
 
 
 
 
 

 

 

IRWIN AND JOAN JACOBS 

CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES 

 

On Correctness of Data 

Structures under Reads-Write 

Concurrency 

 
Kfir Lev-Ari, Gregory Chockler 
and Idit Keidar 

CCIT Report #866 
August 2014 
 

DEPARTMENT OF ELECTRICAL ENGINEERING 

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL 
  

Electronics 
Computers 

Communications 



On Correctness of Data Structures under Reads-Write Concurrency ∗

Kfir Lev-Ari

EE Department

Technion,

Haifa, Israel

kfirla@campus.technion.ac.il

Gregory Chockler

CS Department

Royal Holloway,

University of London, UK

gregory.chockler@rhul.ac.uk

Idit Keidar

EE Department

Technion,

Haifa, Israel

idish@ee.technion.ac.il

Abstract

We study the correctness of shared data structures under reads-write concurrency. A popular ap-
proach to ensuring correctness of read-only operations in the presence of concurrent update, is read-set
validation, which checks that all read variables have not changed since they were first read. In practice,
this approach is often too conservative, which adversely affects performance. In this paper, we intro-
duce a new framework for reasoning about correctness of data structures under reads-write concurrency,
which replaces validation of the entire read-set with more general criteria. Namely, instead of verifying
that all read shared variables still hold the values read from them, we verify abstract conditions over
the shared variables, which we call base conditions. We show that reading values that satisfy some base
condition at every point in time implies correctness of read-only operations executing in parallel with
updates. Somewhat surprisingly, the resulting correctness guarantee is not equivalent to linearizability,
rather, it can express a range of conditions. Here we focus on two new criteria: validity and regularity.
Roughly speaking, the former requires that a read-only operation never reaches a state unreachable in a
sequential execution; the latter generalizes Lamport’s notion of regularity for arbitrary data structures,
and is weaker than linearizability. We further extend our framework to capture also linearizability and
sequential consistency. We illustrate how our framework can be applied for reasoning about correctness
of a variety of implementations of data structures such as linked lists.

1 Introduction

Motivation Concurrency is an essential aspect of computing nowadays. As part of the paradigm shift
towards concurrency, we face a vast amount of legacy sequential code that needs to be parallelized. A
key challenge for parallelization is verifying the correctness of the new or transformed code. There is a
fundamental tradeoff between generality and performance in state-of-the-art approaches to correct par-
allelization. General purpose methodologies, such as transactional memory [14, 25] and coarse-grained
locking, which do not take into account the inner workings of a specific data structure, are out-performed
by hand-tailored fine-grained solutions [21]. Yet the latter are notoriously difficult to develop and verify.
In this work, we take a step towards mitigating this tradeoff.

It has been observed by many that correctly implementing concurrent modifications of a data structure
is extremely hard, and moreover, contention among writers can severely hamper performance [23]. It is
therefore not surprising that many approaches do not allow write-write concurrency; these include the
read-copy-update (RCU) approach [20], flat-combining [13], coarse-grained readers-writer locking [9], and
pessimistic software lock-elision [1]. It has been shown that such methodologies can perform better than
ones that allow write-write concurrency, both when there are very few updates relative to queries [20] and
when writes contend heavily [13]. We focus here on solutions that allow only read-read and read-write
concurrency.

∗This work was partially supported by the Intel Collaborative Research Institute for Computational Intelligence (ICRI-CI),
by the Israeli Ministry of Science, by a Royal Society International Exchanges Grant, and by the Randy L. and Melvin R.
Berlin Fellowship in the Cyber Security Research Program.
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A popular approach to ensuring correctness of read-only operations in the presence of concurrent
updates, is read-set validation, which checks that no shared variables have changed since they were first
read. In practice, this approach is often too conservative, which adversely affects performance. For example,
when traversing a linked list, it suffices to require that the last read node is connected to the rest of the
list; there is no need to verify the values of other traversed nodes, since the operation no longer depends
on them. In this paper, we introduce a new framework for reasoning about correctness of concurrent
data structures, which replaces validation of the entire read-set with more general conditions: instead of
verifying that all read shared variables still hold the values read from them, we verify abstract conditions
over the variables. These are captured by our new notion of base conditions.

Roughly speaking, a base condition of a read-only operation at time t, is a predicate over shared
variables, (typically ones read by the operation), that determines the local state the operation has reached
at time t. Base conditions are defined over sequential code. Intuitively, they represent invariants the
read-only operation relies upon in sequential executions. We show that the operation’s correctness in a
concurrent execution depends on whether these invariants are preserved by update operations executed
concurrently with the read-only one. We capture this formally by requiring each state in every read-only
operation to have a base point of some base condition, that is, a point in the execution where the base
condition holds. In the linked list example – it does not hurt to see old values in one section of the list and
new ones in another section, as long as we read every next pointer consistently with the element it points
to. Indeed, this is the intuition behind the famous hand-over-hand locking (lock-coupling) approach [22, 4].

Our framework yields a methodology for verifiable reads-write concurrency. In essence, it suffices for
programmers to identify base conditions for their sequential data structure’s read-only operations. Then,
they can transform their sequential code using means such as readers-writer locks or RCU, to ensure that
read-only operations have base points when run concurrently with updates.

It is worth noting that there is a degree of freedom in defining base conditions. If coarsely defined, they
can constitute the validity of the entire read-set, yielding coarse-grained synchronization as in snapshot
isolation and transactional memories. Yet using more precise observations based on the data structure’s
inner workings can lead to fine-grained base conditions and to better concurrency. Our formalism thus
applies to solutions ranging from validation of the entire read-set [10], through multi-versioned concurrency
control [6], which has read-only operations read a consistent snapshot of their entire read-set, to fine-grained
solutions that hold a small number of locks, like hand-over-hand locking.

Overview of Contributions This paper makes several contributions that arise from our observation
regarding the key role of base conditions. We observe that obtaining base points of base conditions
guarantees a property we call validity, which specifies that a concurrent execution does not reach local
states that are not reachable in sequential ones. Intuitively, this property is needed in order to avoid
situations like division by zero during the execution of the operation. To avoid returning old values, we
restrict the locations of the base points that can potentially have effect on the return value of a read-only
operation ro to coincide with the return event of an update operation which either immediately precedes,
or is executed concurrently with ro. Somewhat surprisingly, this does not suffice for the commonly-
used correctness criterion of linearizability (atomicity) [15] or even sequential consistency [16]. Rather, it
guarantees a correctness notion weaker than linearizability, similar to Lamport’s regularity semantics for
registers, which we extend here for general objects for the first time.

In Section 2, we present a formal model for shared memory data structure implementations and ex-
ecutions, and define correctness criteria. Section 3 presents our methodology for achieving regularity
and validity: We formally define the notion of a base condition, as well as base points, which link the
sequentially-defined base conditions to concurrent executions. We assert that base point consistency implies
validity, and that the more restricted base point condition, which we call regularity base point consistency,
implies regularity. We proceed to exemplify our methodology for a standard linked list implementation, in
Section 4. In Section 5 we turn to extend the result for linearizability. We introduce two alternative cri-
teria: the first one, called linearizability base point consistency is a direct generalisation of regularity base
point consistency further restricting the base points of non-overlapping read-only operation to respect their
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real-time order. The second one requires the update operations to satisfy a novel single visible mutation
point (SVMP) condition, which along with regularity base point consistency ensures linearizability.

We note that we see this paper as the first step in an effort to simplify reasoning about fine-grained
concurrent implementations. It opens many directions for future research, which we overview in Section 7.

Comparison with Other Approaches The regularity correctness condition was introduced by Lam-
port [17] for registers. To the best of our knowledge, the regularity of a data structure as we present in
this paper is a new extension of the definition.

Using our methodology, proving correctness relies on defining a base condition for every state in a
given sequential implementation. One easy way to do so is to define base conditions that capture the entire
read-set, i.e., specify that there is a point in the execution where all shared variables the operation has
read hold the values that were first read from them. But often, such a definition of base conditions is too
strict, and spuriously excludes correct concurrent executions. Our definition generalizes it and thus allows
for more parallelism in implementations.

Opacity [12] defines a sufficient condition for validity and linearizability, but not a necessary one. It
requires that every transaction see a consistent snapshot of all values it reads, i.e., that all these values
belong to the same sequentially reachable state. We relax the restriction on shared states busing base
conditions.

Snapshot isolation [5] guarantees that no operation ever sees updates of concurrent operations. This
restriction is a special case of the possible base points that our base point consistency criterion defines,
and thus also implies our condition for the entire read-set.

We prove that the SVMP condition along with regularity base point consistency suffices for linearizabil-
ity. There are mechanisms, for example, transactional memory implementations [10], for which it is easy
to see that these conditions hold for base conditions that capture the entire read-set. Thus, the theorems
that we prove imply, in particular, correctness of such implementations.

In this paper we focus on correctness conditions that can be used for deriving a correct data structure
that allows reads-write concurrency from a sequential implementation. The implementation itself may
rely on known techniques such as locking, RCU [20], pessimistic lock-elision [1], or any combinations of
those, such as RCU combined with fine-grained locking [2]. There are several techniques, such as flat-
combining [13] and read-write locking [9], that can naturally expand such an implementation to support
also write-write concurrency by adding synchronization among update operations.

Algorithm designers usually prove linearizability of by identifying a serialization point for every opera-
tion, showing the existence of a specific partial ordering of operations [8], or using rely-guarantee reasoning
[26]. Our approach simplifies reasoning – all the designer needs to do now is identify a base condition for
every state in the existing sequential implementation, and show that it holds under concurrency. This is
often easier than finding and proving serialization points, as we exemplify. In essence, we break up the
task of proving data structure correctness into a generic part, which we prove once and for all, and a
shorter, algorithm-specific part. Given our results, one does not need to prove correctness explicitly (e.g.,
using linearization points or rely-guarantee reasoning, which typically result in complex proofs). Rather,
it suffices to prove the much simpler conditions that read-only operations have base points and updates
have an SVMP, and linearizability follows from our theorems. Another approach that simplifies verifiable
parallelization is to re-write the data structure using primitives that guarantee linearizability such as LLX
and SCX [7]. Whereas the latter focuses on non-blocking concurrent data structure implementations using
their primitive, our work is focused on reads-write concurrency, and does not restrict the implementation;
in particular, we target lock-based implementations as well as non-blocking ones.

2 Model and Correctness Definitions

We consider a shared memory model where each process performs a sequence of operations on shared data
structures. The data structures are implemented using a set X = {x1, x2, ...} of shared variables. The
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shared variables support atomic read and write operations (i.e., are atomic registers), and are used to
implement more complex data structures. The values in the xi’s are taken from some domain V.

2.1 Data Structures and Sequential Executions

A data structure implementation (algorithm) is defined as follows:

• A set of states, S, were a shared state s ∈ S is a mapping s : X → V , assigning values to all shared
variables. A set S0 ⊆ S defines initial states.

• A set of operations representing methods and their parameters. For example, find(7) is an operation.
Each operation op is a state machine defined by:

– A set of local states Lop, which are usually given as a set of mappings l of values to local
variables. For example, for a local state l, l(y) refers to the value of the local variable y in l.
Lop contains a special initial local state ⊥∈ Lop.

– A deterministic transition function τop(Lop × S) → Steps × Lop × S where step∈ Steps is an
atomic transition label, which can be invoke, a ← read(xi), write(xi,v), or return(v):

∗ An invoke changes the initial local state ⊥ into another local state, and does not change
the shared state.

∗ A write(xi, v) changes the local state and changes the value of shared variable xi ∈ X to v.

∗ A a ← read(xi) reads the value of one variable xi ∈ X from the shared state and changes
the local state accordingly (i.e., stores the value of xi in a local variable a).

∗ A return(v) ends the operation by changing the local state to ⊥ and returning v to the
calling process. It does not change the shared state.

Note that there are no atomic read-modify-write steps. Invoke and return steps interact with
the application while read and write steps interact with the shared memory.

We assume that every operation has an isolated state machine, which begins executing from local
state ⊥.

For a transition τ(l, s) = 〈step, l′, s′〉, l determines the step. If step is an invoke, return, or write step,
then l′ is uniquely defined by l. If step is a read step, then l′ is defined by l and s, specifically, read(xi) is
determined by s(xi). Since only write steps can change the content of shared variables, s = s′ for invoke,
return, and read steps.

For the purpose of our discussion, we assume the entire shared memory is statically allocated. This
means that every read step is defined for every shared state in S. One can simulate dynamic allocation in
this model by writing to new variables that were not previously used. Memory can be freed by writing a
special value, e.g., “invalid”, to it.

A state consists of a local state l and a shared state s. By a slight abuse of terminology, in the following,
we will often omit either shared or local component of the state if its content is immaterial to the discussion.

A sequential execution of an operation from a shared state si ∈ S is a sequence of transitions of the
form:

⊥

si
, invoke,

l1

si
, step1,

l2

si+1

, step2, ... ,
lk

sj
, returnk,

⊥

sj
,

where τ(lm, sn) = 〈stepm, lm+1, sn+1〉. The first step is invoke, ensuing steps are read or write steps, and
the last step is a return step.

A sequential execution of a data structure is a (finite or infinite) sequence µ:

µ =
⊥

s1
, O1,

⊥

s2
, O2, ... ,
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where s1 ∈ S0 and every ⊥

sj
, Oj ,

⊥

sj+1
in µ is a sequential execution of some operation. If µ is finite, it can

end after an operation or during an operation. In the latter case, we say that the last operation is pending
in µ. Note that in a sequential execution there can be at most one pending operation.

A read-only operation is an operation that does not perform write steps in any execution. All other
operations are update operations.

A state is sequentially reachable if it is reachable in some sequential execution of a data structure. By
definition, every initial state is sequentially reachable. The post-state of an invocation of operation o in
execution µ is the shared state of the data structure after o’s return step in µ; the pre-state is the shared
state before o’s invoke step. Recall that read-only operations do not change the shared state and execution
of update operations is serial. Therefore, every pre-state and post-state of an update operation in µ is
sequentially reachable. A state st′ is sequentially reachable from a state st if there exists a sequential
execution fragment that starts at st and ends at st′.

In order to simplify the discussion of initialization, we assume that every execution begins with a
dummy (initializing) update operation that does not overlap any other operation.

2.2 Correctness Conditions for Concurrent Data Structures

A concurrent execution fragment of a data structure is a sequence of interleaved states and steps of different
operations, where state consists of a set of local states {li, ..., lj} and a shared state sk, where every li is
a local state of a pending operation. A concurrent execution of a data structure is a concurrent execution
fragment of a data structure that starts from an initial shared state. Note that a sequential execution is a
special case of concurrent execution.

For example, the following is a concurrent execution fragment that starts from a shared state si and
invokes two operations: OA and OB. The first operation takes a write step, and then OB takes a read step.
We subscript every step and local state with the operation it pertains to.

∅

si
, invokeA(),

{l1,A}

si
, writeA(xi, v),

{l2,A}

si+1

, invokeB(),
{l2,A, l1,B}

si+1

, a← readB(xi),
{l2,A, l2,B}

si+1

.

In the remainder of this paper we assume that for all concurrent executions µ of the date structure,
and any two update operations uo1 and uo2 invoked in µ, uo1 and uo2 are not executed concurrently to
each other (i.e., either uo1 is invoked after uo2 returns, or vice versa).

For an execution σ of data structure ds, the history of σ, denoted Hσ, is the subsequence of σ consisting
of the invoke and return steps in σ (with their respective return values). For a history Hσ, complete(Hσ) is
the subsequence obtained by removing pending operations, i.e., operations with no return step, from Hσ.
A history is sequential if it begins with an invoke step and consists of an alternating sequence of invoke
and return steps.

A data structure’s correctness in sequential executions is defined using a sequential specification, which
is a set of its allowed sequential histories.

Given a correct sequential data structure, we need to address two aspects when defining its correctness
in concurrent executions. As observed in the definition of opacity [12] for memory transactions, it is not
enough to ensure serialization of completed operations, we must also prevent operations from reaching
undefined states along the way. The first aspect relates to the data structure’s external behavior, as
reflected in method invocations and responses (i.e., histories):

Linearizability A history Hσ is linearizable [15] if there exists H ′
σ that can be created by adding zero

or more return steps to Hσ, and there is a sequential permutation π of complete(H ′
σ), such that: (1) π

belongs to the sequential specification of ds; and (2) every pair of operations that are not interleaved in σ,
appear in the same order in σ and in π. A data structure ds is linearizable, also called atomic, if for every
execution σ of ds, Hσ is linearizable.
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Regularity We next extend Lamport’s regular register definition [17] for data structures (we do not
discuss regularity for executions with concurrent update operations, which can be defined similarly to
[24]). A data structure ds is regular if for every execution σ of ds, and every read-only operation ro ∈ Hσ,
if we omit all other read-only operations from Hσ, then the resulting history is linearizable.

Sequential Consistency A history Hσ is sequentially consistent [16] if there exists H ′
σ that can be

created by adding zero or more return steps toHσ, and there is a sequential permutation π of complete(H ′
σ),

such that: (1) π belongs to the sequential specification of ds; and (2) every pair of operations that belong
to the same process, appear in the same order in σ and in π. A data structure ds is sequentially consistent,
if for every execution σ of ds, Hσ is sequentially consistent.

Validity The second correctness aspect is ruling out bad cases like division by zero or access to unini-
tialized data. It is formally captured by the following notion of validity : A data structure is valid if every
local state reached in an execution of one of its operations is sequentially reachable. We note that, like
opacity, validity is a conservative criterion, which rules out bad behavior without any specific data structure
knowledge. A data structure that does not satisfy our notion of validity may still be correct in a weaker
sense, e.g., if allowed to abort an operation, which encountered a sequentially unreachable state. We do
not address such an alternative notions of correctness in our discussion.

3 Base Conditions, Validity and Regularity

3.1 Base Conditions and Base Points

Intuitively, a base condition establishes some link between the local state an operation reaches and the
shared variables the operation has read before reaching this state. It is given as a predicate Φ over shared
variable assignments. Formally:

Definition 1 (Base Condition). Let l be a local state of an operation op. A predicate Φ over shared
variables is a base condition for l if every sequential execution of op starting from a shared state s such
that Φ(s) = true, reaches l.

For completeness, we define a base condition for stepi in an execution µ to be a base condition of the
local state that precedes stepi in µ.

Consider a data structure consisting of an array of elements v and a variable lastPos, whose last
element is read by the function readLast. An example of an execution fragment of readLast that starts
from state s1 (depicted in Figure 1) and the corresponding base conditions appear in Algorithm 1. The
readLast operation needs the value it reads from v[tmp] to be consistent with the value of lastPos that it
reads into tmp because if lastPos is newer than v[tmp], then v[tmp] may contain garbage.

v[0] v[1] v[2] ...

35 7 99 ...
lastPos

1

(a) s1

v[0] v[1] v[2] ...

2 7 15 ...
lastPos

1

(b) s2

Figure 1: Two shared states satisfying the same base condition Φ3 : lastPos = 1 ∧ v[1] = 7.

The predicate Φ3 : lastPos = 1 ∧ v[1] = 7 is a base condition of l3 because l3 is reachable from any
shared state in which lastPos = 1 and v[1] = 7 (e.g., s2 in Figure 1), by executing lines 1-2. The base
conditions for every possible local state of readLast are detailed in Algorithm 2.

We now turn to define base points of base conditions, which link a local state with base condition Φ to
a shared state s where Φ(s) holds.
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local state

l1 : {}
l2 : {tmp = 1}
l3 : {tmp = 1, res = 7}

base condition

Φ1 : true
Φ2 : lastPos = 1
Φ3 : lastPos = 1 ∧ v[1] = 7

Function readLast()
tmp← read(lastPos)
res← read(v[tmp])
return(res)

Algorithm 1: The local states and base conditions of readLast when executed from s1. The shared
variable lastPos is the index of the last updated value in array v. See Algorithm 3 for corresponding
update operations.

Shared variables: lastPos, ∀i ∈ N : v[i]

base condition step

Φ1 : true tmp← read(lastPos)
Φ2 : lastPos = tmp res← read(v[tmp])
Φ3 : lastPos = tmp ∧ v[tmp] = res return(res)

Algorithm 2: ReadLast operation. The shared variable lastPos is the index of the last updated value
in array v. See Algorithm 3 for the corresponding update operation.

Definition 2 (Base Point). Let µ be a concurrent execution, ro be a read-only operation executed in µ,
and Φt be a base condition of the local state and step at index t in µ. An execution fragment of ro in µ

has a base point for point t with Φt, if there exists a sequentially reachable post-state s in µ, called a base
point of t, such that Φt(s) holds.

Note that together with Definition 1, the existence of a base point s implies that t is reachable from s

in all sequential runs starting from s.
We say that a data structure ds satisfies base point consistency if every point t in every execution of

every read-only operation ro of ds has a base point with some base condition of t.
The possible base points of read-only operation ro are illustrated in Figure 2. To capture real-time

order requirements we further restrict base point locations.

ro
uo uo uououo uo uo

Figure 2: Possible locations of ro’s base points.

Definition 3 (Regularity Base Point). A base point s of a point t of ro in a concurrent execution µ is a
regularity base point if s is the post-state of either: (1) an update operation that returns in µ after ro’s
invoke step and before ro’s return step; or (2) the last update operation that returns before ro’s invoke step
in µ.

The possible regularity base points of a read-only operation are illustrated in Figure 3. We say that
a data structure ds satisfies regularity base point consistency if every return step t in every execution of
every read-only operation ro of ds has a regularity base point with a base condition of t. Note that the
base point location is only restricted for the return step, since the return value is determined by its state.

ro
uo uo uououo uo

Figure 3: Possible locations of ro’s regularity base points.

In Algorithm 3 we see two versions of an update operation: writeSafe guarantees the existence of a
base point for every local state of readLast (Algorithm 1), and writeUnsafe does not. As shown in Section
3.2, writeUnsafe can cause a concurrent readLast operation interleaved between its two write steps to see
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Function writeSafe(val)
i ← read(lastPos)
write(v[i+ 1], val)
write(lastPos, i+ 1)

Function writeUnsafe(val)
i ← read(lastPos)
write(lastPos, i+ 1)
write(v[i+ 1], val)

Algorithm 3: Unlike writeUnsafe, writeSafe ensures a regularity base point for every local state of
readLast ; it guarantees that any concurrent readLast operation sees values of lastPos and v[tmp] that
occur in the same sequentially reachable post-state. It also has a single visible mutation point (as defined
in Section 5), and hence linearizability is established.

values of lastPos and v[lastPos] that do not satisfy readLast ’s return step’s base condition, and to return
an uninitialized value.

3.2 Satisfying the Regularity Base Point Consistency

Let us examine the possible concurrent executions an invocation ro of readLast (Algorithm 1) and an
invocation uo of writeSafe (Algorithm 3) with parameter 80 starting from s1 (Figure 1). There are four
possible interleavings of write steps of uo and read steps of ro starting from s1 shown in Algorithm 4. In
each of them, ro returns 7, and s1 is the base point of its last local state.

µ1 :
readro(lastPos)
readuo(lastPos)
writeuo(v[2], 80)
writeuo(lastPos, 2)
readro(v[1])
returnro(7)

µ2 :
readro(lastPos)
readuo(lastPos)
writeuo(v[2], 80)
readro(v[1])
returnro(7)
writeuo(lastPos, 2)

µ3 :
readuo(lastPos)
writeuo(v[2], 80)
readro(lastPos)
writeuo(lastPos, 2)
readro(v[1])
returnro(7)

µ4 :
readuo(lastPos)
writeuo(v[2], 80)
readro(lastPos)
readro(v[1])
returnro(7)
writeuo(lastPos, 2)

Algorithm 4: Four interleaved executions of invocation ro of readLast and invocation uo of
writeSafe that start from s1.

v[0] v[1] v[2] ...

35 7 80 ...
lastPos

2

Figure 4: The shared state s′1. It is the post-state after executing writeSafe or writeUnsafe from s1
(Figure 1) with initial value 80.

Now let us examine a concurrent execution consisting of readLast and writeUnsafe (Algorithm 3), in
which readLast reads a value from lastPos right after writeUnsafe writes to it. In Algorithm 5 we see such
an execution that starts from s1. The last local state of ro is l′3 = {tmp = 2, res = 99}. Neither s1 and s′1
(Figure 4) satisfies Φ′

3 : lastPos = 2 ∧ v[2] = 99, meaning that l′3 does not have a base point with Φ′
3.

readseq(lastPos)
writeseq(lastPos, 2)
readro(lastPos)
readro(v[2])
returnro(99)
writeseq(v[2], 80)

Algorithm 5: A possible concurrent execution consisting of readLast and writeUnsafe, starting from s1.

Below we show that this is not an artifact of our choice of a base condition – we prove that for every
base condition Φ′

3 of l′3, both Φ′
3(s1) and Φ′

3(s
′
1) are false.
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Lemma 1. A data structure that has both writeUnsafe and readLast is not regularity base point consistent.

Proof. Given the execution of Algorithm 5 that starts from the shared state s1 and ends in shared
state s′1, we assume by contradiction that there is such a base condition of l′3 = {tmp = 2, res = 99} that
is satisfied by s1 or s′1. By the definition of base condition, if we execute readLast sequentially from a
shared state that satisfies l′3’s base condition, we reach l′3. But if we execute readLast from s1 we reach
l3 : {tmp = 1, res = 7} and if we execute from s′1 we reach l′′3 : {tmp = 2, res = 80}. A contradiction.

3.3 Deriving Correctness from Base Points

We start by proving that the base point consistency implies validity.

Theorem 1 (Validity). If a data structure ds satisfies base point consistency, then ds is valid.

Proof. In order to prove that ds is valid, we need to prove that for every execution µ of ds, for any
operation op ∈ µ of ds, every local state is sequentially reachable. If µ is a sequential execution then the
claim holds. If op is an update operation, since every update operation is executed sequentially starting
from a sequentially reachable post-state, then every local state of op is sequentially reachable. Now we
prove for op that is a read-only operation in concurrent execution µ. Given that the data structure satisfies
the base point consistency, every local state l of every read-only operation in µ has a base point sbase. In
order to show that l is sequentially reachable, we build a sequential execution µ′ that starts from the same
initial state as µ and consists of the same update operations that appear in µ until sbase. Then we add a
sequential execution of op. Since sbase is a base point of l, l is reached in µ′ and therefore is sequentially
reachable.

We now prove that the regularity base point consistency implies regularity.

Lemma 2. Let µ be a concurrent execution of a data structure ds. Let ro be a read-only operation of
ds executed in µ, which returns v. If ds satisfies regularity base point consistency then there exists a
sequentially reachable shared state s in µ such that: (1) s is the post-state of some update operation that is
either concurrent with ro or is the last before ro is invoked; and (2) when executing ro from s, its return
value is equal to v.

Proof. Let l be the local state that precedes ro’s return step. Since τ is deterministic, its return value v is
fully determined by l, and every execution of ro that reaches l returns v. Given that ds satisfies regularity
base point consistency, l, which is the last local state of ro, has a regularity base point for some base
condition Φ of l. Let s denote a base point of l for Φ in µ. By the definition of a regularity base point, the
shared state s is the post-state of some update operation that is either concurrent with ro or is the last
before ro is invoked, and Φ(s) is true. By the definition of base condition Φ, we get that l is reached in
ro’s sequential execution from s, that is, when ro is sequentially executed from s, its return value is v.

Theorem 2 (Regularity). If a data structure ds satisfies regularity base point consistency, then ds is
regular.

Proof. In order to prove that ds is regular, we need to show that for every concurrent execution µ of ds
with history Hµ, for any read-only operation ro ∈ Hµ, if we omit all other read-only operations from Hµ,
the resulting history Hro

µ is linearizable. Recall that update operations are executed sequentially.
If µ includes only update operations then µ vacuously satisfies the condition. Otherwise, let ro be a

read-only operation in µ. If ro is pending in µ, we build a sequential history by removing ro’s invocation
from Hro

µ , which is allowed by the definition of linearizability.
Consider now a read-only operation ro that returns in µ. Since every return step of ro has a regularity

base point in µ, by Lemma 2, we get that there is a shared state s in µ from which ro’s sequential execution
returns the same value as in µ, and s is the post-state of some update operation that is either concurrent
with ro or is the last before ro is invoked. We build a sequential execution µro

seq from the sequence of
update operations in µ with ro added at point s. Then µro

seq is a sequential execution of ds, which belongs
to the sequential specification. Every pair of operations that are not interleaved in µ appear in the same
order in µro

seq. Therefore, H
ro
µ is linearizable.
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4 Using Our Methodology

We now demonstrate the simplicity of using our methodology. Based on Theorems 1 and 2 above, the proof
for correctness of a data structure (such as a linked list) becomes almost trivial. We look at three linked
list implementations – one assuming managed memory, (i.e., automatic garbage collection, Algorithm 6),
one using read-copy-update methodology (Algorithm 7), and one using hand-over-hand locking (Algorithm
8).

For Algorithm 6, we first prove that the listed predicates are indeed base conditions, and next we prove
that it satisfies the base point consistency and the regularity base point consistency. By doing so, and
based on Theorems 1 and 2, we get that the algorithm satisfy both validity and regularity.

Consider a linked list node stored in local variable n (we assume the entire node is stored in n, including

the value and next pointer). Here, head
∗
⇒ n denotes that there is a set of shared variables {head, n1, ..., nk}

such that head.next = n1 ∧ n1.next = n2 ∧ ... ∧ nk = n, i.e., that there exists some path from the shared
variable head to n. Note that n is the only element in this predicate that is associated with a specific read
value. We next prove that this defines base conditions for Algorithm 6.

Lemma 3. In Algorithm 6, Φi defined therein is a base condition of the ith step of readLast.

Proof. For Φ1 the claim is vacuously true. For Φ2, let l be a local state where readLast is about to
perform the second read step in readLast ’s code, meaning that l(next) 6=⊥. Note that in this local state

both local variables n and next hold the same value. Let s be a shared state in which head
∗
⇒ l(n). Every

sequential execution from s iterates over the list until it reaches l(n), hence the same local state where
n = l(n) and next = l(n) is reached.

For Φ3, Let l be a local state where readLast has exited the while loop, hence l(n).next =⊥. Let s be a

shared state such that head
∗
⇒ l(n). Since l(n) is reachable from head and l(n).next =⊥, every sequential

execution starting from s exits the while loop and reaches a local state where n = l(n) and next =⊥.

Lemma 4. In Algorithm 6, if a node n is read during concurrent execution µ of readLast, then there is
a shared state s in µ such that n is reachable from head in s and readLast is pending.

Proof. If n is read in operation readLast from a shared state s, then s exists concurrently with readLast.
The operation readLast starts by reading head, and it reaches n.

Thus, n must be linked to some node n′ at some point during readLast. If n was connected (or added)
to the list while n′ was still reachable from the head, then there exists a state where n is reachable from
the head and we are done. Otherwise, assume n is added as the next node of n′ at some point after n′ is
already detached from the list. Nodes are only added via insertLast, which is not executed concurrently
with any remove operation. This means nodes cannot be added to detached elements of the list. A
contradiction.

Function remove(n)
p ← ⊥
next ← read(head.next)
while next 6= n

p ← next

next← read(p.next)
write(p.next, n.next)

Function insertLast(n)
last ← readLast()
write(last.next, n)

Base conditions:

Φ1 : true

Φ2 : head
∗
⇒ n

Φ3 : head
∗
⇒ n

Function readLast()
n ← ⊥
next ← read(head.next)
while next 6=⊥

n ← next

next← read(n.next)
return(n)

Algorithm 6: A linked list implementation in a memory-managed environment. For simplicity, we do
not deal with boundary cases: we assume that a node can be found in the list prior to its deletion, and
that there is a dummy head node.
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(c) rcuRemove(nk)’s post-state.

Figure 5: Shared states in a concurrent execution consisting of rcuRemove(nk) and rcuReadLast (ro).

The following lemma, combined with Theorem 2 above, guarantees that Algorithm 6 satisfies regularity.

Lemma 5. Every local state of readLast in Algorithm 6 has a regularity base point.

Proof. We show regularity base points for predicates Φi, proven to be base points in Lemma 3.
The claim is vacuously true for Φ1. We now prove for Φ2 and Φ3 : head

∗
⇒ n. By Lemma 4 we get that

there is a shared state s where head
∗
⇒ n and readLast is pending. Note that n’s next field is included in

s as part of n’s value. Since both update operations - remove and insertLast - have a single write step,
every shared state is a post-state of an update operation. Specifically this means that s is a sequentially
reachable post-state, and because readLast is pending, s is one of the possible regularity base points of
readLast.

RCU Read-copy-update [20] is a synchronization strategy that aims to reduce read operations’ synchro-
nization overhead as much as possible, while risking a high synchronization overhead for update operations.
The idea is that only update operations require locks, and the writes mutate the data structure in a way
that ensures that concurrent readers always see a consistent view. Additionally, writers do not free data
while it is used by readers. Note that RCU does not allow write-write concurrency.

RCU is commonly used via primitives that resemble readers-writer locks [3]: rcuReadLock and rcuRead-
UnLock. There are other primitives that encapsulate list traversal, but we do not use them in our example
since we wish to illustrate the general approach. Instead, we use primitives that are commonly used for
creating RCU-protected non-list data structures (such as arrays and trees): rcuWrite(p, v) (originally
called rcuAssignPointer), and rcuRead(p) (originally called rcuDereference) [19].

Function rcuRemove(n)
p ← ⊥
next ← read(head.next)
while next 6= n

p ← next

next← read(p.next)
rcuWrite(p.next, n.next)
rcuWaitForReaders()
write(n, invalid)

Function insertLast(n)
last ← readLast()
write(last.next, n)

Base conditions:

Φ1 : true

Φ2 : head
∗
⇒ n

Φ3 : head
∗
⇒ n

Function rcuReadLast()
rcuReadLock()
n←⊥
next← rcuRead(head.next)
while next 6=⊥

n ← next

next← rcuRead(n.next)
rcuReadUnlock()
return(n)

Algorithm 7: An RCU linked list implementation. For simplicity, we do not deal with boundary cases:
we assume that a node can be found in the list prior to its deletion, and that there is a dummy head
node.

In Algorithm 7, rcuWrite is a write step that changes the next pointer of n’s predecessor, and it occurs
between the shared states (a) and (b) in Figure 5. The invalidation of n takes place once all read-only
operations that use n no longer hold a reference to it, as guaranteed by rcuWaitForReaders(). The latter

11



happens between the shared states of (b) and (c). The rcuReadLast operation holds at most a single
reference to list node at a given time, and our base condition links head to it. We see in Figure 5 that
invalid nodes are unreachable from head in sequentially reachable post-states. Thus, the base condition
head

∗
⇒ n implies that ro never holds a pointer to an invalid node.

The correctness of the base conditions annotated in Algorithm 7 follows the same reasoning as Lemma
3, and hence we omit it here. We now prove that Algorithm 7 satisfies regularity base point consistency,
and therefore by Theorems 1 and 2, Algorithm 7 satisfies validity and regularity.

Lemma 6. In Algorithm 7, if a node n is read during concurrent execution µ of rcuReadLast, then there
is a state where the shared state is s in µ such that n is reachable from head in s and ro is pending.

Proof. If n is read in operation rcuReadLast from a shared state s, then s exists concurrently with
rcuReadLast. The operation rcuReadLast starts by reading head, and it reaches n.

Thus, n must be linked to some node n′ at some point during rcuReadLast. If n was connected (or
added) to the list while n′ was still reachable from the head, then there exists a state where n is reachable
from the head and we are done. Otherwise, assume n is added as the next node of n′ at some point after n′

is already detached from the list. Nodes are only added via insertLast, which is not executed concurrently
with any rcuRemove operation. This means nodes cannot be added to detached elements of the list. A
contradiction.

Lemma 7. Every local state of rcuReadLast in Algorithm 7 has a regularity base point.

Proof. We show regularity base points for predicates Φi, proven to be base points in Lemma 3. The
claim is vacuously true for Φ1.

We now prove for Φ2 and Φ3 : head
∗
⇒ n. Every read step is encapsulated by rcuRead, and is surrounded

by rcuReadLock and rcuReadUnlock. These calls guarantee that as long as the reader holds a reference to
the value it read using rcuRead, the value cannot be changed by the write step of rcuRemove that removes
a node from the list. In addition, rcuRemove waits for all readers to forget a node before invalidating it,
and invalidates it only after the node is not reachable. Therefore, it is guaranteed that every node that
is read is valid. In addition, Lemma 6 guarantees that there is a shared state s where head

∗
⇒ n and

rcuReadLast is pending. Note that n’s next field is included in s as part of n’s value. Since the invalidation
is not visible to the readers, the post-state of rcuRemove and the shared state after rcuWaitForReaders()
are indistinguishable to the readers. The operation insertLast has one write step have a single write step
and therefore it is always found between two sequentially reachable shared states.

In conclusion, every shared state is a post-state of an update operation from every reader perspective.
Specifically this means that s is a sequentially reachable post-state, and because rcuReadLast is pending,
s is one of the possible regularity base points of rcuReadLast.

hand-over-hand locking In hand-over-hand locking, a data structure is traversed by holding a lock to
the next node in the traversal before unlocking the previous one.

In Algorithm 8 we give a linked list implementation using hand-over-hand locking. The locks used
therein are readers-writer locks [18], where write locks are exclusive and multiple threads can obtain read
locks concurrently. We define a lock for every shared variable xi ∈ X, and extend the model with lock(xi)
and unlock({xi1 , xi2 , ...}) steps. The correctness of the base conditions annotated in Algorithm 8 follows
the same reasoning as Lemma 3, and hence we omit it here. The reachable post-states in Figure 5 are (a)
and (c). State (b) does not occur in this implementation since ro cannot access n concurrently with an
update operation that holds n’s lock. In the following lemma we prove that Algorithm 8 satisfies regularity
base point consistency.

Lemma 8. In Algorithm 8, if a node n is read during concurrent execution µ of hohReadLast, then there
is a state where the shared state is s in µ such that n is reachable from head in s and ro is pending.

Proof. If n is read in operation hohReadLast from a shared state s, then s exists concurrently with
hohReadLast. The operation hohReadLast starts by reading head, and it reaches n.
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Function hohRemove(n)
p ← ⊥
lock(head.next)
next ← read(head.next)
while next 6= n

p ← next

lock(p.next)
unlock(p)
next← read(p.next)

write(p.next, n.next)
lock(n)
invalidate(n)
unlock(n, p)

Function insertLast(n)
last ← readLast()
write(last.next, n)

Base conditions:

Φ1 : true

Φ2 : head
∗
⇒ n

Φ3 : head
∗
⇒ n

Function hohReadLast()
n ← ⊥
lock(head.next)
next ← read(head.next)
while next 6=⊥

n ← next

lock(n.next)
next← read(n.next)
unlock(n)

unlock(next)
return(n)

Algorithm 8: A linked list implementation using hand-over-hand locking. For simplicity, we do not deal
with boundary cases: we assume that a node can be found in the list prior to its deletion, and that there
is a dummy head node.

Thus, n must be linked to some node n′ at some point during hohReadLast. If n was connected (or
added) to the list while n′ was still reachable from the head, then there exists a state where n is reachable
from the head and we are done. Otherwise, assume n is added as the next node of n′ at some point after n′

is already detached from the list. Nodes are only added via insertLast, which is not executed concurrently
with any hohRemove operation. This means nodes cannot be added to detached elements of the list. A
contradiction.

Lemma 9. Every local state of hohReadLast in Algorithm 8 has a regularity base point.

Proof. We show regularity base points for predicates Φi, proven to be base points in Lemma 3. The
claim is vacuously true for Φ1.

We now prove for Φ2 and Φ3 : head
∗
⇒ n. In hohReadLast, the reader reads a node only after locking

it. Thus, the invalidation of that node is not visible to the readers due to the locking that hohRemove
performs before any write step, meaning that the post-state of hohRemove and the shared state after the
first write step of hohRemove are indistinguishable to the readers. Therefore, the reader only sees valid
nodes. In addition, Lemma 8 guarantees that there is a shared state s where head

∗
⇒ n and hohReadLast

is pending. Note that n’s next field is included in s as part of n’s value.
The operation insertLast has one write step have a single write step and therefore it is always found

between two sequentially reachable shared states.
In conclusion, every shared state is a post-state of an update operation from every reader perspective.

Specifically this means that s is a sequentially reachable post-state, and because hohReadLast is pending,
s is one of the possible regularity base points of hohReadLast.

5 Linearizability

We first show that regularity base point consistency is insufficient for linearizability. In Figure 6 we show
an example of a concurrent execution where two read-only operations ro1 and ro2 are executed sequentially,
and both have regularity base points. The first operation, ro1, reads the shared variable first name and
returns Joe, and ro2 reads the shared variable surname and returns Doe. An update operation uo updates
the data structure concurrently, using two write steps. The return step of ro1 is based on the post-state
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of uo, whereas ro2’s return step is based on the pre-state of uo. There is no sequential execution of the
operations where ro1 returns Joe and ro2 returns Doe.

uo

Shared variables:

first name = Ron 

surname = Doe

Shared variables:

first name =  John

 surname = Smithwrite(first name, John) write(surname, Smith)

return surname:

return(Doe)

ro2

return first name: 

return(John)

ro1

Figure 6: Every local state of ro1 and ro2 has a regularity base point, and still the execution is not
linearizable. If ro1 and ro2 belong to the same process, then the execution is not even sequentially
consistent.

Thus, an additional condition is required for linearizability. We suggest two possibilities: the first is
linearizability base point consistency - this condition adds a restriction to the possible locations of the
regularity base points, and is suffice for linearizability by itself. The second is single visible mutation point
(SVMP), which adds a restriction regarding the behaviour of update operations. A data structure that
satisfies SVMP and regularity base point consistency is linearizable.

5.1 Linearizability Base Point Consistency

Recall that in order to satisfy linearizability, a data structure needs to guarantee that for every concurrent
execution µ there is an equivalent sequential execution µseq such that the order between non-interleaved
operations in µ is preserved in µseq. One way to ensure this is to determine that the order between the
regularity base points has to follow the order of non-interleaved read-only operations.

We say that a data structure ds satisfies linearizability base point consistency if it satisfies the regularity
base point consistency, and for every concurrent execution µ in which a read-only operation ro1 of ds
precedes a read-only operation ro2 of ds, the return step of ro1 has a regularity base point in µ that
precedes or equals to ro2’s return step’s regularity base point in µ.

Notice that base point consistency, regularity base point consistency and linearizability base point
consistency, are a sequence in which each condition is a subset of the previous one in terms of possible
base point locations. This construction of criteria for data structures correctness follow the construction of
Lamport for safe, regular and atomic registers [17]. The connection between regular and linearizable data
structures, (as defined by regularity and linearizability base point consistency), reflects the one between
regular and atomic registers. Notice that safe data structure can be defined in the same sense.

Theorem 3 (Linearizability). If a data structure ds satisfies linearizability base point consistency, then
ds is linearizable.

Proof. Given a concurrent execution µ of ds, we create a total ordering σ of operations in µ as follows:

• The order of the update operations in σ is the same as their order in µ.

• Let ro be a read-only operation in µ which returns v. Since ds satisfies regularity base point consis-
tency, by Lemma 2, there exists a sequentially reachable state s, which is a post-state of an update
operation uo such that uo is either concurrent with ro, or returns before ro is invoked, and the return
value of ro is v if it is executed sequentially from s. We therefore, insert immediately the return step
of uo, and (2) completes before any uo′ which follows uo in σ is invoked. If two read-only operations
ro1 and ro2 share the same post-state s, and ro1 returns before ro2 is invoked in µ, then ro1 is
placed before ro2 in σ. Otherwise, the order between them is arbitrary provided they are inserted
sequentially one after the other, and none of them is inserted after uo′ is invoked.
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Since by Lemma 2, the return value of each ro is the same as the one that will be returned in a
sequential execution of ro if it is invoked after the write operation immediately preceding ro in σ, σ is a
valid sequential execution of ds.

It remains to show that σ preserves the relative order of each pair of non-overlapping operations in µ.
First, it is easy to see that the order of each pair of operations op1 and op2 such that either both op1 and
op2 are updates, or exactly one of them is an update, and the the other one is read-only is the same in
both µ and σ.

Let ro1 and ro2 be two complete read-only operations in µ such that ro1 returns before ro2 is invoked
in µ; and ro1’s base point s1 is distinct from ro2’s base point s2 such that s1 and s2 are post-states of
update operations uo1 and uo2 respectively.

Assume by way of contradiction that ro2 precedes ro1 in σ. By construction of σ, uo2, (resp., uo1),
is the last update operation preceding ro2 (resp., ro1). Also, by construction, uo2 must precede uo1 in µ,
and their respective post-states s2 and s1 are base points of ro2 and ro1 respectively. However, since s2
is reached earlier than s1, by linearizability base point consistency, ro2 must precede ro1 in µ, which is a
contradiction.

We conclude that σ is a valid sequential execution of ds, which preserves the order of all non-overlapping
operations in µ. Therefore, the history H of σ belongs to the sequential specification of ds, and preserves
the order of all non-overlapping operations in µ. Hence, H is a linearization of µ.

5.2 SVMP

The SVMP condition is related to the number of visible mutation points an execution of an update operation
has. Intuitively, a visible mutation point in an execution of an update operation is a write step that writes
to a shared variable that might be read by a concurrent operation. A more formal definition ensues.

SVMP combined with regularity base point consistency ensures linearizability. The set of data struc-
tures that satisfy those two conditions is a subset of the set of data structures that satisfy linearizability
base point consistency, (i.e., if SVMP and regularity base point consistency is satisfied then linearizability
base point consistency is satisfied as well, but the opposite is not always true). The reason for defining
SVMP is that it has weaker demands from the read operations and it is easier to work with.

Let α be an execution fragment of op starting from a shared state s. We define αt as the shortest prefix
of α including t steps of op, and we denote by stepsop(α) the subsequence of α consisting of the steps of
op in α. We say that αt and αt−1 are indistinguishable to a concurrent read-only operation ro if for every
concurrent execution µt starting from s and consisting only of steps of ro and αt, and concurrent execution
µt−1 starting from s and consisting only of steps of ro and αt−1, stepsro(µt) = stepsro(µt−1). In other
words, ro’s executions are not affected by the tth step of op.

If αt and αt−1 are indistinguishable to a concurrent read-only operation ro, then point t is a silent point
for ro in α. A point that is not silent is a visible mutation point for ro in α.

Definition 4 (SVMP condition). A data structure ds satisfies the SVMP condition if for each update
operation uo of ds, in every execution of uo from every sequentially reachable shared state: (1) uo has at
most one visible mutation point, for all possible concurrent read-only operations ro of ds; and (2) if two
points MP and MP’ of uo are the visible mutation points for ro and ro′ respectively, then MP=MP’.

Note that a read-only operation may see mutation points of multiple updates. Hence, if a data structure
satisfies the SVMP condition and not base point consistency, it is not necessarily linearizable. For example,
in Figure 7 we see two sequential single visible mutation point operations, and a concurrent read-only
operation ro that counts the number of elements in a list. Since ro only sees one element of the list, it
returns 1, even though there is no shared state in which the list is of size 1. Thus, the execution is not
linearizable or even regular.

Intuitively, if a data structure ds satisfies the SVMP condition, then each SVMP’s post-state and the
operation’s post-state are indistinguishable from the perspective of any concurrent read-only operation. If
ds also satisfies regularity base point consistency, then the visible mutation point condition guarantees that
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Figure 7: Every update operation has a single visible mutation point, but the execution is not linearizable.

the order among base points of non-interleaved read-only operations preserves the real time order among
those operations.

In Algorithm 6, the remove operation has a single visible mutation point, which is the step that writes
to p.next. Thus, from Theorem 4 below, this implementation is linearizable.

Lemma 10. If a data structure ds satisfies the SVMP condition, then for every execution µ of ds, for
every update operation uo in µ, the post-state of uo satisfies a base condition of a step s of operation o if
and only if the post-state of uo’s SVMP satisfies a base condition of s.

Proof. By SVMP definition, each step in stepsuo(µ) after the SVMP of uo is a silent point. Thus, if we
prove that the shared state that is a pre-state of a silent point satisfies a base condition of a step s if and
only if its post-state satisfies a base-condition of s as well, the claim will follow.

Assume by way of contradiction, W.L.O.G., that the shared state that is a pre-state of a silent point sp
satisfies a base condition of a step s of an operation o and that the post-state of the sp does not satisfy a
base condition of s. Thus, by definition of base condition, we can build a concurrent execution σ from some
initial shared state that consists of uo’s execution until the pre-state of sp is reached and then execution
of o until it reaches s.

We can build another concurrent execution that starts from the same shared state as σ, in which uo is
executed until it reaches sp, and from sp’s post state we execute o. Since sp’s post state does not satisfies
any base condition of s, the execution of o does not reach s. These two executions are not indistinguishable,
in contradiction to sp being a silent point.

For steps or states n and m, the notation n <µ m denotes that n appears before m in µ, and n ≤µ m

if n <µ m or n and m are the same state/step. For operations o1 and o2, the notation o1 <µ o2 denotes
that o1 returns before o2 is invoked in µ.

Theorem 4 (SVMP Linearizability). If a data structure ds satisfies the SVMP condition and the regularity
base point consistency then ds is linearizable.

Proof. Let µ be a concurrent execution of ds. We build a linearization µseq of µ in the following way:
we start with he sequence of update operations appearing in the same order as in µ, then we add every
read-only operation ro from µ as follows: (1) ro is invoked in µseq from its first regularity base point; and
(2) the order of read-only operations that have the same base point follows their invocation order in µ.

Since µseq is defined as a sequential execution starting from an initial shared state of the ds, µseq

satisfies the sequential specification of ds.
It is given that every read-only operation in µ has a regularity base point and is executed sequentially

from it in µseq, so every read-only operation’s return step is identical in both executions.
Since each read-only operation ro is executed from a regularity base point, ro’s order is preserved in

µseq relative to every update operation that dose not overlap ro in µ.
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It remains to show that our ordering of read-only operations according to their first regularity base
point does not contradict their order in µ. Assume by way of contradiction that there are two read-only
operations, ro1 and ro2, s.t. ro1 <µ ro2 and ro2 <µseq

ro1. Let uo1 be the operation that has the last
SVMP that precedes ro1’s return step in µ, and let uo2 be the operation with the last SVMP that precedes
ro2’s invoke step in µ.

Since ro2 <µseq
ro1, by construction of µseq, uo2 <µseq

uo1, and therefore, SVMP2 <µSVMP1. Given
that ro1 <µ ro2, there are only two ways they can be positioned relative to SVMP1 in µ: First, if ro1
overlaps SVMP1 and since SVMP2 <µ SVMP1, then SVMP2 is not the latest SVMP preceding ro2 in µ,
and therefore, by Definition 3 it is not a regularity base point. Otherwise, SVMP1 is necessarily located
after the return step of ro1, and therefore, by Definition 3 SVMP1 cannot be ro1’s regularity base point.
A contradiction.

6 Sequential Consistency

Some systems use the correctness criterion of sequential consistency [16], which relaxes linearizability by
not requiring real time order (RTO) between operations of different processes.

Note that sequential consistency and regularity are incomparable: Regularity does not impose RTO
on read-only operations even if they belong to the same process, while in sequential consistency, the RTO
of read-only operations of the same process is preserved. On the other hand, regularity enforces the RTO
between an update operation and every other operation, while sequential consistency allows re-ordering of
operations executed by different processes.

We say that a data structure ds satisfies sequentially base point consistency if it satisfies the base point
consistency, and for every concurrent execution µ in which a read-only operation ro1 of ds precedes a
read-only operation ro2 of ds and both belong to the same process, the return step of ro1 has a base point
in µ that precedes or equals to ro2’s return step’s base point in µ.

We now prove that the loose snapshot condition along with the SVMP condition ensures sequential
consistency.

Lemma 11. Let µ be a concurrent execution such that: (1) µ starts from a sequentially reachable post-state
s; and (2) every return step of every read-only operation in µ has a base point ; and (3) for every read-only
operation ro1 that precedes a read-only operation ro2 of the same process, the return step of ro1 has a base
point in µ that precedes or equals to ro2’s return step’s base point in µ.

Then there is a sequential execution µseq such that: (1) µseq and µ contain the same operations; and
(2) for every process, all its operations appear in the same order in µseq and in µ.

Proof. We build a sequential execution µseq in the following way: (1) µseq starts from the same shared
state s as µ. I t is given that s is sequentially reachable. (2) All update operations in µ appear in the
same order in µseq. (3) Every read-only operation ro in µ is executed in µseq from a post-state that is
a base point of the return step of ro. It is given that for operations of the same process, different base
points appear in the execution in the same order as the operations do. Therefore if there are multiple
possibilities for a base point, the operation is executed from the base point according to the that order.
Read-only operations of the same process that have the same base point are executed from it at the same
order in µseq as in µ. (4) The order of read-only operations that do not belong to the same process and
are executed from the same base point is arbitrary.

Since only update operations can change the shared state and their sequential order is the same in
both executions, every update operation is executed in µseq from the same shared state as in µ. By the
definitions of base point and base condition we get that every read-only operation in µseq returns the same
value in µseq as in µ – ro is executed from a shared state that is a base point of its return step, and the
last local state determines ro’s return value.

Theorem 5 (Sequential consistency). If a data structure ds satisfies sequentially base point consistency,
then ds is sequentially consistent.

17



Proof. Let µ be a concurrent execution of ds. By Lemma 11 we get that there is a sequential execution
µseq, such thatHµseq

is a permutation of complete(Hµ) that belongs to the sequential specification of ds and
keeps the RTO of operations that belong to the same process in µ. Thus ds is sequentially consistent.

7 Conclusions and Future Directions

We introduced a new framework for reasoning about correctness of data structures in concurrent executions,
which facilitates the process of verifiable parallelization of legacy code. Our methodology consists of
identifying base conditions in sequential code, and ensuring regularity base points for these conditions
under concurrency. This yields two essential correctness aspects in concurrent executions – the internal
behaviour of the concurrent code, which we call validity, and the external behaviour, in this case regularity,
which we have generalized here for data structures. Linearizability is guaranteed if the implementation
further satisfies either the SVMP condition, or linearizability base point consistency.

We believe that this paper is only the tip of the iceberg, and that many interesting connections can
be made using the observations we have presented. For a start, a natural expansion of our work would
be to consider also multi-writer data structures. Another interesting direction to pursue is to use our
methodology for proving the correctness of more complex data structures than the linked lists in our
examples.

Currently, using our methodology involves manually identifying base conditions. It would be interesting
to create tools for suggesting a base condition for each local state. One possible approach is to use a
dynamic tool that identifies likely program invariants, as in [11], and suggests them as base conditions.
Alternatively, a static analysis tool can suggest base conditions, for example by iteratively accumulating
read shared variables and omitting ones that are no longer used by the following code (i.e., shared variables
whose values are no longer reflected in the local state).

Another interesting direction for future work might be to define a synchronization mechanism that uses
the base conditions in a way that is both general purpose and fine-grained. A mechanism of this type will
use default conservative base conditions, such as verifying consistency of the entire read-set for every local
state, or two-phase locking of accessed shared variables. In addition, the mechanism will allow users to
manually define or suggest finer-grained base conditions. This can be used to improve performance and
concurrency, by validating the specified base condition instead of the entire read-set, or by releasing locks
when the base condition no longer refers to the value read from them.

From a broader perspective, we showed how correctness can be derived from identifying inner relations
in a sequential code, (in our case, base conditions), and maintaining those relations in concurrent executions
(via base points). It may be possible to use similar observations in other models and contexts, for example,
looking at inner relations in synchronous protocol, in order to derive conditions that ensure their correctness
in asynchronous executions.

And last but not least, the definitions of internal behaviour correctness can be extended to include a
weaker conditions than validity, (which is quiet conservative). These weaker conditions will handle local
states in concurrent executions that are un-reachable via sequential executions but still satisfy the inner
correctness of the code.
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