')
IRWIN AND JOAN JACOBS
CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

On-Line Fountain Codes with
Low Overhead

Yuval Cassuto and Amin Shokrollahi

CCIT Report #865
July 2014

~w

EEmEE Flectronics
mEmm=n Computers DEPARTMENT OF ELECTRICAL ENGINEERING \‘7
Emmms COmmunications TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL u

CCIT Report #865 July 2014 1
On-Line Fountain Codes with Low Overhead

Yuval CassutoMember, IEEEand Amin ShokrollahiFellow, IEEE

Abstract

An on-line fountain code is defined as a fountain code for tiin optimal encoding strategy can be found efficiently given
any instantaneous decoding state. This property is impofta data distribution in practical networks. In this papee formalize
the problem of on-line fountain code construction, and psgpnew on-line fountain codes that outperform known onédmaiing
factor 3-5 lower redundancy overhead. The bounding of thde coverhead is carried out using analysis of the dynamics of
random-graph processes.

Index Terms

Fountain codes, rateless codes, on-line codes, codes edttbéck, random graphs.

I. INTRODUCTION

Fountain coding was proposed [3] for efficient distributiohdata in lossy networks, with the goal to allow information
transmission that is oblivious to losses of individual petsk Fountain codes that meet this goal with negligible lnwad were
found [10], and later improved in complexity [11]. These k®rand others that followed, specify methods to encode (and
decode) data blocks at the sender (and receiver) nodesravel yppper bounds on the average overhead in the case ofmando
losses.

Low overhead is clearly an important code-design objectivie some applications may find it insufficient on its own,hwit
system performance being dominated by other propertiehetbde. The long code blocks and fixed pre-defined encoding
procedures of the aforementioned fountain codes resultgh @iecoding latency, and no way for the receivers to cordrol
even monitor the progress of the data reception. In addifiacket losses in the network may not be all random, further
exacerbating the risks of a long batch transmission dedigoiepure-random losses. A practical fountain code sholic t
balance low redundancy overhead with @mline ability to adapt the code to instantaneous network conuitio

In the framework developed in this paper, a fountain codaliedon-lineif given an arbitrary decoding state at the receiver,
the optimal encoding strategy at the sender can be foundeetfiz This is a much stronger property than conventional
fountain codes, which only guarantee optimality for thdiahistate of decoding. The importance of the on-line proper
that it guarantees optimal performance even at states ftfiat dignificantly from the expected under random losseg, e
due to an adversary or extremely unfortunate circumstafce# turns out, there are known fountain codes with the ina-I
property such agrowth codeq8] and real-time oblivious codef?], (see also [5]). However, these codes suffer from very
high redundancy overheads.

The codes proposed here attain the on-line property withifeéggntly lower overhead, between factdiand factors lower
compared to the previously known codes [8],[2]. This sigaifit improvement is achieved by representing the decodatg s
as auni-partite graph, and using the graph structure to efficiently find thenogd coding strategy at the current state. The
simple graph representation also allows to analyze thengodverhead, building on fundamental results from randoaply
theory [6]. The contributions of the paper include the figinfialization of the on-line property for fountain codesdtsm 1),
the development of the uni-partite view of fountain codesc{®n 1), an on-line fountain code construction usingedficient
algorithm to find the optimal coding strategy (Section I\M)débounding the overhead of a simplified construction byariad
the dynamics of random graphs (Section V).

There are many potential applications for on-line fountades. One is data distribution in the presence of inteemtitt
adversaries, which bring receivers to arbitrarily bad déug states and then leave them to recover. Another importan
application is for distributed storage, where code symlaoés distributed among multiple nodes, and the on-line ptgpe
gives sufficient transparency to control the long-term vecability of the data given an instantaneous node-faittiage.

Il. ON-LINE FOUNTAIN CODES

Block rateless fountain codes, such as LT [10] and Raptdrdades, are designed fbatchtransmission of coded symbols.
These codes aim at minimizing the number of coded symbolsinexdjto successfully decode the entire code block with high
probability. Given a current state of code symbols alreatyived at a receiver node, batch fountain codes do not sslthe
minimization of code-symbol transmissions until complééeoding. It has been recognized in prior work that not atersig
the current state of already received symbols results inogtinal performance in many practical scenarios. Sewsoaks

Yuval Cassuto is with the Department of Electrical EngiiegrTechnion — Israel Institute of Technology, Haifa I$r@email: ycassuto@ee.technion.ac.il).
Part of the research was done while at the School of ComputtiCammunication Sciencegcole Polytechnique Fédérale de Lausanne (EPFL).

Amin Shokrollahi is with the School of Computer and Commatiiin SciencesEcole Polytechnique Fédérale de Lausanne (EPFL), Stado CH-1015
Lausanne, Switzerland (e-mail: amin.shokrollahi@epfl.ch

Part of this work was presented at the 2011 Information Th&Workshop, Paraty Brazil [4].

lesley
CCIT Report #865 July 2014

have proposed adaptations to batch fountain codes, mobttpdes, that do consider the current decoding state forhibiee

of subsequent code symbols to transmit. A partial list ofhsoeding schemes includes [9], [7], [12]. The outcome of ¢hes
schemes is that faster decoding can be achieved by feedinglidg-state information from the receiver back to thegnaitter.

In this paper we make another step in this direction and lookéding schemes for which thgovably optimalkoding strategy
can be found given an arbitrary decoding state. The abdityfficiently find the optimal coding strategy given the cutrstate

is very important in practical applications, since it gudeges fast decoding at any point of time without any asswnpiin
the past behavior of the encoder and channel. Fountain ecuitte&nown optimal coding strategies given the current diog
state are called hereion-line fountain codes. No matter how unusual or unfortunate pteviencodings and transmissions
have been, from the current state onward on-line fountaites@uarantee optimal performance. This property is magda
even if the code-symbol losses till this point are maliclpuset by an adversary. Before giving a formal definition oé th
on-line property, we make the ternmfieuntain codeand coding strategymore precise.

Definition 1. A fountain code has a block ok input symbols, an encoder and a decoder. The encoder gesiemte symbols
by taking eXclusive-OR (XOR) operations on subsets of igumbols. The decoder processes the received code symhbls an
outputs the: input symbols.

Definition 2. A coding strategyof a fountain code is a set of specifications according to witie encoder chooses the subsets
of input symbols to XOR for generation of code symbols.

A coding strategy is selected from a pre-defined universeeofssible strategies. For example, in fountain codingestds

it is common to only considenniform coding strategies, which allow to vary the degree (numbesp#rands) of the XOR
operations, but require to select the XOR operands unifofrom the & input symbols. The reasoning behind only considering
uniform fountain codes is that non-uniform codes requireoelers that are much more complex in optimizing their owtput
and much more informed about the decoding states of thevesei

Definition 3. A fountain code is calle@n-line if given an arbitrary decoding state at the receiver, it cad the optimal coding
strategy efficiently.

It is important to emphasize that the coding strategy at theoder is matched to the decoder of the fountain code. Hence
optimality of the coding strategy is established for thetipatar decoder used by the fountain code.

A fountain code with the on-line property was proposed by Kaet. al in [8] (called growth code), and independently by
Beimel et. al in [2] (called real-time oblivious code). Inigtcode, with each received code symbol the decoder attetmpts
decode an input symbol not previously known to it, and didsahe code symbol if this attempt fails. For this decodes, th
optimal degree for a code symbol drawn by the encoder is tleetlosit maximizes the probability that a new input symbol
will become known following the receipt of the code symbahisToptimal degree was given in [8] and [2] as a function of
the current number of decoded symbols at the receiver. Kmpitie optimal degree immediately defines the optimal coding
strategy at the sender as using this optimal degree in subsegenerations of code symbols. Since this optimal sjyaite
known for any decoding state (number of decoded symbolis) féluntain code has the on-line property. However, in tloidec
the on-line property comes with a prohibitive cost in redamd)y. In [2] a redundancy of 100% is suggested, R&.received
code symbols are needed to decode khiaput symbols with high probability. It is possible to protreat the redundancy of
this code is lower bounded by 2 ~ 0.69. This is shown in Section V-C where we compare this known dodan improved
code that achieves the on-line property with a much moreoresdse cost of redundancy.

IIl. FOUNTAIN CODES ONUNI-PARTITE GRAPHS

To obtain on-line fountain codes with lower redundancy thast known codes, we now define a simple graph structure on
which fountain codes can be made on-line with lower redungahnhe canonical representation of fountain codes through
the literature is as bi-partite graphs. Nodes of one typeut nodes represent the: input information symbols; nodes of
another typecode nodesrepresent the code symbols. An edge between an inputaxoaled a code nodg; marks that input
symbolz; is one of the summand®f code symboly;. For example, Figure 1 depicts the following code symbols

Y1=1+T2, Y2=T2+T3, Y3=T1+x3, Y4=T4+T5, Y5=T6-

When all of the degrees of code nodes arer less, the code can be equivalently represented by a utiiepgraph. For
the example above, the corresponding uni-partite graplivengn Figure 2. In the uni-partite graph, two nodes are eated
with an edge if there is a code symbol that is the sum of theesponding two input symbols. A node is colored black if
it is known to the decoder (and white otherwise). There ar@dges incident on black nodes. In the example, symbak
black thanks to the code symbg| = ;.

Definition 4. A (uni-partite)decoding graphis a representation of a collection of code symbols commgisi
1) A code symbot; for every black nodé.

1For convenience we regard the XOR operations as additiortuima.

Figure1l. A fountain code as a bi-partite graph. Code symbols (squades) are XORs of input symbols (circle nodes).

1 L4 6
®

T3
x Ty x7
O

2) A code symbotk; + x; for every edgéi, j).

Figure2. A fountain code as a uni-partite graph.

The advantage of the uni-partite view of a fountain code & thcan carry the full state of code symbols with degree up
to 2, over a simple structure that allows finding the optimal ogdstrategy using graph-theoretic notions. Note that tleé fa
that the decoding graph at theceiveronly represents degreéeeode symbols does not mean that the skaderis restricted
to using exclusively degregzcode symbols.

A. Implicit edges and the the connected-component enuarerat

In addition to edges representing explicit code symbolsived from the channel, edges can be added between every pair
of nodes that isonnectedn the graph. These edges can be derived by summing all codbady along a connecting path,
canceling out all intermediate input symbols on the path. &@mple, the explicit edge between and z3 in Figure 2 is
redundant, since it could have been obtained by summingeipytmbols(z; + z2) + (2 + z3). Thus from the perspective of
the receiver, the state of decoding is fully described bydtenected componenits the decoding graph and the set of black
nodes. (A connected component in a graph is a set of vertidesf which are connected by paths of edges, and none of
which is connected to any vertex outside the componentd.rémainder of the section is devoted to setting up notation f
characterizing the decoding state through the decodingh@g@onnected components. This notation will be used inneae
sections to define and analyze coding strategies for onfdinetain codes.

Suppose the decoding graph at a given instant/hdack nodes andi; connected components of sizewherei ranges
from 1 to the maximal component size{(k). Then the decoding state can be represented bycdneponent enumerator
polynomial given by

k
Alr) = A+ A,
1=1

The total number of components is
k
#components = Z A; = A(1) — A. Q)
=1

Since the connected components partition the graph nodésite not black,

k
A1) =) id; =k — A (2)
=1

The average component size in the graph can thus be caltwaate
kE—A k—A A'(1)

~ Jcomponents A1) — A A(1) — A(0)°

There is a clear correspondence between the structure adetbeding graph and the dimension of the linear subspace
spanned by the received code symbols.

Proposition 1. LetG {0, 1}* be the linear subspace spanned by the code symbols of a dgapdplG. The dimension of:
is given by
dim(G) = k — #components(G).

Proof: Each black node i contributes one independent vector to the span of the cadbdg. In addition, each connected
component of sizé contributes to the spain— 1 independent vectors. Any— 1 edges of a spanning tree for the component
can give thei — 1 independent degrezvectors. Summing the contributions of black and white npaesget

k k k
dim(G) = A+ Z(z —1)A; =A+ Z 1A — Z A; = k — #components,
=1 =1 =1

where the last equality follows from the second equality2)fdnd the first equality of (1)m
Proposition 1 implies that increasing the dimension of thdecsymbols’ span at the decoder is equivalent to elimigadin
connected component from the decoding graph. This featiltdbg the key for finding the optimal coding strategy in the
on-line fountain code presented in the next section.

After defining the component-enumerator polynomial andaitiay some of its properties, we turn to endow it with an
operator that will become useful later.

Definition 5. Given a component-enumerator polynonidl), let AY () be the polynomial with coefficients specified as

A max(A4; —1,0) i=t¢
L) A, otherwise

thus A% (x) has all of its coefficients identical td(x), except for the coefficient, which is decreased by one, if not already
zero.

IV. AN ON-LINE FOUNTAIN CODE CONSTRUCTION

The on-line fountain code proposed in this section follovesf the simple observation that if a code symbol corresponds
to an edge added between a black node and a white node in todidgaraph, then all the nodes in the white node’s
connected component will be colored in black. For examplesigure 2 a symbat, + x4 would decoder, and x5, both in
the component of,. First x4 is recovered by subtracting the knowg from x4 + xg, and thenzs is found by subtracting
x4 from z4 + x5. Another important simple observation is that if a code sghdmrresponds to an edge added between two
white nodes, then the connected components of the two ndfdest @lready in the same component) are merged to a single
component.

In our on-line fountain code, the coding strategy will seekmaximize the probability of either coloring a component in
black, or merging two distinct components. Both optionméelate a connected component in the graph, and by Propoditio
either will increase by one the dimension spanned by the sgdwols. We refer to such increase in dimensiorasoding
progress Hence given a current decoding state presented as a dgcodiphgG, decoding progress is achieved if a newly
received code symbol results in either of the following twdammes

1) An edge coloring a component in black.

2) An edge connecting two distinct components.

All other cases either provide redundant information (sghgums already known to the receiver), or cannot be handjed b
the uni-partite scheme (sum relations involving more thaa tomponents). We thus seek to maximize the probability tha
one of the events 1 and 2 occurs, given the instantaneouslidgcstate. A more concrete (but equivalent) definition afres

1 and 2, respectively, is

Case 1A received code symbol sums an odd number of input symbols frosingle component, with other components
contributing even numbers of input symbols, in addition by aumber (even or odd) of black symbols.

Case 2A received code symbol sums odd numbers of input symbols framrcomponents, with other components contributing
even numbers of input symbols, in addition to any numberr{eweodd) of black symbols.

Case 1 and Case 2 result in 1 and 2 above, respectively, eta@isum of an even number of summands from the same
component is known at the decoder, and can be canceled;rasmks the sum of any number (even or odd) of black symbols.
Denote byP;(m,.4) andP2(m, .A) the probabilities that a uniformly selected degreezode symbol results in a Case 1
and Case 2 event, respectively. The argunyiig the component enumerator polynomial of the grgpét the receiver. Then

we can define our on-line fountain code as follows.

Construction 1. The code is defined on a block lefinput symbols.
Decoder:

1) Initialize the decoding graph as a graph witlwhite nodes and no edges.

2) If a received code symbol falls under Case 1 or Case 2, uplaigeicoding graph. Otherwise discard the code symbol.
Encoder:
Given the current decoding state presented as a graph witpawent enumerator polynomidl, the coding strategy is set to
drawing uniformly at random code symbols with degfieevhere

m = argmax,, [P1(m, A) + P2(m, A)]. (3)

To show that Construction 1 defines an on-line fountain ceaeneed to prove that the coding strategy given in (3) is ogitim

Proposition 2. Let G c {0,1}* be the linear subspace spanned by the code symbols of thentualecoding graphy with
component enumeratot. Letv € {0, 1}* be the next code symbol drawn by the encoder,Ghd {0, 1}* the linear subspace
spanned by the code symbols afteis processed by the decoder. Then the expected dimenstéhisimaximized ifv is drawn
according to the coding strategy ().

Proof: If v falls under Case 1 or Case 2, then exactly one connected ecempis eliminated from the decoding graph. In
Case 1 a component turns black, and in Case 2 two componentseaged to one. According to Proposition 1, eliminating a
component amounts to increasing the dimension by one. thexedf Case 1 or Case 2 appliesdpthen there is no change
in the connected components, and the dimensioi’ofemains the same as the dimensionthf So overall, for degreen
code symbols we have

E[dim(G")] = dim(G) + 1 - [P1(m, A) + Pa(m, A)] + 0 - [1 — P1(m, A) — Pa(m, A)].

And clearly maximizing the expectation is achieved by mazing P, (m,.A) + Py(m, A) over allm. m
To calculate the decoding-progress probabilittagm,.4) and Py(m,.A), we need to count the number of degreecode
symbols that result in Case 1 and Case 2 symbols, respectivel

Given a component enumerator polynomi&(z), let N;(m,.A) denote the number of degree-code symbols that color
a component in black (Case 1), and Iét(m,.A) similarly denote the number of degreecode symbols that connect two
distinct components (Case 2). Assuming the degreesde symbol is drawn uniformly at random, we have the ratatio

Ny(m, A)

(m)

Pi(m, A) = , for 1€{1,2}. 4)
A. Exact calculation ofP;

We start off with counting Case 1 combinations. We estaldisiecursive formula for this count in a theorem following a
series of lemmas. The following definitions will turn out fide

Definition 6. Denote byOEs(j,.A) the number of combinations gf symbols that have an odd number of symbols in one
component, and even numbers (including zero) of symbolB otleer components, given a component enumerétar).

The symbolOEs chosen for Definition 6 stands f@dd-Evens

Definition 7. Denote byEs(j,.A) the number of combinations gfsymbols that have even numbers (including zero) of symbols
in all components, given a component enumeraQt).

The symbolEs chosen for Definition 7 stands fdgvens The first lemma ties the functio@Es from Definition 6 with Es
from Definition 7.

Lemma 3. Let A(x) be a component enumerator polynomial drah integer satisfying < k. Then

OEs(j,A Z ZA,()Es (j —1i, AY). (5)

i odd

Proof: i in the outer sum is the number of input symbols in the compbtiet contains an odd number of input symbols
in the degreer code symboli in the inner sum is the size of this component. The functiens invoked on the remaining
j — i input symbols and on the polynomial;, to exclude the component chosen to have an odd number ofadgnithe
multiplicative coefficient ofEs is the number of sizé-components in the graph, times the numbei-stibsets of the size-
component.m
The next lemma gives a recursive formula st CountingEs is established by successively choosing a connected canpon
with an even non-zero number of symbols, then removing tbimpgonent from the enumerator and continuing recursively.

Lemma4. Let A(x) be a component enumerator polynomial, greh integer satisfying < k. Define a3-argument function
Es(j, A, d) with the following relation to the original functios(j, A)

Es(j,4,1) £ Es(j, A).

ThenEs(j,.A) can be calculated by invoking the following recursive fofamithd = 1:
forj >0

Es(j, A, d) = Z ZAtOESJ—zAUdH) (6)

1 even

forj =0
Es(0,A,d) =1

Proof: Let us first naively apply a recursion similar to (5) towahe tcount ofEs(j,.4). Since correction will be needed,

we useEs(j,.A) in the formula.
Z ZAt(>ES]—Z A, @

1 even

The result of the recursion in (7) is that each combinatiof s§ymbols falling intor components, with non-zero even numbers
of symbols in each, is counted times. This is because ancomponent combination is multiply-counted in every ordér
successive selection among theomponents. So to get a correct count, we need to divide llye number of combinations
with » components, for each possibie

This correction is achieved by the/d factor adjoined to (6), such that ancomponent combination count is successively
normalized by} -1.....1 =1 m

After showing exact recursive counts OEs(j,.A) andEs(j,.A4) in Lemmas 3 and 4, respectively, we turn to show how to use
these counts to calculate the progress probalflitym, A).

Theorem 5. Let A(x) be a component enumerator polynomial, am@n integer satisfyingn < k. Then the number of Case 1
degreem code symbols can be counted exactly, and is given by

m—1

A

Ni(m, A) = Z::o (S)OES(A,m —s).
Proof: By definition of Case 1, any numberof black symbols can be included in the code symbol, and theirement on

the remaining symbols is exactly as stated in the definitio@Bs (Definition 6). Hence we sum over &l take all possible

sizes subsets as black symbols, and apfls to the remainingn — s symbols. m

Now that we established the count &% (m,.A), we can obtairP, (m,.A) using (4).

B. Exact calculation oP,
Moving to count Case 2 combinations, we define another usefmbinatorial function.

Definition 8. Denote byOOEs(j,.A) the number of combinations gf symbols that have odd numbers of symbols in two
components, and even numbers (including zero) of symba@# ather components, given a component enumeréfaj.

The symbolOOEs stands forOdd-Odd-EvensA recursive count folOOEs(j,.A) is given in the next lemma.
Lemma6.Let A(x) be a component enumerator polynomial drah integer satisfying < k. Then

OOEs(j, A Z ZAt()OEs (j —i, AM). (8)

i odd

Proof: ¢ in the outer sum is the number of input symbols in fing (out of the two) component that contains an odd number
of input symbols in the degregeode symboly in the inner sum is the size of this component. After choosing component
with odd number of symbols, the remaining symbols need t@dito an odd number in one component, and even numbers in
all the rest. Hence the functiddEs(j,.4) from (5) can be used. The/2 factor cancels the double count of each combination:
there are two components with odd numbers of symbols, anttiad¢ combinations are obtained by reversing the selectio
order of these componentm

Now we reach a theorem similar to Theorem 5, this timeXafm, A).

Theorem 7. Let A(x) be a component enumerator polynomial, am@n integer satisfyingn < k. Then the number of Case 2
degreem code symbols can be counted exactly, and is given by

m—1 A
Na(m, A) = 2::0 (S>OOE5(A,m s).

Proof: The proof is essentially the same as in Theorem, &s before, is the number of black symbols in the degressde
symbol. After choosing the black symbols, the requirement on the remaining symbolxa€tty as stated in the definition
of OOEs (Definition 8). m
Now that we established the count &% (m,.A), we can obtairPs(m, .A) using (4).

The outcome of the exact calculations Rf(m,.A) and Py(m, .A) through Theorems 5 and 7 is that we can efficiently
implement the optimal on-line encoder specified in (3).

C. Example of optimal on-line encoding
The following (small) example serves to demonstrate howeakgyare optimally chosen given the current decoding state.

Example 1. Suppose the current decoding state of a certain receivérda §y the component enumerator polynoniéh) =

2+ a2+, In other words, out of the = 8 input symbols2 are already decoded (black), and the remaiiage divided to one
component of siz2 and one of sizé. For each possible degreec {1, . .., k}, the receiver computes the probabilifggm, A),
P2(m, A), and the sum thereof. These values are given in Tabléie outcome of these calculations is that the optimal degre

m 1 2 3 4 5 6 7 8

P1 0.75| 0.428 | 0.464 | 0.571 | 0.464 | 0.428| 0.75| O

P2 0 0.286 | 0.286 | 0.229 | 0.286 | 0.286 0 0

Pi1+P2|| 0.75 | 0.714| 0.75 0.8 075] 0714 0.75| O
TABLE |

DECODING-PROGRESS PROBABILITIES FOR DIFFERENT DEGREES

for the current state i$. = 4, which givesP; + P, = 0.8 (bold in Tablel). To see how this value is obtained, we cobh{4, A)
andN-(4, A). To get an odd number of symbols in one component (Case I fer 4, we have the following possibilities:
black and3 in the size4 component] black,2 in the size2 component andl in the size4 component, ot black,?2 in the size4
component and in the size2 component. These amount2o 4 = 8,2-1-4 = 8 and2 - 6 - 2 = 24, respectively. Hence
N;(4,.A) = 40. To get an odd number of symbols in two components (Case Dawe the following possibilities in the size4
component andl in the size2 component, o2 blacks,1 in the size2 component andl in the size4 component. These amount to
4.2 =28, andl-2-4 =8, respectively. Hencé/>(4, A) = 16. Since(’Z) =70, we get

N1(4,A)+N2(4,A) - 40+16 -

(5) 70

0.8.

Pl (4, .A)+P2 (4, A) =

V. A SIMPLIFIED ON-LINE FOUNTAIN CODE

In the previous section, an on-line fountain code was giveere the receiving clients can efficiently calculate thamak
degree at any stage of decoding. In this section, we leaveadhiene of strictly optimal degree choices, and consider a
simplified on-line fountain code that is simpler both for iementation and for analysis. With the simplified code, h®wn
that a simpler criterion than maximizirigy (m,.A) + P2(m, .A) precisely can with high probability give the optimal enaugli
degrees at intermediate decoding stages. The main restdtrpeg to the simplified code is an upper bound on the redoog
overhead, which is shown to be much lower than known on-lmefain codes.

A. Specification

In the simplified scheme, the encoding is first coarsely @iido two phases calletuild-up and completion In the
build-up phase the degree is set to constardnd in the completion phase the client uses a simplifiedimaheous-degree
optimization, which only depends upon the number of decqditk) symbols. Note that while the chosen degrees depend o
the instantaneous number of decoded symbols, these defireesoptimize solely for higher probability of symbol decoding,
but rather jointly optimize the symbol-decoding probapiandthe connectivity of the decoding graph. This is in contraishw
known schemes [8], [2] that only optimize for the former (ard thus much more costly in terms of overhead). A descnriptio
of the two-phase coding procedure now follows.

1) Build-up

At the build-up phase, the sender transmits uniform codebsysof degre€. These symbols add edges to the decoding graph
at the receiver. The build-up phase continues until a caedezomponent of sizD| = Sok exists in the graphd(< £y < 1

is a parameter). Then the sender colors the large compomdatack by sending uniform degree-1 symbols until hitting th
large component for the first time. The expected number ofeded symbols required before hitting a component of size
linear in k is a small constant.

2) Completion

Given a graph with3k black vertices, choose the degréethat maximizes the sum probabilitf cases 1’ and 2’ below.

Case 1'A received symbol sums a single white symbol with— 1 black symbols.

Case 2'A received symbol sums two white symbols with— 2 black symbols.

Symbols that fall into cases 1’ and 2’ are used to update tlcedirg graph. Other symbols are discarded.

A few remarks on the completion phase are now in place. Cagkedodes at least one white symbol (the white symbol's
component), and Case 2’ adds an innovating edge, i.e. antedgécreases the dimension of the received subspacessunle
the two white symbols are in the same component. The mativat consider cases 1’ and 2’, and not the more elaborate
cases 1 and 2 of Section 1V is the following. The appeal of€ds@and 2’ is that their probabilities can be calculated Hase

B alone (as detailed in the next paragraph), without need tavkkhe complete component enumerator. If the white condecte
components are fairly small comparedipthen cases 1’ and 2’ are good approximations of cases 1 ah&&ction IV, due
to the low probability of having multiple symbols in the sagmmponent. This is shown analytically in Section V-B.

The two cases 1' and 2’ at the completion phase are illustratd-igure 3. Note that edges between white nodes do exist
in the graph, but the classification to Case 1’ and 2’ ignohese edges.

Other

Figure3. Case 1' and Case 2’ sought in the completion phase. Othes ¢sisewed at the bottom) result in discarding the receivecbsy.

A formal specification of the simplified code is now given asn€touction 2.

Construction 2. The code is defined on a block lofinput symbols.
Decoder:

1) Initialize the decoding graph as a graph witlvhite nodes and no edges.

2) If a received code symbol falls under Case 1’ or Case 2’, wptiteet decoding graph. Otherwise discard the code symbol.
Encoder:
In the build-up phase: send uniformly distributed degreg#8bols.
After the build-up phase: send uniformly distributed degiesymbols until the largest component turns black.
In the completion phase: given the current decoding stategorted as a fractighof black symbols, the coding strategy is set to
drawing uniformly at random code symbols with degfiegevhere

m = argmax,, [P1/(m, 8) + Pa/(m, 8)], ©)
andP+,(m, B) andPy (m, B) are the probabilities of Case 1’ and Case 2’, respectively.

Note thatP;, and Py, used in Construction 2 depend en and 3, the fraction of black symbols, but not on the full
component enumerator as in Construction 1 of Section IV.
Assuming selection ofn symbols from the sizé-block with replacement, the expressions Rar and P,/ are given by

m _
Pum) = (7)om - 5) (10)
m _
Potm) = (3)om - o2)
The values ofPy, + Py, as a function ofs for differentm values are plotted in Figure 4.
P, + Py
1
T
0.8t /
g /
04 a4
02 /
/ / ,, - \
T ﬂ

02 04 06 08 1
Figure4. The sum probability of cases 1’ and 2’ as a function of thetfoacof black symbols. Plotted fom = 2,3, 4,5, 6.

The following theorem provides a lower bound By + P2/, which will be used for analysis in the next sub-section.
Theorem 8. For anyj3, there exists & such that

Py (i, B) + Py (1, B) > (1 + v2)e V2 = 0.5869, (12)

andm is the uniquen that satisfies

(m—1)(m — 2) <3 m(m — 1)

V2+/(m—1D(m—-2) = V24 /m(m —1)

Proof: The proof will divide into two main parts. First we prove theumd when the valug is taken from an infinite
discrete sequence of real values. Then we show that the éirstrpplies the bound at all points of the real-line segnjent).
The sequence of discrete real values we consider in the firstcpntains all the value$ that satisfy

Pl’(maﬁ) + PQ’(maﬁ) = Pl’(m + 115) + PQ’(m + 17ﬁ)7 (13)

for some integern. Theses values are the transition points of the encoder from degrde degreem + 1, seen in Figure 4
as the intersections of two curves with adjacent labels. Wie substituteP,/(m, 3) from (10) andPsy (m, 3) from (11)
into (13) and solvéfor 3, we obtain

m(m—1)

V2 mm 1)

The valuess,, can be regarded as a sequeiite- {,,}°°_,. The evaluation of the sequenékis

B = {0,0.5,0.634,0.710,0.760,0.795, ...},

Brm

(14)

and it tends tal asm tends to infinity. To show the lower bound on pointsBny we substitute the right-hand side of (14) as
£ into (10) and (11), and obtain

Py (m, Bm) + P2 (m, Bm) =

m—1 m2—m—2

m + 2m(m—1)—1.<m2_m—1/2m(m—1)>m. (15)

Now reorganizing the right-hand side of (15) we obtain

P1/(m, Bm) + Par (m, Bm) = <1+,/%>-<1—\/§+\/\;%> - (H\/ m2'T1>'<1_\/§+\7/n§—0.6> ’

(16)
where the last inequality comes from the fact tRatn(m — 1) > m — 0.6 for m > 1. It is clear that both terms in the
right-hand side of (16) are positive and monotone decrgasith m, and hence their product is also monotone decreasing
with m. This gives the bound

~ [2m V2 " Vi _

Now that we proved the lower bound fgr values on the transitions fromm to m + 1, we move to the second part of the
proof, which extends the bound to adlvalues. The idea of the second part is to show thatm, 8) + P2 (m, 8) is concave
for 8 € (Bm-1,Bm). Concavity implies that for alB € (8,1, Bm)

Pl’(ma B) + PQ’ (ma B) > min [Pl’(ma ﬁm—l) + PQ’ (ma Bm—l)a Pl’(ma ﬁm) + PQ’ (ma Bm)] .

The concavity proof oPy. (m, 8)+Pa (m, 8) in (Bm—1, Bm) is direct, using elementary calculus. We take the secoridadize
of Py (m, 8) + P2 (m, B) with respect to3, and find that it is negative in the interval

m(m —4) +4—+/(3m —8)(m — 2) m(m—4) +4++/(3m —8)(m — 2)

m(m — 3) m(m — 3)

<pB<

The concavity in the desired domain is established by shpwiat for all positive integers: > 3

m(m —4) +4—/(3m — 8)(m — 2)
m(m — 3)

< ﬂmfl

and

m(m —4) + 4+ 1/(3m — 8)(m — 2)

m(m — 3)

Bm <

For m = 2,3 similar concavity can be proved by first substitutimgin (10) and (11), and then taking the second derivative
and verifying its negativity in(8,,—1, 5m). &

For the analysis upcoming in the next sub-section we needdll@ving corollary, showing tha®;(m, 8) and Py (12, 58)
individually tend to constants fof — 1, and not just their sum.

2Equation (13) has in addition a trivial solutigh,, = 1, for any m, which we ignore in the remainder of the proof.

10

Corollary 9. For thern that attain{12) in Theoren®8, bothP 1. (1, 8) andPs (1, 8) tend to constants dstends tol.

Proof: We examine the ratio betwedh, (1,) and Py (12,)

Pl/(maﬂ) 2[3

Py (1, B) (= 1)(1—f)

Substitutings,;, from (14) yields

Py (i, Bn) _ v/2m(m — 1)

Por (1, Bra) m—1
which tends to a constant &s tends to infinity. The ratio and the sum both tending to cartstanply that each oP;/ (1,)
and Py (1, 8) tends to a constantm

B. Overhead analysis

While the greatest appeal of on-line fountain codes is in ghesence of adversarial or other non-random losses, it is
important to analyze them in the case where losses are raridmenobjective of the forthcoming analysis is to show that th
on-line fountain codes proposed here have acceptable eagshfar below what existing on-line fountain codes regjuir
The analysis concentrates on the simplified code of Corttrug, because analyzing the optimal Construction 1 islehging.

It is clear that the overhead will only decrease if the optinwe is used instead of the simplified one.

We begin at the build-up phase of Section V-A. Randomly chas#tges added in the build-up phase construct a random
graphg. To analyze the properties ¢f we use known results on random graphs found in [1, Ch.10fhé&nd of the build-up
phaseg = G(k,p) is a random graph oh vertices, where each of tHgk — 1)/2 possible edges is taken with probability
We definep = ¢/k, and note the known relationship betweeand g, the fractional size of the largest connected component,
as

Bo + e Po =1. (18)

Hence for each specified component sige< 1, there is a unique density parameter 1 that achieves it with high probability.
The following results from [1, Ch.10] will be found useful analyzing the completion phase.

Theorem 10.[1] Givenc > 1 andf, < 1 with the relation given in(18), in a random grapy = G(k,c/k) the remainder
sub-graph outside the large component is itself a randophgia= G(t,d/t), wheret = (1 — 3y)k andd = ¢(1 — By) < 1.

We will also use the following classical results by Erdésl &enyi.

Corollary 11. [6] In a random graply = G(k, ¢/k) with ¢ > 1, almost always all the components except the large componen
are of size®(log k). Furthermore, the number of small components that havesygivanishingly small.

With the properties ofj’ quoted above, we turn to analyze the completion phase. Wewgith a qualitative description
of the completion phase’s dynamics, then move to more estistements. At the outset of the completion ph&sehas
small tree components (including isolated vertices, wkioh trivial trees). Case 1' symbols move components ouf’a
the large (black) component, and Case 2’ symbols add edg@s ®BinceP. (1, 8) and Py (7, 5) are both constants of the
same order, a component gf cannot grow much before it is colored black. This is becahseprobability to add an edge
touching a given component is similar to the probability tmeect the same component to the large component. Now given
that the components @’ remain much smaller than a constant fractionkpfthe probability to introduce a cycle i@’ is
negligible. Thus with high probability a Case 2’ symbol ist medundant. The next theorem formally proves that with high
probability every Case 2’ symbol in the completion phasesaald innovating edge tg’'.

Theorem 12. The probability that a cycle is introduced (by a Case 2’ syintwoa component o’ before the component joins
the main component (by a Case 1’ symbol) tends to zefogazes to infinity.

Proof: Let a random process take an event fr¢fd, Y, x} at each discrete-time instan¢eFor X andY with respective
probabilities Px and Py, the probability thatX occurs beforé” is

o0

> (1-Px - Py)'Px
=0

- Px+ Py

(Any number ofx events are allowed befor&.) For a given component g’ with [vertices, we takeX to be the event
that a new code symbol is a Case 2’ edge that creates a cydhe icomponent, an#f’ to be the event of a Case 1’ symbol
connecting the component to the large componemépresents all other events caused by a new code symbol.\Wdevrite

the probability Py as
l 2
P = et (= 55) -

11

The left multiplicand is the probability that the symbol igg& 2’; the right multiplicand is the probability that bothds of
the G’ edge fall on the sizé-component. The right multiplicand can be interpreted asralitional probability to doubly-hit
a component given the symbol is a Case 2’ symbol. Similahnly, grobability Py is written as

l
1Bk
The left multiplicand is the probability that the symbol isg& 1'; the right multiplicand is the probability that thertesx of
G’ connected to the main component belongs to the ismamponent. The probability that happens befor& is then

PX _ P2’ (maﬁ)
Px+ Py Py(m,B) + S525Py, (m, §)

PY = Pl/(m,ﬁ) (19)

(20)

It is clear that the expression in (20) tendsOt@as k& tends to infinity, so long aB;.(m, 5) and Py (m, 8) are both constants
for any 5, and in additior/ is bounded from above by a function thatoi§:). The former is proved in Corollary 9; the latter
is proved in the following lemma.

Lemma 13. The probability that &' component grows by more thasg k vertices tends to zero asgoes to infinity.

Proof: The proof follows similar lines to the main theorem’s proBér a given component a§’ with [vertices, we now
take Z to be the event that a new code symbol is a Case 2’ edge thaecisnihe component to a different component within
G’. We have
l {1 l H < Py (m, §) 21

- (m, B) ———.
=Pk [=gk 71— pk
Y as before is the event of a Case 1’ symbol connecting that ooem to the large component. Givéy in (19), the
probability thatZ occurslog &k times beforeY” occurs is thus at most

(2Py (m, B))logk
2P2'(m7ﬂ) + Pl/(maﬂ) ’

which clearly tends to zero assuming constaptm, 3) probabilities for any5. m

Since the components 6 at the beginning of the completion phase are of si2€leg k) (Corollary 11), by Lemma 13 their
sizes remairO(log k) throughout the completion phase. This shows thato(k), which is sufficient for (20) to go to zero.
This proves the theoremm

Theorem 12 implies that Case 2’ symbols are not redundahtpritbability tending to 1, hence we have the following resul

.&zpﬂmﬁﬂz

Theorem 14.The expected number of Case 1’ and Case 2’ symbols (combiegdjred to complete decoding in the completion
phase is
(1 —Bo)e

k1=) 1= L 1)

in the limit of largek:.

Proof: The number of symbols left to decode after the build-up pleagrlst, the number of vertices if’. By the definition
of the build-up phase we have

t= k(l - Bo) (22)
According to Theorem 10, the expected number of edge® iat the beginning of the completion phase is
1 1
Ftd= §k(1 — Bo)(1 = Bo)e. (23)

A classical result by Erdés and Rényi states the following
Lemma 15.[6] In a random grapli’ = G(t,d/t) with d < 1, the expected number of connected components equals

t— %d +0(1),

where the tern® (1) depends od, but is a constant not growing with

Lemma 15 is implied by the well known fact that almost all oé thertices in a random graph with< 1 are in connected
components that areees Substitutingt from (22) andtd/2 from (23), the expected number of componentgjirequals
1—
k(1 o) |1 - T2 o)) (22)
where the ternv(1) tends to zero as tends to infinity. By Proposition 1 the number of symbols teeeiver needs to receive
to fully decode equals the number of component§/inwhere we count a received symbol for that purpose only iéduces

12

the number of components by one. Case 1' symbols always eetthecnumber of components by one. By Theorem 12 all but
a vanishing fraction of Case 2’ symbols reduce the numbemaiponents by one. Hence the expected number of Case 1’
and Case 2’ symbols (combined) required in the completicasptequals to

B o) [1 = 05 4 o(1)
1—0(1)

This equals the expression in the theorem statement whends to infinity.
[|
This leads to the main analysis results that now follow.

Theorem 16.For any choice offy < 1, the expected numbeéy¥ of code symbols required for decoding thénput symbols is

bounded by
V2
(&

1++2

N < %ck—i— k(1 — Bo) [1 - %(1 —Bo)c}, (25)

wherec andp, are related by, + e~“%0 = 1.

Proof: The first term in (25) is the expected number of symbols rexkin the build-up phase. This is from random-graph
theory [1, Ch.10], whereby reaching a component of gigk happens when a vertex has on averagelges (the factor /2
is because each edge has two ends). The second term in (2&) éxpected number of symbols received in the completion
phase. The constant factor in the second term is the invérdeedower bound orPy/(m, 5) + Pa(m, 5) from Theorem 8,
which is an upper bound on the expected number of receivethaignper symbol of Case 1’ or 2'm
Choosings, = 0.645 for ending the build-up phase (which gives= 1.6), we get the following corollary.

Corollary 17. The expected redundancy overhead of Constru@igbounded by

N -k
< 0.236.

C. Discussion and comparison

It is important to note that th@.236 upper bound on the expected overhead may be a substantiaéstimate of the true
overhead. While the probabilities of Cases 1’ and 2’ are kméav any 3, our analysis was only able to incorporate the» 1
limit value of (12) as a lower bound. More involved argumeoitsrandom-graph dynamics may tighten this bound. In an
experimental study of the simplified code we observe ovathemaller thar.2, even for relatively short block lengttis We
also observe experimentally that the overhead is not vergitiee to the choice o, to end the build-up phase. A complete
experimental view of on-line fountain codes is deferred fotare publication.

Comparing the proven overhead upper bound of Constructitm Bhown on-line schemes, a significant improvement is
offered. Growth codes [8], the known state-of-the-art ioe-fountain scheme, has an expected overhead that is bddirohe
below byln2 = 0.69 (as explained in the sequel)- three times higher than thepreposal. The growth codes scheme can
be seen as a special case of our simplified scheme, wherelfletiees are chosen to maximize the probability of Case 1’
symbols alone. Therefore, degréesymbols are received until & = 0.5 fraction of black symbols exists (at which point
symbol-decoding probability with degré@esymbols crosses over that probability with degtegymbols). During that phase,
the rate of symbol decoding i3 = (1 — 3)dy, wheredy is an infinitesimal fraction of received symbols. Hence traetion
of received symbolg, required to obtain, = 0.5 can be found by solving the simple integral

[_
w=) g

After that phase, the probability of symbol decoding, foy degreem, is at most.5, thus the remaining.5 fraction of input
symbols will need at least an additioniafraction of received symbols. Adding thisfraction to theln 2 fraction of the first
phase gives & 2 lower bound on overhead.

For the scheme of real-time oblivious codes [2] the authargean upper bound df for the overhead, which is more than
5 times higher than Construction 2.

VI. CONCLUSION

In addition to providing low-overhead on-line fountain etmuctions, the results of this paper open new avenues fareu
research. The most natural direction is attempting to &rthduce the overhead, and at the same time deriving lowerdsoon
the overhead required to attain the on-line property. Aaotmportant extension of this work is to address point-tatipoint
communications, where the encoder strategy needs to bmiapt for multiple receivers simultaneously. Finally, st also
important to consider the effect on the on-line property whee feedback of decoding-state information from the reseio
the sender is limited.

(1]
(2]
(3]
(4]
(5]
(6]

[7]
(8]

El
[10]

[11]
[12]

13

REFERENCES

N. Alon and J. SpenceiThe probabilistic methad Wiley, 2000.

A. Beimel, S. Dolev, and N. singer, “RT oblivious erasurerrecting,”[IEEE/ACM-Trans-Networkingvol. 15, no. 6, pp. 1321-1332, Dec. 2007.

J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A daifountain approach to reliable distribution of bulk daia Proc. ACM SIGCOMM’98
Vancouver BC,Canada, 1998, pp. 56-67.

Y. Cassuto and A. Shokrollahi, “On-line fountain codes emi-random loss channels,” Rroc. IEEE Information Theory Workshoparaty, Brazil,
2011.

J. Considine, “Generating good degree distributionssfearse parity check codes using oracles,” CS DepartmastpB University, Tech. Rep. BUCS-
TR-2001-019, 2001.

P. Erdés and A. Rényi, “On the evolution of random graphn PUBLICATION OF THE MATHEMATICAL INSTITUTE OF THE HUNGARIAN
ACADEMY OF SCIENCES1960, pp. 17-61.

A. Hagedorn, S. Agarwal, D. Starobinski, and A. Trachtery, “Rateless coding with feedback,” iINFOCOM 2009, IEEE2009, pp. 1791-1799.

A. Kamra, V. Misra, J. Feldman, and D. Rubenstein, “Giowbdes: maximizing sensor network data persistenceRrat. ACM SIGCOMM’'06 New
York NY USA, 2006, pp. 255-266.

S. Kokalj-Filipovic, P. Spasojevic, E. Soljanin, and Rates, “ARQ with doped fountain decoding,” Bpread Spectrum Techniques and Applications,
2008. ISSSTA '08. IEEE 10th International Symposium2008, pp. 780-784.

M. Luby, “LT codes,” inProc. of the Annual IEEE Symposium on Foundations of Com@dience FOCSVancouver BC, Canada, 2002, pp. 271-280.
A. Shokrollahi, “Raptor codes|EEE Transactions on Information Thegryol. 52, no. 6, pp. 2551-2567, 2006.

A. Talari and N. Rahnavard, “LT-AF codes: LT codes wittemating feedback,” ifProc. of the IEEE International Symposium on Info. Thedstanbul,
Turkey, July 2013, pp. 2646—2650.

	a.pdf
	IRWIN AND JOAN JACOBS

