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Most color imaging systems today are based on a monochrome detector with a color filter array (CFA). Typically
the Bayer CFA is used. An imaging system’s spatial frequency response (SFR) is one of its most meaningful
characteristics. It is directly related to the system’s capability to resolve objects. This work presents a model
for calculating the SFR of a Bayer color capture system. Our two dimensional model deals with a color
input signal, and accounts for both sampling and interpolation processes. It can be applied on any linear
interpolation.

OCIS codes: (040.1240) Arrays; (110.0110) Imaging systems; (110.4100) Modulation transfer func-
tion.

1. Introduction
The most common color camera technology is based
on spatial-multiplexing using a color filter array (CFA):
spectral channels are captured in alternating pixels of a
single monochrome sensor. A generalized CFA approach
has been proposed for hyperspectral imaging [1]. Couil-
laud et al. applied a frequency domain based method
for evaluating the image quality obtained by different
CFAs [2]. A Bayer pattern CFA is very common [3].
Following image acquisition, interpolation known as de-
mosaicking is applied, to estimate the color (RGB) val-
ues per pixel. Interpolation can be a linear process [4, 5].
Then, each output color pixel can be expressed as a lin-
ear function of its surrounding pixels in the raw Bayer
sensor image. Thus, it can be expressed as a convolution
of the raw Bayer sensor image with some filter kernel.
More advanced, non-linear demosaicking methods were
introduced more recently [6–8]. While non-linear demo-
saicking approaches typically result in a sharper image,
linear interpolation is still being used. Faster and eas-
ier implementation are two main reasons. The notion of
spatial frequency response (SFR) is enabled by linear-
systems theory. Thus, our Bayer SFR model assumes
linear interpolation.
An imaging system’s SFR is an important property. It

is often used during the system design phase, for compar-
ison between several systems, and in performance pre-
diction models. Such models are required during system
design. In some cases, they can be used when the pos-
sibility to perform actual experiments is limited due to
high risk or cost [9]. For a linear, space-invariant sys-
tem, the SFR is given by the system’s modulation trans-
fer function (MTF). A thermal imaging system’s mini-
mum resolvable temperature difference (MRTD) [10] is

∗ Corresponding author: alexgo@tx.technion.ac.il

an important performance measure. It is spatial fre-
quency dependant, and is inversely proportional to the
MTF. The same is true for minimum resolvable contrast
(MRC) [11], an analog of the MRTD in visible light sys-
tems.
Dubois [12] analyzed the SFR of a raw Bayer signal,

excluding interpolation. On the other hand, Elor et
al. [13] analyzed the SFR of linear interpolation of Bayer-
based data, excluding the raw acquisition SFR. The
scene in [13] is assumed to be monochrome. Ref. [13] also
assumed signal integration along the vertical axis. This
assumption simplified the mathematical derivations, re-
sulting in a one-dimensional SFR. However, vertical in-
tegration does not take place in practice. We show that
there actually is a frequency response in both directions.
Interestingly, this is the case even if the input signal
varies only in the horizontal direction. Hubel et al. [14]
presented empirical measurments of the SFR of a Bayer
sensor, and compared them to a FOVEON X3 sensor,
for which limitations peculiar to a CFA do not exist.
In this work, we present a unified model. We analyze

the two-dimensional SFR of a Bayer imaging system,
caused by both CFA sampling and linear interpolation
processes. Moreover, we do not limit the analysis to
a monochrome scene. In contrast to Refs. [12, 13], we
present a simulation which is consistent with our theo-
retical model for Bayer SFR.

2. Background
2.A. Bayer image formation
The Bayer image formation process is illustrated in
Fig. 1. A Bayer CFA [3] is illustrated in the middle.
Let x and y denote discrete horizontal and vertical axes,
respectively. We define their origin to be at the bot-
tom left point of the Bayer grid which is illustrated in
Fig. 1. An RGB signal is denoted by sR(x, y), sG(x, y)
and sB(x, y). These are the original signals that the
Bayer system aims to estimate, while using a single
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Fig. 1. Bayer image formation process.
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Fig. 2. Four pixel types in the Bayer CFA. Each pixel type
is shown in the middle, with eight nearest neighbors.

monochrome detector. These signals are sampled by a
Bayer CFA. Let srawBayer(x, y) be the raw signal sampled by
the Bayer sensor. Subsequent interpolation yields three
images sintR (x, y), sintG (x, y) and sintB (x, y), corresponding
to the R, G and B color channels. These are the esti-
mates of the original, unsampled signals.

A Bayer CFA sensor [3] consists of four pixel
types [13]. These types are distinguished by their neigh-
borhood (See Fig. 2). The raw Bayer signal, srawBayer(x, y),
is

srawBayer(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sR(x, y) for “R” type (x, y)

sG(x, y) for “G1” type (x, y)

sG(x, y) for “G2” type (x, y)

sB(x, y) for “B” type (x, y) .

(1)

A general linear interpolation process can be ex-
pressed as follows. Each of the four pixel types has three
impulse response kernels, which correspond to resulting
interpolated R, G, B signals. We denote these kernels
ht
c, where c ∈ [R,G,B] and t ∈ [R,G1, G2, B]. As an

example, for bilinear interpolation [5], ht
c are given [13]

in Fig. 3

Then, we can write sintc (x), the Bayer RGB channels

after interpolation,

sintc (x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

srawBayer ∗ hR
c for “R” type (x, y)

srawBayer ∗ hG1
c for “G1” type (x, y)

srawBayer ∗ hG2
c for “G2” type (x, y)

srawBayer ∗ hB
c for “B” type (x, y) ,

(2)

where ∗ denotes 2D discrete convolution.

2.B. Extension of MTF
Ref. [13] extends the definition of MTF to include lin-
ear systems which are space-variant. Such system is a
Bayer CFA sensor followed by linear interpolation. Con-
sider sin(x, y) and sout(x, y) to respectively be the input
and output signals of a Bayer system. Let Sin(u, v) and
Sout(u, v) be the 2D Discrete-Time Fourier Transform
(2D-DTFT) of sin(x, y) and sout(x, y), respectively. A
spatial frequency (u, v) has units of [cy/pixel]. This is
the convention we use throughout the paper, thus from
here on, units shall be omitted. We define a variant
MTF (VMTF) at a spatial frequency (u, v) = (u′, v′) as

VMTF(u′, v′) ≡
∣
∣
∣
∣
Sout(u

′, v′)
Sin(u′, v′)

∣
∣
∣
∣ . (3)

Consider an input signal with a single spatial frequency
(u′, v′). For a linear, space-invariant system, an output
signal only contains the same spatial frequency. Thus,
for such a system, the above definition degenerates to
the standard definition for MTF: the attenuation at each
frequency component.

3. SFR of a Bayer color sensor
In this section, we obtain the SFR corresponding to
Bayer sampling and linear interpolation. We then com-
bine these two processes to obtain the total SFR of a
Bayer-based, color imaging system.
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Fig. 3. The kernels ht
c, corresponding to bilinear interpolation.

3.A. Bayer sampling SFR
Define the following notation, for a general 2D frequency
domain signal U(u, v)

Ũ ≡ U (u, v)

Ũ↑ ≡ U

(

u, v − 1

2

)

Ũ→ ≡ U

(

u− 1

2
, v

)

Ũ↗ ≡ U

(

u− 1

2
, v − 1

2

)

.

(4)

We use this notation for convenience, from here on. As
shown in App. A, the DTFT of Eq. (1) is

Sraw
Bayer(u, v) =

1

4

[
S̃R + 2S̃G + S̃B

]
+

1

4

[
S̃↑
B − S̃↑

R

]
+

1

4

[
S̃→
B − S̃→

R

]
+

1

4

[
S̃↗
R − 2S̃↗

G + S̃↗
B

]
.

(5)

Fig. 4 is a visual representation of Eq. (5).
Following traditional linear-systems analysis, we wish

to find the response of the Bayer system to a single fre-
quency input. Consider an input signal that varies in the
horizontal direction at a spatial frequency u′ ∈ [

0, 1
2

]
.

The spatial frequency in the vertical direction is v′ = 0.
Thus, the signal is given by

sc(x, y) = Ac cos(2πu
′x+ ϕc) , (6)

where c ∈ [R,G,B], Ac is the signal amplitude, and ϕc

represents a per-color phase component. A background,
or “DC” component Bc can be present. It does not
change by Bayer image formation, assuming an energy-
preserving interpolation. Thus, we ignore it in our anal-
ysis.
Let Ac = 2. Fig. 5a shows the modulus of Sc(u, v), the

DTFT of sc(x, y), in the first quadrant of the frequency
domain. It is simply a delta function with unit height.

raw
Bayer ( , )S u v

v

u
1

2

1
2

Fig. 4. A visual representation of Sraw
Bayer(u, v), according to

Eq. (5). It shows the first quadrant of the frequency domain.
A cylinder centered about some spatial frequency, represents
a signal replica centered about that frequency. The colored
slices represent the relative contribution of the corresponding
RGB components at each signal replica.

Using the DTFT of Eq. (6) in Eq. (5) yields

Sraw
Bayer(u, v) = S̃cVMTFsamp

c + S̃↑
cSR

samp
c,↑ +

S̃→
c SRsamp

c,→ + S̃↗
c SRsamp

c,↗ ,
(7)

where

VMTFsamp
c ≡ ARe

i2πϕR + 2AGe
i2πϕG +ABe

i2πϕB

4Acei2πϕc
.

(8)
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∣
∣Sraw

Bayer(u, v)
∣
∣ and

∣
∣Sint

c (u, v)
∣
∣. The delta function corresponding to the original signal

sc(x, y) is reproduced at three spatial frequencies, in addition to the original signal frequency. The ratios of Sraw
Bayer(u, v) to

Sc(u
′, v′) in each frequency are given in Eqs. (8,9). The ratios of Sint

c (u, v) to Sc(u, v) in each frequency are given in Eqs. (14,15).

In (b), note that
∣
∣SRsamp

c,→
∣
∣, and

∣
∣
∣SR

samp
c,↗

∣
∣
∣ appear in the first quadrant of the Fourier domain, although according to Eq. 7, they

correspond to larger frequencies. This stems from the symmetric property of the Fourier transform. In (c), the same holds for∣
∣SRtotal

c,→
∣
∣, and

∣
∣SRtotal

c,↗
∣
∣.

and

SRsamp
c,↑ ≡ ABe

i2πϕB −ARe
i2πϕR

4Acei2πϕc

SRsamp
c,→ ≡ ABe

i2πϕB −ARe
i2πϕR

4Acei2πϕc

SRsamp
c,↗ ≡ ARe

i2πϕR − 2AGe
i2πϕG +ABe

i2πϕB

4Acei2πϕc
.

(9)

Eq. (8) defines the VMTF of each color due to spa-
tial sampling, following the definition in Eq. (3). Here,
Sc(u, v) represents the input signal, and Sraw

Bayer(u, v) is
the output. It represents attenuation of a frequency
component (u, v), due to Bayer sampling. The terms
in Eq. (9) represent “parasitic” responses in spatial fre-
quencies other than the input frequency. These terms
stem from the space-variance of the system. In [13],
analysis was reduced to one dimension, and integration
in the vertical direction was assumed. Under these as-
sumptions, only one “parasitic” term is obtained due to
Bayer interpolation. It was referred to as spurious re-
sponse (SR), and we use this terminology. We see that
three SR terms are generally obtained due to Bayer sam-
pling of a color input signal. They involve both horizon-
tal and vertical “parasitic” frequencies.
Fig. 5b shows the modulus of Sraw

Bayer(u, v), the DTFT

of srawBayer(x, y), in the first quadrant of the frequency do-
main.
To gain a better intuition of these results, we illus-

trate two examples. Assume ϕc = 0, ∀c (we discuss this

assumption later on, in Sec. 4.A). As a first example,
let {Ac} = [1, 1, 1], representing a gray signal. Fig. 6a
shows a visualization of Sraw

Bayer(u, v). In this case, all

SR terms are null. This case is analyzed in Ref. [13],
which assumes a colorless input. Sampling causes no
spurious response in this case. In a second example,
{Ac} = [3, 1, 1], representing a reddish signal. Fig. 6b
visualizes Sraw

Bayer(u, v) in that case.

3.B. Bayer linear interpolation SFR
We now wish to account for the VMTF and SR corre-
sponding to Bayer linear interpolation.
Let Ht

c(u, v) be the DTFT of a kernel ht
c(x, y) (see

Sec. 2.A). As shown in App. A (using the notation in
Eq. 4), the DTFT of Eq. (2) is

Sint
c (u, v) = S̃raw

BayerVMTFint
c + S̃raw↑

BayerSR
int
c,↑+

S̃raw→
Bayer SR

int
c,→ + S̃raw↗

Bayer SR
int
c,↗ ,

(10)

where

VMTFint
c ≡ 1

4

[
H̃R

c + H̃G1
c + H̃G2

c + H̃B
c

]
, (11)

and

SRint
c,↑ ≡ 1

4

[
−H̃R↑

c + H̃G1↑
c − H̃G2↑

c + H̃B↑
c

]

SRint
c,→ ≡ 1

4

[
−H̃R→

c − H̃G1→
c + H̃G2→

c + H̃B→
c

]

SRint
c,↗ ≡ 1

4

[
H̃R↗

c − H̃G1↗
c − H̃G2↗

c + H̃B↗
c

]
.

(12)
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or SR term. The colors represent the relative contribution of
the corresponding RGB components to each term.

Eq. (11) defines the VMTF which corresponds to Bayer
linear interpolation, for each color channel, following the
definition in Eq. (3). Here, Sraw

Bayer(u, v) represents the

input signal, and Sint
c (u, v) is the output. The terms in

Eq. (12) are the SR terms created by the interpolation
process.

As an example, let (u′, v′) = (0.2, 0), and assume bi-
linear interpolation (see Fig. 3). Fig. 7 shows a visualiza-
tion of Sint

c (u, v). As seen from Eqs. (11,12), the VMTF
and SR terms which correspond to Bayer interpolation,
are independent of {Ac} and {ϕc}. They depend soley
on the signal’s spatial frequency, and the interpolation
kernels.

3.C. Total Bayer SFR
As shown in App. B, using Eq. (7) in Eq. (10), yields

Sint
c (u, v) = S̃cVMTFtotal

c + S̃↑
cSR

total
c,↑ +

S̃→
c SRtotal

c,→ + S̃↗
c SRtotal

c,↗ ,
(13)

where

VMTFtotal
c ≡

[
VMTFsamp

c VMTFint
c + SRsamp

c,↑ SRint
c,↑ +

SRsamp
c,→ SRint

c,→ + SRsamp
c,↗ SRint

c,↗
]
.

(14)

and

SRtotal
c,↑ ≡

[
SRsamp

c,↑ VMTFint
c +VMTFsamp

c SRint
c,↑ +

SRsamp
c,↗ SRint

c,→ + SRsamp
c,→ SRint

c,↗
]

SRtotal
c,→ ≡

[
SRsamp

c,→ VMTFint
c +VMTFsamp

c SRint
c,→ +

SRsamp
c,↗ SRint

c,↑ + SRsamp
c,↑ SRint

c,↗
]

SRtotal
c,↗ ≡

[
SRsamp

c,↗ VMTFint
c + SRsamp

c,→ SRint
c,↑ +

SRsamp
c,↑ SRint

c,→ +VMTFsamp
c SRint

c,↗
]
.

(15)

Fig. 5c shows the modulus of Sint
c (u, v), the DTFT of

sintc (x, y), in the first quadrant of the frequency domain.
Eq. (14) defines the total VMTF which accounts for

the Bayer imaging formation (sampling and interpola-
tion), for each color channel, following the definition in
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Eq. (3). Here, Sc(u, v) represents the input signal, and
Sint
c (u, v) is the output. The terms in Eq. (15) are the

total SR terms of the Bayer system.

4. Simulation
4.A. Identical phase approximation
In the following, we reach an assumption about natural
images. We then use it in our simulation.
Objects typically have a similar structure in all color

channels. Therefore, can we approximate the phases
{ϕc} to be similar? We studied this question using nat-
ural RGB images.
Let IR, IG and IB be red, green and blue image com-

ponents. Let F be the discrete Fourier transform (DFT).
We apply DFT on each color channel independently

F{IR} ≡ |F{IR}| exp(j∠F{IR})
F{IG} ≡ |F{IG}| exp(j∠F{IG})
F{IB} ≡ |F{IB}| exp(j∠F{IB}) .

(16)

Here | | denotes the magnitude of each spatial frequency
component and ∠ denotes the phase per frequency. We
define the following distance measures for the absolute
phase differences

d̃∠(R−G) = |∠F{IR} − ∠F{IG}|
d̃∠(R−B) = |∠F{IR} − ∠F{IB}|
d̃∠(G−B) = |∠F{IG} − ∠F{IB}| .

(17)

The distance measures should take values between 0◦
and 180◦. Hence, we define the following

d∠(R−G) = min(d̃∠(R−G) , 360◦ − d̃∠(R−G))

d∠(R−B) = min(d̃∠(R−B) , 360◦ − d̃∠(R−B))

d∠(G−B) = min(d̃∠(G−B) , 360◦ − d̃∠(G−B)) .

(18)

Note that d̃ ≡ 360◦ − d̃, due to the periodicity of
Fourier phase components. Fig. 8 shows the histograms
of d∠(R−G), d∠(R−B) and d∠(G−B), based on 963 natu-
ral images taken from [15]. All histograms peak at 0◦.

As a particular example, Fig. 9a shows one image of a
fighter aircraft over a sky background. Fig. 10 shows the
sum of histograms of d∠(R−G), d∠(R−B) and d∠(G−B),
for that image. Fig. 9b shows the original image, after
replacing each color component’s Fourier phase, with an-
other component’s phase, at random

∠Fnew
(k,l){IR} =

{
∠F(k,l){IG} with probability 0.5

∠F(k,l){IB} with probability 0.5

∠Fnew
(k,l){IG} =

{
∠F(k,l){IR} with probability 0.5

∠F(k,l){IB} with probability 0.5

∠Fnew
(k,l){IB} =

{
∠F(k,l){IR} with probability 0.5

∠F(k,l){IG} with probability 0.5
,

(19)
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Fig. 8. Histograms of the absolute phase differences between
the color channels, for 963 natural images.
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Fig. 9. a) Original RGB image of a fighter aircraft over sky
background. b) The image, after replacing each color compo-
nent’s Fourier phase with another color’s phase component.

where (k, l) are the 2D DFT frequency indices. It is
evident from Fig. 9b that such deliberate disturbance
retains much of the original structure. Hence, we believe
that assuming identical phase for all the image channels
is a reasonable working assumption. Consequently, we
may drop the phases {ϕc} from our analysis. The RGB
signal equation (Eq. 6) degenerates to

sc(x, y) ≈ Ac cos(2πu
′x) ∀c . (20)

In the following, we use this approximation.
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Fig. 10. Sum of the histograms of the absolute phase differ-
ences between color channels of Fig. 9a.



7

( , )Rs x y ( , )Gs x y ( , )Bs x y

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50
10 20 30 40 50

5

10

15

20

25

30

35

40

45

50
10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

Fig. 11. An RGB signal, sc(x, y).
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Fig. 12. Three possible RGB color representations for s(x, y).

4.B. Bayer image formation simulation

This section simulates Bayer image formation. It
demonstrates the effect of sampling and linear demo-
saicking, in both spatial and frequency domains. The
simulation sets {Ac} = [15, 20, 5], input spatial fre-
quency (u′, v′) = (0.2, 0) (modulation only in the hor-
izontal direction), and bilinear interpolation (Fig. 3). It
also neglects {ϕc}, following Sec. 4.A. Fig. 11 shows
the input, sc(x, y), for each c ∈ [R,G,B] separately. An
RGB color image is also affected by the three RGB back-
ground values, and overall normalization (to bound each
channel between values of 0 and 1). Fig. 12 shows three
examples of RGB color representations for s(x, y), in our
example. Fig. 13 shows the raw Bayer signal, srawBayer(x, y)

from Eq. (1), and its DTFT, Sraw
Bayer(u, v), from Eq. (7).

Fig. 14 shows the signals after Bayer interpolation,
sintc (x, y), from Eq. (2), and their DTFT, Sint

c (u, v), from
Eq. (10). Fig. 15 shows the color representations of
sint(x, y), which correspond to background RGB values
as in Fig. 12. The simulated peak values of Sraw

Bayer(u, v)

and Sint
c (u, v), all agree well with their analytic expres-

sions (Eqs. 8, 9, 14, 15). The simulated and theoretical
values are shown in Fig. 16, along with a relative error
measure. A small relative error is caused by numeri-
cal inaccuracies of the simulation. A part of them is
due to the fact that the simulation computed 2D-DFT
(over large images, resembling large focal plane array de-
tectors available today), rather than 2D-DTFT, which
assumes 2D signals of infinite length.

5. Discussion

We analyzed the SFR of Bayer CFA imaging systems.
Our model for SFR accounts for both Bayer color sig-
nal sampling, and linear interpolation processes, in two
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Fig. 13. [left] srawBayer(x, y). [right] Sraw
Bayer(u, v). Note the

dominant horizontal modulation which can be observed in
the spatial domain. It corresponds to the input spatial fre-
quency u′ = 0.2. The “parasitic” high-frequency modulation
in both horizontal and vertical directions is represented by
the SR terms due to sampling (Eq. 9). These terms are
clearly seen in the frequency domain.
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Fig. 14. Signal after interpolation, sintc (x, y), and their
DTFT, Sint

c (u, v).

dimensions. We showed that the SFR of a Bayer sensor
consists of a VMTF, a generalization of the well known
MTF function to the case of space-variant systems. Sim-
ilarly to the MTF, the VMTF represents the system’s
signal attenuation at a spatial frequency identical to the
input signal frequency. Unlike linear, space-invariant
systems, in the Bayer sensor, there are also SR terms,
which represent a parasitic contribution in spatial fre-
quencies other than the input signal’s frequency. This
parasitic modulation occurs in both the horizontal and
vertical direction, even if the input signal is purely hor-
izontal. We present analytical formulae to the VMTF
and SR terms of a Bayer sensor, and a numerical simu-
lation which confirms the theoretical derivation.

In future work, new linear interpolation (demosaick-
ing) algorithms can be suggested, based on our SFR
model. Interpolation kernels can be optimized in or-
der to achieve a desired frequency response. A similar
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Fig. 15. Three possible RGB color representations for
sint(x, y). Note the difference from the original signals
s(x, y), shown in Fig. 12. Parasitic modulation in both the
horizontal and vertical directions exists in sint(x, y). The SR
terms (Eq. 15) express this artifact.

Simulation Theoretical Error [%]

R G B R G B R G B

1.001 0.751 3.004 1 0.75 3 0.1 0.13 0.13

0.165 0.124 0.496 0.167 0.125 0.5 1.2 0.8 0.8

0.168 0.126 0.505 0.167 0.125 0.5 0.6 0.8 1

0.330 0.247 0.989 0.333 0.25 1 0.9 1.2 1.1

0.655 0.828 0.672 0.655 0.827 0.655 0 0.12 2.6

0.338 0.005 0.346 0.346 0 0.346 2.31 --- 0

0 0.002 0 0 0 0 --- --- ---

0 0.171 0 0 0.173 0 --- 1.16 ---

sampVMTF

→
SRsamp

↑
SRsamp

SR
↗

samp

totalVMTF

→
SR total

↑
SR total

SR
↗

total

Fig. 16. Simulated and theoretical peaks in the SFR, and
the relative simulation error.

approach of frequency domain analysis may be applied
in order to design CFAs other than Bayer. Depend-
ing on a system’s frequency response requirements and
constraints, more suitable CFA designs can perhaps be
achieved. It is also worth considering a unified design
of a CFA with corresponding interpolation kernels. This
may lead to improved overall performance. In addition,
our work can serve as a basis to analyzing the reso-
lution limits in Bayer imaging sensors. Such analysis
can be helpful in Bayer imaging systems design, perfor-
mance evaluation, and in comparison between different
systems.
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Appendix A: Proof of Eqs. (5,10)
Properties of the DTFT in 1D settings (see Ref. [16]) are
extended to the 2D case. We then use these properties
to prove Eqs. (5,10).

1. Downsampling
Let D(a,b) (a, b ⊆ N) denote a downsampling operator.
A discrete 2D signal g(x, y) is a downsampling of f(x, y)

when

g(x, y) ≡ D(a,b)f(x, y) = f(ax, by) . (A1)

The DTFT of Eq. (A1) is

G(u, v) =
1

ab

a−1∑

p=0

b−1∑

q=0

F

(
u− p

a
,
v − q

b

)

, (A2)

where F (u, v) is the DTFT of f(x, y).

2. Upsampling

Let U(a,b) (a, b ⊆ N) denote an upsampling operator.
A discrete 2D signal g(x, y) is an upsampling of f(x, y)
when

g(x, y) ≡ U(a,b)f(x, y) =

{
f
(
x
a ,

y
b

)
for x

a ,
y
b ⊆ Z,

0 otherwise .

(A3)

The DTFT of Eq. (A3) is

G(u, v) = F (au, bv) . (A4)

3. Translation

Let T(a,b) (a, b ⊆ N) denote a translation operator. A
discrete 2D signal g(x, y) is a translation of f(x, y) when

g(x, y) ≡ T(a,b)f(x, y) = f(x− a, y − b) . (A5)

The DTFT of Eq. (A5) is

G(u, v) = e−i2π(ua+vb)F (u, v) . (A6)

4. Proof

Let

g(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fR(x, y) for odd x, odd y (“R” type)

fG1(x, y) for odd x, even y (“G1” type)

fG2(x, y) for even x, odd y (“G2” type)

fB(x, y) for even x, even y (“B” type) .

(A7)

Using operators from secs. (1-3), g(x, y) can be written
as

g(x, y) = T(−1,−1)U(2,2)D(2,2)T(1,1)fR(x, y)+

T(−1,0)U(2,2)D(2,2)T(1,0)fG1(x, y)+

T(0,−1)U(2,2)D(2,2)T(0,1)fG2(x, y)+

U(2,2)D(2,2)fB(x, y) .

(A8)

For clarity, Fig. 17 illustrates in stages, the operations
which are performed on fR(x, y), as written in the first
row of Eq. (A8). In similar way, it follows that indeed
Eqs. (A7,A8) are equivalent. We use the DTFT relations
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Fig. 17. A graphical illustration of the expression T(−1,−1)U(2,2)D(2,2)T(1,1)fR(x, y).

in secs. (1-3), and the notation in Eq. (4) to obtain the
DTFT of Eq. (A8)

G(u, v) =
1

4

[
f̃R − f̃↑

R − f̃→
R + f̃↗

R

]
+

1

4

[
f̃G1 + f̃↑

G1 − f̃→
G1 − f̃↗

G1

]
+

1

4

[
f̃G2 − f̃↑

G2 + f̃→
G2 − f̃↗

G2

]
+

1

4

[
f̃B + f̃↑

B + f̃→
B + f̃↗

B

]
.

(A9)

Eqs. (5,10) follow this relation.

Appendix B: Proof of Eq. (13)

Applying Eq. (7) into Eq. (10), we obtain

Sint
c (u, v) = S̃cC1 + S̃↑

cC2 + S̃→
c C3 + S̃↗

c C4+

Sc (u, v − 1)C5 + Sc (u− 1, v)C6+

Sc

(

u− 1

2
, v − 1

)

C7 + Sc

(

u− 1, v − 1

2

)

C8+

Sc (u− 1, v − 1)C9 ,

(B1)

where

C1 = VMTFsamp
c ·VMTFint

c

C2 =
[
SRsamp

c,↑ ·VMTFint
c +VMTFsamp

c · SRint
c,↑

]

C3 =
[
SRsamp

c,→ ·VMTFint
c +VMTFsamp

c · SRint
c,→

]

C4 =
[
SRsamp

c,↗ ·VMTFint
c + SRsamp

c,→ · SRint
c,↑ +

SRsamp
c,↑ · SRint

c,→ +VMTFsamp
c · SRint

c,↗
]

C5 = SRsamp
c,↑ · SRint

c,↑
C6 = SRsamp

c,→ · SRint
c,→

C7 =
[
SRsamp

c,↗ · SRint
c,↑ + SRsamp

c,↑ · SRint
c,↗

]

C8 =
[
SRsamp

c,↗ · SRint
c,→ + SRsamp

c,→ · SRint
c,↗

]

C9 = SRsamp
c,↗ · SRint

c,↗ .

(B2)

Fig. 18 is a visual representation of Eq. (B1). The terms
involving Sc (u, v − 1), Sc (u− 1, v), Sc

(
u− 1

2 , v − 1
)
,

Sc

(
u− 1, v − 1

2

)
and Sc (u− 1, v − 1) are frequency

components greater than the nyquist frequency,
(unyq, vnyq) =

(
1
2 ,

1
2

)
. Therefore, they result in aliasing,

and are reproduced at lower frequencies instead. Thus,
Eq. (B1) becomes Eq. (13).
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Fig. 18. A visual representation of Sint
c (u, v), according to

Eq. (B1).

References

[1] F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar. Gen-
eralized assorted pixel camera: postcapture control of
resolution, dynamic range, and spectrum. IEEE Trans.
on Image Processing, 19(9):2241–2253, 2010.
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