andtd/2 from (23), the expected number of components inG′ equals

k(1− β0)

[

1− (1− β0)c

2
+ o(1)

]

, (24)

where the termo(1) tends to zero ask tends to infinity. By Proposition 1 the number of symbols the receiver needs to receive
to fully decode equals the number of components inG′, where we count a received symbol for that purpose only if it reduces
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the number of components by one. Case 1’ symbols always reduce the number of components by one. By Theorem 12 all but
a vanishing fraction of Case 2’ symbols reduce the number of components by one. Hence the expected number of Case 1’
and Case 2’ symbols (combined) required in the completion phase equals to

k(1− β0)
[

1− (1−β0)c
2 + o(1)

]

1− o(1)
.

This equals the expression in the theorem statement whenk tends to infinity.

This leads to the main analysis results that now follow.

Theorem 16.For any choice ofβ0 < 1, the expected numberN of code symbols required for decoding thek input symbols is
bounded by

N <
1

2
ck +

e
√
2

1 +
√
2
k(1− β0)

[

1− 1

2
(1− β0)c

]

, (25)

wherec andβ0 are related byβ0 + e−cβ0 = 1.

Proof: The first term in (25) is the expected number of symbols received in the build-up phase. This is from random-graph
theory [1, Ch.10], whereby reaching a component of sizeβ0k happens when a vertex has on averagec edges (the factor1/2
is because each edge has two ends). The second term in (25) is the expected number of symbols received in the completion
phase. The constant factor in the second term is the inverse of the lower bound onP1′(m,β) + P2′(m,β) from Theorem 8,
which is an upper bound on the expected number of received symbols per symbol of Case 1’ or 2’.
Choosingβ0 = 0.645 for ending the build-up phase (which givesc = 1.6), we get the following corollary.

Corollary 17. The expected redundancy overhead of Construction2 is bounded by

N − k

k
< 0.236.

C. Discussion and comparison

It is important to note that the0.236 upper bound on the expected overhead may be a substantial over-estimate of the true
overhead. While the probabilities of Cases 1’ and 2’ are known for anyβ, our analysis was only able to incorporate theβ → 1
limit value of (12) as a lower bound. More involved argumentson random-graph dynamics may tighten this bound. In an
experimental study of the simplified code we observe overheads smaller than0.2, even for relatively short block lengthsk. We
also observe experimentally that the overhead is not very sensitive to the choice ofβ0 to end the build-up phase. A complete
experimental view of on-line fountain codes is deferred to afuture publication.

Comparing the proven overhead upper bound of Construction 2to known on-line schemes, a significant improvement is
offered. Growth codes [8], the known state-of-the-art on-line fountain scheme, has an expected overhead that is bounded from
below by ln 2 = 0.69 (as explained in the sequel)– three times higher than the newproposal. The growth codes scheme can
be seen as a special case of our simplified scheme, whereby thedegrees are chosen to maximize the probability of Case 1’
symbols alone. Therefore, degree1 symbols are received until aβ0 = 0.5 fraction of black symbols exists (at which point
symbol-decoding probability with degree2 symbols crosses over that probability with degree1 symbols). During that phase,
the rate of symbol decoding isdβ = (1− β)dy, wheredy is an infinitesimal fraction of received symbols. Hence the fraction
of received symbolsy0 required to obtainβ0 = 0.5 can be found by solving the simple integral

y0 =

∫ 0.5

0

dβ

(1− β)
= ln 2.

After that phase, the probability of symbol decoding, for any degreem, is at most0.5, thus the remaining0.5 fraction of input
symbols will need at least an additional1 fraction of received symbols. Adding this1 fraction to theln 2 fraction of the first
phase gives aln 2 lower bound on overhead.

For the scheme of real-time oblivious codes [2] the authors quote an upper bound of1 for the overhead, which is more than
5 times higher than Construction 2.

VI. CONCLUSION

In addition to providing low-overhead on-line fountain constructions, the results of this paper open new avenues for future
research. The most natural direction is attempting to further reduce the overhead, and at the same time deriving lower bounds on
the overhead required to attain the on-line property. Another important extension of this work is to address point-to-multipoint
communications, where the encoder strategy needs to be optimized for multiple receivers simultaneously. Finally, it is also
important to consider the effect on the on-line property when the feedback of decoding-state information from the receiver to
the sender is limited.
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[6] P. Erdős and A. Rényi, “On the evolution of random graphs,” in PUBLICATION OF THE MATHEMATICAL INSTITUTE OF THE HUNGARIAN

ACADEMY OF SCIENCES, 1960, pp. 17–61.
[7] A. Hagedorn, S. Agarwal, D. Starobinski, and A. Trachtenberg, “Rateless coding with feedback,” inINFOCOM 2009, IEEE, 2009, pp. 1791–1799.
[8] A. Kamra, V. Misra, J. Feldman, and D. Rubenstein, “Growth codes: maximizing sensor network data persistence,” inProc. ACM SIGCOMM’06, New

York NY USA, 2006, pp. 255–266.
[9] S. Kokalj-Filipovic, P. Spasojevic, E. Soljanin, and R.Yates, “ARQ with doped fountain decoding,” inSpread Spectrum Techniques and Applications,

2008. ISSSTA ’08. IEEE 10th International Symposium on, 2008, pp. 780–784.
[10] M. Luby, “LT codes,” inProc. of the Annual IEEE Symposium on Foundations of Computer Science FOCS, Vancouver BC, Canada, 2002, pp. 271–280.
[11] A. Shokrollahi, “Raptor codes,”IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2551–2567, 2006.
[12] A. Talari and N. Rahnavard, “LT-AF codes: LT codes with alternating feedback,” inProc. of the IEEE International Symposium on Info. Theory, Istanbul,

Turkey, July 2013, pp. 2646–2650.


	a.pdf
	IRWIN AND JOAN JACOBS




