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Abstract

We consider the multi-user lossy source-coding problem for continuous alphabet
sources. In a previous work, Ziv proposed a single-user universal coding scheme which
uses uniform quantization with dither, followed by a lossless source encoder (entropy
coder). In this paper, we generalize Ziv’s scheme to the multi-user setting. For this
generalized universal scheme, upper bounds are derived on the redundancies, defined
as the differences between the actual rates and the closest corresponding rates on the
boundary of the rate region. It is shown that this scheme can achieve redundancies of
no more than 0.754 bits per sample for each user. These bounds are obtained without
knowledge of the multi-user rate region, which is an open problem in general. As a direct
consequence of these results, inner and outer bounds on the rate-distortion achievable
region are obtained.

Index Terms: Multi-terminal source coding, Dithered quantization, Uni-

versal source coding, scalar quantization, Slepian-Wolf coding.
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1 Introduction

Consider the case where two correlated sources are observed separately by two non-cooperative

encoders which communicate with one decoder. The decoder needs to reconstruct both

sources and the distortions between the reconstructions and the corresponding sources

should not exceed some given values. The general version of this problem has remained

open for several decades, even under the assumption of memoryless sources. However,

many special cases have been solved. When no distortion is allowed, this is the problem

considered by Slepian and Wolf [1]. Their well-known result states that two discrete sources

X1 and X2 can be losslessly reproduced if and only if

R1 ≥ H(X1|X2), (1a)

R2 ≥ H(X2|X1), (1b)

R1 +R2 ≥ H(X1, X2) (1c)

where R1 is the rate of the encoder observing X1 and R2 is the rate of the encoder observing

X2. Returning to the lossy case, the setting in which one of the variables is known to the

decoder, is the original Wyner-Ziv problem [2]. This setting was generalized to continuous

alphabet sources by Wyner [3]. Other examples include the source coding problem with

side information of Ahlswede-Körner [4], where an arbitrary distortion is allowed for one of

the sources and the other source should be reconstructed losslessly. Berger and Yeung [5]

considered a setting where one of the sources is to be perfectly reconstructed and the

other source should be reconstructed with a distortion constraint (their setting subsumes

all previous examples). Zamir and Berger [6] characterized the rate-distortion region in the

high-SNR limit. Wagner and Anantharan [7] presented a new outer bound which is better

than the previous outer bounds in the literature.

Recent results for specific sources and distortion measures include the works of Wagner,

Tavildar, and Viswanath [8], who determined the rate region for the quadratic Gaussian

multiterminal source coding problem, by showing that the Berger-Tung [9] inner bound is

tight. In addition, a characterization of the rate region under logarithmic loss was given

by Courtade and Weissman [10]. Finally, a version of this problem, where both users and

the decoder must operate with zero-delay, was considered by Kaspi and Merhav [11], who

characterized the rate region in this case.
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In [12], Ziv presented a universal coding scheme for the single-user case. This scheme

is composed of a uniform, one-dimensional quantizer with dither, followed by a noiseless

variable-rate encoder (entropy encoder). He showed that this scheme yields a rate that

is, for every positive integer n, no more than 0.754 bits per sample higher than the best

possible rate associated with the optimal n-dimensional quantizer. This result was later

revisited and further developed by Zamir and Feder [13], [14], who also gave a redundancy

upper bound which depends on the source distribution. However, their derivation of the

global upper bound relies on the known formula of the single-user rate-distortion function.

In addition, a dithered scheme for the multi-user setting, which is similarly to the scheme

in this paper, was given in [6]. Redundancy upper bounds can be derived by bounding

the difference between the dithered scheme rate region and the outer bound on the multi-

user rate region given in [6]. These bounds depend on the divergence between the source

distribution and a Gaussian distribution. As a result, they are not uniformly bounded (for

every source distribution) in contrast to the bound of Ziv and the bounds presented in this

paper. In addition, only the redundancy of the sum of the rates can be upper bounded

using the methods of [6].

In this paper, we investigate a generalized scheme for the multi-user setting. In this

scheme, each user uses dithered quantizer followed by universal Slepian-Wolf encoder. We

show that the rates achieved by this scheme are no more than 0.754 bits per sample away

from the boundary of the achievable rate region, for each user. This is done regardless of

the characterization of the achievable region, which is, as mentioned before, unknown in

general. As a direct consequence of these results, inner and outer bounds on the achievable

region are obtained. Finally, similarly to the results of [12], it is straightforward to show

that using multi-dimensional lattice quantizers instead of scalar ones would decrease the

redundancy to about 0.5 bits per sample for high lattice dimension.

The remainder of this paper is organized as follows. In Section 2, we present the problem

formulation and give basic results regarding the performance of the dithered scheme. In

Section 3, we revisit the redundancy upper bound of [12]. In Section 4, we enhance the

results of Section 2 by adding an estimation stage to the dithered scheme. We conclude this

work in Section 5.
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2 Problem Formulation and Basic Results

Throughout the paper, random variables will be denoted by capital letters and their al-

phabets will be denoted by calligraphic letters. Random vectors (all of length n) will be

denoted by capital letters in the bold face font.

In this section, we present the multi-user setting we deal with and describe the dithered

coding scheme we use. Then, we give upper bounds on the performance of this scheme,

compared to the boundary of the optimal rate region.

We begin with defining the multi-user rate region. Let (X1, X2) be a continuous alpha-

bet memoryless source, characterized by the joint probability density PX1X2
. We assume

that PX1X2
has bounded support, i.e., there exist A ∈ R

+ such that PX1X2
(x1, x2) = 0 if

(x1, x2) /∈ [−A,A] × [−A,A]. The reason for this assumption will be explained later. A

rate pair (R∗
1, R

∗
2) is said to be (D1, D2)-achievable under the mean-square error distortion

measure with respect to (X1, X2), if for every δ > 0 and sufficiently large n, there exists a

code of block length n consisting of two encoders f1, f2

f1 : [−A,A]n → IM1
, f2 : [−A,A]n → IM2

(2)

and a decoder g

g : IM1
× IM2

→ [−A,A]n × [−A,A]n (3)

such that

1

n
E||X1 − X̂1||2 ≤ D1 + δ,

1

n
E||X2 − X̂2||2 ≤ D2 + δ (4)

and

1

n
logM1 ≤ R∗

1 + δ,
1

n
logM2 ≤ R∗

2 + δ, (5)

where IMi
, {1, 2, . . . ,Mi}, i ∈ {1, 2}. The set of (D1, D2)-achievable rate pairs, is denoted

by R∗(D1, D2).

Our scheme works as follows. We have two encoders f̃1, f̃2:

f̃1 : [−A,A]n × [−
√

3D1,
√

3D1] → IM̃1
, f̃2 : [−A,A]n × [−

√
3D2,

√
3D2] → IM̃2

(6)

and a decoder g̃

g̃ : IM̃1
× IM̃2

× [−
√

3D1,
√

3D1]× [−
√

3D2,
√

3D2] → [−A,A]n × [−A,A]n. (7)
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Figure 1: The dithered coding scheme

Each encoder f̃i, i ∈ {1, 2}, uses a one-dimensional uniform quantizer Qi, Qi : R →
{0,±2

√
3Di,±2 · 2

√
3Di, . . .} and a dither random variable (RV) Zi, uniformly distributed

over [−
√
3Di,

√
3Di], to produce Qi(Xi+Zi) , [Qi(Xi,1+Zi),Qi(Xi,2+Zi), . . . ,Qi(Xi,n+

Zi)], where Zi denotes a vector of dimension n composed of n repetitions of the same re-

alization of Zi. For convenience, the random variable Qi(Xi + Zi) and the random vector

Qi(Xi + Zi) will be denoted by Yi and Yi, respectively. The dither RV’s, Z1 and Z2, are

available to the respective encoders and to the decoder and are independent. As is shown

in [12, Lemma 1],

E
[

||Yi − Zi −Xi||2|Xi

]

= Di, i ∈ {1, 2} (8)

where the expectation is taken over Zi. Notice that the distortion is Di independently of Xi

and therefore the total distortion is also Di. After the quantization stage, the two encoders

perform Slepian-Wolf encoding with a rate pair (R1, R2), for lossless compression of Y1 and

Y2. Complying with Eq. (1), the rate pair (R1 = log M̃1, R2 = log M̃2) satisfies

R1 ≥ H (Y1|Y2, Z1, Z2) , (9a)

R2 ≥ H (Y2|Y1, Z1, Z2) , (9b)

R1 +R2 ≥ H (Y1, Y2|Z1, Z2) (9c)

where we used the following, for every value of n

1

n
H (Y1|Y2, Z1, Z2) = H (Y1|Y2, Z1, Z2) , (10a)

1

n
H (Y2|Y1, Z1, Z2) = H (Y2|Y1, Z1, Z2) , (10b)

1

n
H (Y1,Y2|Z1, Z2) = H (Y1, Y2|Z1, Z2) . (10c)
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To see why (10a) is true, consider the following chain

1

n
H (Y1|Y2, Z1, Z2) =

1

n

n
∑

i=1

H (Y1,i|Y1,1, Y1,2, . . . , Y1,i−1,Y2, Z1, Z2)

=
1

n

n
∑

i=1

H (Y1,i|Y2,i, Z1, Z2)

= H (Y1|Y2, Z1, Z2) (11)

where the second equality stems from the fact that Y1 and Y2 are memoryless given Z1 and

Z2 and the third equality stems from the stationarity of the source. The same can be done

for H (Y2|Y1, Z1, Z2) and H (Y2,Y2|Z1, Z2).

The rate region of Eq. (9) is achievable for n sufficiently large and it is denoted by

R(D1, D2). The interesting range of R1 isR1(D1, D2) , [H (Y1|Y2, Z1, Z2) , H (Y1|Z1)] since

higher rate can always be reduced to this range. The same is true for R2. The universal

decoder first decodes Y1 and Y2 (correctly with high probability), and then subtracts the

corresponding dithers to obtain the reconstruction vectors X̂1, X̂2:

X̂i = Yi − Zi. (12)

The universal Slepian-Wolf decoder is described in Appendix A. The dithered coding scheme

is presented in Fig. 1.

Remark. The Slepian-Wolf mechanism can be applied, in general, to sources with countably-

infinite alphabets. However, a universal Slepian-Wolf scheme for such sources is not known.

Trying to preserve universality in the case of infinite alphabets would require the assignment

of infinite number of sequences into bins. Thus, even the codebook generation does not seem

to be feasible in this case. This is not surprising, considering the fact that even in the single-

user case, diminishing redundancy cannot be achieved for universal lossless coding of sources

with infinite alphabets (see, e.g., [15]). Therefore, for the sake of universality, we assumed

that the source alphabets have bounded supports so the outputs of the quantizers have

finite alphabets. From the above, this assumption is also needed for the original single-user

scheme of Ziv [12]. The inner and outer bounds on the achievable rate-distortion region,

which are obtained as a direct consequence of Theorems 1-4 below, are also valid, of course,

for sources with unbounded support, as they do not depend on the universality.

We begin with a simple result.

Theorem 1. For any rate pair (R∗
1, R

∗
2) on the boundary of R∗(D1, D2) and any rate pair
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(R1, R2) on the boundary of R(D1, D2), with R1 ∈ R1(D1, D2), we have

R1 +R2 ≤ R∗
1 +R∗

2 + 2c (13)

where c = 0.754 bits/sample.

Moreover, for any R∗
1 ∈ R1(D1, D2), there exists a rate pair (R1, R2) ∈ R(D1, D2) such

that

R1 = R∗
1

R2 ≤ R∗
2 + 2c. (14)

Proof of Theorem 1. We have

1

n
H (Y1,Y2|Z1, Z2)

≤ 1

n
H (Y1,Y2, T1, T2|Z1, Z2)

≤ 1

n
H(T1, T2) +

1

n
H (Y1,Y2|T1, T2, Z1, Z2)

≤ R∗
1 +R∗

2 +
1

n
H (Y1,Y2|T1, T2, Z1, Z2)

≤ R∗
1 +R∗

2 +
1

n
H (Y1,Y2|g(T1, T2), Z1, Z2)

= R∗
1 +R∗

2 +
1

n
H
(

Y1,Y2|X̂opt
1 , X̂opt

2 , Z1, Z2

)

≤ R∗
1 +R∗

2 +
1

n
H
(

Y1|X̂opt
1 , Z1

)

+
1

n
H
(

Y2|X̂opt
2 , Z2

)

≤ R∗
1 +R∗

2 + 2c (15)

where T1 ∈ IM1
, T2 ∈ IM2

are the outputs of the optimal encoders f1, f2, respectively,
(

X̂
opt
1 , X̂opt

2

)

, g(T1, T2) are the outputs of the optimal decoder g, and (R∗
1, R

∗
2) ∈ R∗(D1, D2).

The last inequality can be obtained in the same way as in [12]. The left-hand side is achiev-

able for sufficiently large n. Therefore, for any rate pair (R1, R2) ∈ R(D1, D2), which lies

on the straight line R1 +R2 = H (Y1, Y2|Z1, Z2), we have

R1 +R2 ≤ R∗
1 +R∗

2 + 2c (16)

Moreover, if R∗
1 ∈ R1(D1, D2), we can always take R1 = R∗

1 and obtain:

R2 ≤ R∗
2 + 2c (17)
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The same can be done, of course, when the roles of the two users are interchanged. This

completes the proof.

The following theorem suggests another result regarding the relation between the bound-

ary of R(D1, D2) and that of R∗(D1, D2).

Theorem 2. For any rate pair (R1, R2) on the boundary of R(D1, D2), with R1 ∈ R1(D1, D2),

there exists a rate pair (R∗
1, R

∗
2) ∈ R∗(D1, D2) such that:

R1 ≤ R∗
1 + c

R2 ≤ R∗
2 + c (18)

Notice that Theorems 1 and 2 also provide outer bounds on R∗(D1, D2). Theorem

1 asserts that the straight line R1 + R2 = H (Y1, Y2|Z1, Z2) − 2c defines an outer bound

for R∗(D1, D2). In addition, Theorem 2 bounds the distance between the boundary of

R(D1, D2) and that of R∗(D1, D2) in each coordinate. The boundary of R(D1, D2) is, of

course, an inner bound on R∗(D1, D2).

Before proving Theorem 2, we first prove a simple auxiliary result regarding the source-

coding problem where side information is available only to the encoders but not to the

decoder. The setting is as follows. A rate pair (R1, R2) is achievable for a memoryless source

(Y1,Y2, PY1,Y2
) and some side information S ∈ S which depends statistically on (Y1,Y2)

through the joint probability distributions PY1,Y2,S , if for any δ > 0 and sufficiently large

n, there exists a block code of length n consisting of two encoders f1, f2

f1 : Yn
1 × S → IM1

, f2 : Yn
2 × S → IM2

(19)

and a decoder g

g : IM1
× IM2

→ Yn
1 × Yn

2 (20)

such that

Pr{g (f1(Y1, S), f2(Y2, S)) 6= (Y1,Y2)} ≤ δ (21)

and

1

n
logM1 ≤ R1 + δ,

1

n
logM2 ≤ R2 + δ (22)
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The set of achievable rate pairs is denoted by R̃. The regular Slepian-Wolf region (without

side information) is denoted by RSW . Obviously, RSW ⊆ R̃. We have the following lemma.

Lemma 1. Any rate pair (R̃1, R̃2) ∈ R̃ must satisfy the following constraint:

R̃1 + R̃2 ≥ H(Y1, Y2). (23)

Therefore, side information available only to the encoders cannot improve the performance

if R̃1 ∈ [H(Y1|Y2), H(Y1)] or R̃2 ∈ [H(Y2|Y1), H(Y2)].

Proof of Lemma 1. The proof follows directly from the fact that even one encoder, which

has access to (Y1,Y2, S), cannot do better than H(Y1,Y2), when the side information S

is not available to the decoder.

The generalization of Lemma 1 to our case where, in addition, a dither is available to

the encoders and decoder, is straightforward. We can now prove Theorem 2.

Proof of Theorem 2. Assume that the optimal code (f1, f2, g), which achieves the rate pair

(R∗
1, R

∗
2), is known, and that the encoders of the dithered scheme, which transmit Y1,

Y2 at rates (R1, R2) to the decoder, have access to f1(X1), f2(X2) as side information.

According to Lemma 1, this side information does not change the fact that any rate pair

(R1, R2) ∈ R(D1, D2) must satisfy R1 + R2 ≥ H(Y1, Y2|Z1, Z2). Consider the following

auxiliary coding scheme: User i compresses Ti = fi(Xi) using nR
∗
i bits, i ∈ {1, 2}. Then, the

first user uses Slepian-Wolf coding to compress Y1 given {T1, T2, Z1} into H(Y1|T1, T2, Z1)

bits. The second user uses Slepian-Wolf coding to compress Y2 given {Y1, T1, T2, Z1, Z2}
into H(Y2|Y1, T1, T2, Z1, Z2) bits. The decoder, which has access to {T1, T2, Z1, Z2}, first
decodes Y1, using {T1, T2, Z1}. Then, it decodes Y2 using {Y1, T1, T2, Z1, Z2}. The rate

pair of this scheme, (R1, R2), satisfies

R1 = R∗
1 +

1

n
H (Y1|T1, T2, Z1)

≤ R∗
1 +

1

n
H (Y1|g(T1, T2), Z1)

= R∗
1 +

1

n
H
(

Y1|X̂opt
1 , X̂opt

2 , Z1

)

≤ R∗
1 +

1

n
H
(

Y1|X̂opt
1 , Z1

)

(24)
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and

R2 = R∗
2 +

1

n
H (Y2|Y1, T1, T2, Z1, Z2)

≤ R∗
2 +

1

n
H (Y2|Y1, g(T1, T2), Z1, Z2)

= R∗
2 +

1

n
H
(

Y2|Y1, X̂
opt
1 , X̂opt

2 , Z1, Z2

)

≤ R∗
2 +

1

n
H
(

Y2|X̂opt
2 , Z2

)

(25)

The upper bounds on H(Yi|X̂opt
i , Zi) can be obtained in the same way as in [12]. Notice

that the Slepian-Wolf coding part in the proof requires long blocks of (T1, T2,Y1,Y2).

Now, since R(D1, D2) ⊆ R∗(D1, D2), we can always find R (R∗
1, R

∗
2) ∈ R∗(D1, D2) such

that R∗
1 + c ∈ R1(D1, D2) (or higher and thus can be reduced to this range). Using the

auxiliary scheme above, the rate pair (R1, R2) = (R∗
1+c, R∗

2+c) can be achieved. Therefore,

it can also be achieved by the dithered scheme, since R1 ∈ R1(D1, D2) (or higher), and in

this range the regions of the auxiliary scheme and the dithered scheme coincide. Notice

that any rate pair in R(D1, D2) can be achieved in practice by time-sharing the two edge

points of R(D1, D2).

3 Revisiting the Upper Bound on H

(

Y|X̂opt,Z
)

In this section, we revisit the proof of [12] for the upper bound on H
(

Y|X̂opt,Z
)

. This is

done for completeness and since we point and modify some of the steps in the next section.

The result of this section involves only one source X. The width of the quantization cell is

denoted by ∆ , 2
√
3D ⇒ D = ∆2/12.

First, we show that for each coordinate Xk, k ∈ {1, . . . , n},

E

[

Xk − X̂opt
k + Z

]

= 0. (26)

This follows from the following consideration:

E

[

Xk − X̂opt
k + Z

]

= E

[

Xk − X̂opt
k

]

+ E [Z]

= E

[

Xk − X̂opt
k

]

. (27)

The distortion associated with Xk is given by:

E

[

(

Xk − X̂opt
k

)2
]

= Var{Xk − X̂opt
k )}+

(

E

[

Xk − X̂opt
k

])2

≥ Var{Xk − X̂opt
k } (28)

10



where the inequality must be achieved by the optimal quantizer. Otherwise, we could

add a constant to X̂opt
k to obtain E

[

Xk − X̂opt
k

]

= 0 and thus smaller total distortion, in

contradiction to the optimality of the quantizer.

We now rederive the upper bound on H
(

Y|Xopt,Z
)

. Using a method similar to [13],

we show the following for the conditional entropy of each coordinate:

H
(

Yk|X̂opt
k , Z

)

= I
(

Xk;Xk + Z|X̂opt
k

)

= h
(

Xk + Z|X̂opt
k

)

− h (Z) (29)

where the second equality follows since X̂opt
k and Z are independent. By definition:

H
(

Yk|X̂opt
k = q, Z

)

=

∫ ∆

2

−∆

2

dzfZ(z)H
(

Yk|X̂opt
k = q, Z = z

)

=
1

∆

∫ ∆

2

−∆

2

dzH
(

Yk|X̂opt
k = q, Z = z

)

(30)

Given
(

X̂opt
k = q, Z = z

)

, Yk is a discrete random variable taking values in {i∆}i∈N. Thus,

H
(

Yk|X̂opt
k = q, Z = z

)

= −
∑

j∈N

P
Yk|X̂

opt

k
,Z
(j∆|q, z)

· logP
Yk|X̂

opt

k
,Z
(j∆|q, z) (31)

where P
Yk|X̂

opt

k
,Z
(·|q, z) is the probability density function of Yk given X̂opt

k and Z. Calcu-

lating:

P
Yk|X̂

opt

k
,Z
(j∆|q, z) = Pr{Yk = j∆|Z = z, X̂opt

k = q}

= ∆

∫ (j+ 1

2
)∆−z

(j− 1

2
)∆−z

dx
1

∆
f
X|X̂opt

k
(x|q)

= ∆ · f
Uk|X̂

opt

k
(j∆− z|q) (32)

where f
X|X̂opt

k
(·|q) is the probability density function of X given X̂opt

k , f
Uk|X̂

opt

k
(·|q) =

f
X|X̂opt

k
(·|q) ∗ fZ(·) is the probability density function of the continuous random variable

Uk , Xk + Z given X̂opt
k and ’∗’ denotes the convolution operation. Substituting in Eq.

11



(30), we have

H
(

Yk|X̂opt
k = q, Z

)

= − 1

∆

∫ ∆

2

−∆

2

dz
∑

i∈N

∆ · f
Uk|X̂

opt

k
(j∆− z|q)

· log
(

∆ · f
Uk|X̂

opt

k
(j∆− z|q)

)

= −
∫

R

du · f
Uk|X̂

opt

k
(u|q) · log

(

∆ · f
Uk|X̂

opt

k
(u|q)

)

= h
(

Uk|X̂opt
k = q

)

− log∆

= h
(

Uk|X̂opt
k = q

)

− h(Z)

= h
(

Uk|X̂opt
k = q

)

− h(Z|Xk, X̂
opt
k = q)

= h
(

Uk|X̂opt
k = q

)

− h(Uk|Xk, X̂
opt
k = q)

= I
(

Xk;Xk + Z|X̂opt
k = q

)

(33)

where in the fifth equality we used the independence of Xk and Z and in the sixth equality

we used the fact that Uk = Xk + Z. We have

H
(

Yk|X̂opt
k , Z

)

=
∑

q∈Qopt

P
X̂

opt

k
(q)H

(

Yk|X̂opt
k = q, Z

)

=
∑

q∈Qopt

P
X̂

opt

k
(q)I

(

Xk;Xk + Z|X̂opt
k = q

)

= I
(

Xk;Xk + Z|X̂opt
k

)

= h
(

Xk + Z|X̂opt
k

)

− h(Z)

= h
(

Xk − X̂opt
k + Z|X̂opt

k

)

− h(Z) (34)

This completes the derivation of Eq. (29). Now, we can upper bound h
(

Xk − X̂opt
k + Z|X̂opt

k

)

in the following way.

h
(

Xk − X̂opt
k + Z|X̂opt

k

)

=
∑

q∈Qopt

P
X̂

opt

k
(q)h

(

X − X̂opt
k + Z|X̂opt

k = q
)

≤
∑

q∈Qopt

P
X̂

opt

k
(q)

·1
2
log

(

2πeE

[

(

X − X̂opt
k + Z

)2
|X̂opt

k = q

])

≤ 1

2
log

(

2πeE
(

X − X̂opt
k + Z

)2
)

(35)

where in the first inequality we upper bounded the differential entropy by using the maximum-

entropy property of the Gaussian random variable and the second inequality is due to Jensen.
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Using these results, we can upper bound H
(

Y|X̂opt,Z
)

.

H
(

Y|X̂opt,Z
)

≤
n
∑

k=1

H
(

Yk|X̂opt
k , Z

)

≤
n
∑

k=1

1

2
log

(

2πeE

[

(

Xk − X̂opt
k + Z

)2
])

−nh(Z)

≤ n

2
log

(

2πe
1

n

n
∑

k=1

E

[

(

Xk − X̂opt
k + Z

)2
]

)

−n log∆

=
n

2
log

(

2πe
1

n
E

∥

∥

∥
X− X̂opt + Z

∥

∥

∥

2
)

−n log∆

≤ n

2
log (2πe2D)− n log∆

=
n

2
log (2πe2D)− n

2
log(∆2)

=
n

2
log (4πeD)− n

2
log (12D)

=
n

2
log
(πe

3

)

(36)

where the third inequality is due to Jensen, and in the fourth we used the following.

1

n
E

∥

∥

∥
X− X̂opt + Z

∥

∥

∥

2
=

1

n
E

∥

∥

∥
X− X̂opt

∥

∥

∥

2
+

1

n
E ‖Z‖2

≤ 2D (37)

which stems from the independence of X and Z. This completes the proof of the upper

bound on H
(

Y|X̂opt,Z
)

.

4 Improving the Bounds by Adding an Estimation Stage

The goal of this section is to enhance the results of Section 1 by improving the coding scheme

described there. The idea is to decrease the distortion by adding an estimation stage at

the decoder side. The new scheme works as follows. After producing Y1,Y2 and instead

of just using them as outputs, the decoder uses them to estimate each one of the source

vectors (X1,X2). Since the sources and the quantization process (given Z) are memoryless,

the estimation can be done on a symbol-by-symbol basis.

We begin with the following lemma:

13



Lemma 2. For the multi-terminal setting described in Section 1, we have (i ∈ {1, 2}):

E[Yi − Zi] = E[Xi] (38)

E[(Yi − Zi)
2] = E[Xi

2] +Di (39)

E[Xi(Yi − Zi)] = E[X2
i ] (40)

E [(Y1 − Z1)(Y2 − Z2)] = E [X1X2] (41)

E [X1(Y2 − Z2)] = E [X1X2] (42)

E [X2(Y1 − Z1)] = E [X1X2] (43)

Notice that the results above are true for each coordinate k ∈ {1, . . . , n}. The proof of

Lemma 2 is given in Appendix B.

The improved decoder described below requires the knowledge of the second-order statis-

tics of the source. However, as Lemma 2 shows, these statistics can be estimated from

{Yi}2i=1, so universality can still be maintained.

The decoder of the multi-terminal setting uses the optimal linear estimator, under the

MMSE criterion, of {Xi}2i=1 given {Q(Xi+Zi)−Zi}2i=1. The estimation error is calculated

by using the results of Lemma 2. From now on, without loss of generality, we assume that

E[X1] = E[X2] = 0. The covariance matrix of Y , [Q(X1 + Z1)− Z1, Q(X2 + Z2)− Z2] is:

Λ =

(

E[X2
1 ] +D1 E[X1X2]

E[X1X2] E[X2
2 ] +D2

)

(44)

and the inverse matrix is:

Λ−1 =
1

|Λ|

(

E[X2
2 ] +D2 −E[X1X2]

−E[X1X2] E[X2
1 ] +D1

)

(45)

The vector E
[

X1 · Y †
]

is given by:

E

[

X1 · Y †
]

=

(

E[X2
1 ]

E[X1X2]

)

(46)

It can be shown by direct calculation that

Λ−1
E

[

X1 · Y †
]

=
1

|Λ|

(

|Λ| −D1(E[X
2
2 ] +D2)

E[X1X2]D1

)

Therefore, the optimal linear estimator of X1 given the vector Y is:

X̂1 = Y · 1

|Λ|

(

|Λ| −D1(E[X
2
2 ] +D2)

E[X1X2]D1

)

(47)

14



The error of the optimal linear estimator is given by:

D∗
1 = E

[

X2
1

]

− E

[

X̂2
1

]

(48)

It is shown in Appendix C that the estimation error takes the following form:

D∗
1 = D1

E[X2
1 ](E[X

2
2 ] +D2)− E[X1X2]

2

(E[X2
1 ] +D1)(E[X2

2 ] +D2)− E[X1X2]2

Remember that D∗
1 is the distortion of X1 in the multi-terminal setting, where we add the

above estimation stage after decoding (Y1,Y2). It can be easily seen that the fraction in

the brackets is less than 1 and thus D∗
1 ≤ D1 as desired. The same can be done, of course,

for X2. Since the distortion of Xi in the improved scheme is D∗
i , we should compare the rate

pair (R1, R2) of this scheme, to the optimal rate pair (R∗
1, R

∗
2) which achieves (D∗

1, D
∗
2). This

fact immediately improves on the results of Theorems 1 and 2. Revisiting the derivation of

the upper bound for H
(

Y|X̂opt,Z
)

in Eq. (36), it can be shown that (i ∈ {1, 2}):

H
(

Yi|X̂opt
i ,Zi

)

≤ n

2
log

[

πe

6

(

D∗
i

Di
+ 1

)]

(49)

by using the following:

1

n
E

∥

∥

∥
Xi − X̂

opt
i + Zi

∥

∥

∥

2
=

1

n
E

∥

∥

∥
Xi − X̂

opt
i

∥

∥

∥

2

+
1

n
E ‖Zi‖2

≤ D∗
i +Di (50)

Notice that when X1 and X2 are independent, E[X1X2] = 0 and we have

H
(

Yi|X̂opt
i ,Zi

)

≤ n

2
log

[

πe

6

(

2− Di

E[X2
i ] +Di

)]

(51)

The maximum interesting value of D∗
i is, of course, E[X2

i ]. This value is obtained for

Di → ∞. It is not hard to see that the range of the upper bound in (51) is [0.255, 0.755]

and that it is a decreasing function of D1. For the high-SNR limit, i.e., Di → 0, it is well

known that the redundancy is 0.255 bits/sample (cf. [16]). We define (i ∈ {1, 2}):

ci(D1, D2) =
n

2
log

[

πe

6

(

D∗
i

Di
+ 1

)]

(52)

We can now state Theorems 3 and 4. These theorems are obtained by applying the gener-

alized upper bound of Eq. (49), instead of Ziv’s upper bound on H
(

Yi|X̂opt
i ,Zi

)

, in the

proofs of Theorem 1 and 2.
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Theorem 3. For any rate pair (R∗
1, R

∗
2) on the boundary of R∗(D1, D2) and any rate pair

(R1, R2) on the boundary of R(D∗
1, D

∗
2), with R1 ∈ R1(D1, D2), we have

R1 +R2 ≤ R∗
1 +R∗

2 + c1(D1, D2) + c2(D1, D2) (53)

Moreover, for any R∗
1 ∈ R1(D1, D2), there exists a rate pair (R1, R2) ∈ R(D∗

1, D
∗
2) such

that:

R1 = R∗
1

R2 ≤ R∗
2 + c1(D1, D2) + c2(D1, D2) (54)

Theorem 4. For any rate pair (R1, R2) on the boundary of R(D∗
1, D

∗
2), with R1 ∈ R1(D1, D2),

there exists a rate pair (R1, R2) ∈ R(D∗
1, D

∗
2) such that:

R1 ≤ R∗
1 + c1(D1, D2)

R2 ≤ R∗
2 + c2(D1, D2) (55)
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Appendix A - Universal Slepian-Wolf Coding

In this appendix we describe the universal Slepian-Wolf decoder used in our coding scheme.

The following results are similar to those of [17]. For convenience, we omit the notation of

the conditioning on the dither variables Z1 and Z2. The results below can be applied for

any realization of these continuous variables. Remember that our coding scheme, unlike the

scheme presented in [6], requires only one realization of Z1 and Z2 in each round.

We consider the Slepian-Wolf setting for two correlated memoryless sources (Y1, Y2) ∼
PY1,Y2

. We assume that Y1 ∈ Y1 and Y2 ∈ Y2, where Y1 and Y2 are finite alphabets. A

(2nR1 , 2nR2, n) source code is a block code of length n consisting of two encoders f1, f2,

f1 : Yn
1 → IM1

, f2 : Yn
2 → IM2

(A.1)

and a decoder g

g : IM1
× IM2

→ Yn
1 × Yn

2 . (A.2)

where Mj = 2nRj , j = 1, 2. The probability of error of the code is defined as

Pe(n) , Pr{g (f1(Y1), f2(Y2)) 6= (Y1,Y2)} (A.3)

We will prove the following result:

Theorem 5. Let (R1, R2) be given. Then, there exists a sequence of (2nR1 , 2nR2, n) Slepian-

Wolf source codes with probability of error Pe(n) → 0 as n → ∞ for every memoryless source

that satisfies Eq. (1).

Proof. Throughout the proof, the cardinality of a set A is denoted by |A|. The empirical

joint entropy Hy1,y2
(Y1, Y2) and the empirical conditional entropy Hy1,y2

(Y1|Y2) induced by

the sequences y1 ∈ Yn
1 , y2 ∈ Yn

2 are defined as

Hy1,y2
(Y1, Y2) , −

∑

y1∈Y1

∑

y2∈Y2

Py1,y2
(y1, y2) logPy1,y2

(y1, y2) (A.4)

Hy1,y2
(Y1|Y2) , −

∑

y1∈Y1

∑

y2∈Y2

Py1,y2
(y1, y2) logPy1,y2

(y1|y2) (A.5)

where Py1,y2
(y1, y2), Py1,y2

(y1|y2) are the empirical joint and conditional distribution func-

tions, respectively, induced by y1 and y2 (see [18, Chap. 11]).

To prove the theorem, we use the following random-binning mechanism:
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• Codebook generation: Assign every y1 ∈ Yn
1 to one of 2nR1 bins independently ac-

cording to a uniform distribution on {1, 2, . . . 2nR1}. Similarly, randomly assign every

y2 ∈ Yn
2 to one of 2nR2 bins. Reveal the assignments f1 and f2 to the encoders and

the decoder.

• Encoding: User j sends the index of the bin to which Yj belongs, j = 1, 2.

• Decoding: Given the received index pair (T1 = f1(Y1), T2 = f2(Y2)), the decoder uses

the Minimum Joint Entropy (MJE) decoder: Choose the pair (y
′

1,y
′

2) : f1(y
′

1) =

T1, f2(y
′

2) = T2 which minimizes the empirical joint entropy induced by (y
′

1,y
′

2),

H
y
′
1
,y

′
2

(Y1, Y2).

Define the following events:

E0 =
{

(Y1,Y2) /∈ An
ǫ

}

E1 =
{

(Y1,Y2) ∈ An
ǫ

}

∩
{

∃y′

1 6= Y1 : f1(y
′

1) = T1 and H
y
′
1
,Y2

(Y1, Y2) ≤ HY1,Y2
(Y1, Y2)

}

E2 =
{

(Y1,Y2) ∈ An
ǫ

}

∩
{

∃y′

2 6= Y2 : f2(y
′

2) = T2 and H
Y1,y

′
2

(Y1, Y2) ≤ HY1,Y2
(Y1, Y2)

}

E12 =
{

(Y1,Y2) ∈ An
ǫ

}

∩
{

∃
(

y
′

1,y
′

2

)

: y
′

1 6= Y1,y
′

2 6= Y2, f1(y
′

1) = T1, f2(y
′

2) = T2

and H
y
′
1
,y

′
2

(Y1, Y2) ≤ HY1,Y2
(Y1, Y2)

}

(A.6)

where An
ǫ , ǫ > 0, is the strongly typical set with respect to the source PY1,Y2

(see [18, Eq.

10.107]). Remember that Y1, Y2, f1 and f2 are random. Obviously,

H
y
′
1
,y2

(Y1, Y2) ≤ Hy1,y2
(Y1, Y2) ⇔ H

y
′
1
,y2

(Y1|Y2) ≤ Hy1,y2
(Y1|Y2) (A.7)

whereH
y
′
1
,y2

(Y1|Y2),Hy1,y2
(Y1|Y2) are the empirical conditional entropies induced by (y

′

1,y2)

and (y1,y2), respectively. We have an error if there is another pair of sequences in the same

bin such that the empirical joint entropy induced by this pair is smaller than the empirical

joint entropy induced by (Y1,Y2). Hence,

P̄e(n) ≤ Pr {E0 ∪ E1 ∪ E2 ∪ E12}

≤ Pr {E0}+ Pr {E1}+ Pr {E2}+ Pr {E12} (A.8)

where P̄e(n) , E[Pe(n)] is the expected probability of error where the expectation is taken

with respect to the random choice of the code. The first inequality follows from the fact

that we treat E0 as error event and the second inequality is due to the union bound. We
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first consider E0. By the asymptotic equipartition property (AEP), Pr {E0} → 0 and hence

for n sufficiently large, Pr {E0} < ǫ. To bound Pr(E1), we have

Pr(E1) =
∑

(y1,y2)∈An
ǫ

P (y1,y2)

·Pr
{

∃y′

1 6= y1 : f1(y
′

1) = f1(y1) and H
y
′
1
,y2

(Y1|Y2) ≤ Hy1,y2
(Y1|Y2)

}

≤
∑

(y1,y2)∈An
ǫ

P (y1,y2)
∑

y
′
1
∈B(y1,y2)

Pr{f1(y
′

1) = f1(y1)}

=
∑

(y1,y2)∈An
ǫ

P (y1,y2)2
−nR1 |B(y1,y2)| (A.9)

where the set B(y1,y2) is defined as

B(y1,y2) ,
{

y
′

1 : Hy
′
1
,y2

(Y1|Y2) ≤ Hy1,y2
(Y1|Y2)

}

(A.10)

and the last equality simply follows from the definition of the random-binning coding

scheme. Using the method of types (see [18, Chap. 10-11]), we have

|B(y1,y2)| =
∑

y
′
1
∈B(y1,y2)

1

=
∑

V
y
′
1
|y2

⊆B(y1,y2)

∣

∣

∣
V
y
′
1
|y2

∣

∣

∣

≤
∑

V
y
′
1
|y2

⊆B(y1,y2)

2
n
(

H
y
′
1
,y2

(Y1|Y2)+ǫ
)

≤
∑

V
y
′
1
|y2

⊆B(y1,y2)

2n
(

Hy1,y2
(Y1|Y2)+ǫ

)

≤ (n+ 1)|Y1||Y2|2n
(

Hy1,y2
(Y1|Y2)+ǫ

)

≤ (n+ 1)|Y1||Y2|2n
(

H(Y1|Y2)+2ǫ
)

(A.11)

where V
y
′
1
|y2

is the conditional type of y
′

1 given y2 (see [18, Chap. 10]). The second equality

follows from the fact that the event y
′

1 ∈ B(y1,y2) depends only on the type V
y
′
1
|y2

. In the

first inequality, we used the known upper bound on the size of the conditional type. The

second inequality stems from the definition of B(y1,y2). In the third inequality we used a

known upper bound on the number of conditional types. The last inequality follows since

(see [18, Chap. 10])

(y1,y2) ∈ An
ǫ ⇒ Hy1,y2(Y1|Y2) ≤ H(Y1|Y2) + ǫ. (A.12)

19



Therefore, we have

Pr(E1) ≤
∑

(y1,y2)∈An
ǫ

P (y1,y2)2
−nR1 |B(y1,y2)|

≤ (n+ 1)|Y1||Y2|2−nR12n(H(Y1|Y2)+2ǫ) (A.13)

where in the second inequality we used Eq. (A.11). Similarly, it can be shown that

Pr(E2) ≤ (n+ 1)|Y1||Y2|2−nR2 · 2n(H(Y2|Y1)+2ǫ) (A.14)

and

Pr(E12) ≤ (n+ 1)|Y1||Y2|2−n(R1+R2) · 2n(H(Y1,Y2)+2ǫ) (A.15)

Hence, taking R1 > H(Y1|Y2) + 2ǫ, R2 > H(Y2|Y1) + 2ǫ and R1 +R2 > H(Y1, Y2) + 2ǫ, we

have P (E1) < ǫ, P (E2) < ǫ and P (E12) < ǫ for sufficiently large n. Since P̄e(n) ≤ 4ǫ, there

exists at least one universal code (f∗
1 , f

∗
2 , g

∗) with Pe(n) ≤ 4ǫ. Thus, we can construct a

sequence of universal codes with Pe(n) → 0, and the proof of achievability is complete.

Remark. It can be shown that the universal decoder presented in the proof above also

achieves the optimal error exponent.

Appendix B - Proof of Lemma 2

We now prove Lemma 2. We first show that the random vector (Y1 − Z1, Y2 − Z2) is equiva-

lent to the random vector (X1 +N1, X2 +N2) where N1, N2 are independent of X1, X2 and

of each other and Ni ∼ U [−
√
3Di,

√
3Di], i ∈ {1, 2}. Therefore, the dithered quantization

process can be viewed as passing X1, X2 through independent noisy memoryless channels

X̂1 = X1 + N1 and X̂2 = X2 + N2, respectively. We start with the following conditional

probability distribution.

fN1,N2|X1,X2
(N1, N2|X1, X2) = f (N1|X1) f (N2|X2) (B.1)

where we have defined N1 , Y1−Z1−X1, N2 , Y2−Z2−X2. The equality stems from the

fact that (Y1 − Z1 −X1) is independent of X2 given X1 and (Y2 − Z2 −X2) is independent

of X1 given X2, since (Z1, Z2) are independent of (X1, X2). In addition, it can be easily

seen that for every value of Xi, Ni is uniformly distributed over [−
√
3Di,

√
3Di]. Therefore,

Ni is independent of Xi and we have

fN1,N2|X1,X2
(N1, N2|X1, X2) = f (N1) f (N2) (B.2)
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Lemma 2 follows directly from this result:

E[Yi − Zi] = E[Xi +Ni] = E[Xi]

E[(Yi − Zi)
2] = E[(Xi +Ni)

2] = E[Xi
2] +Di

E[Xi(Yi − Zi)] = E[Xi(Xi +Ni)] = E[X2
i ]

E [(Y1 − Z1)(Y2 − Z2)] = E [(X1 +N1)(X2 +N2)] = E [X1X2]

E [X1(Y2 − Z2)] = E [X1(X2 +N2)] = E [X1X2]

E [X2(Y1 − Z1)] = E [X2(X1 +N1)] = E [X1X2]

Appendix C - Calculation of the Estimation Error

In this appendix we calculate the estimation error given in Eq. (49). The optimal linear

estimator of X1 given the vector Y is:

X̂1 = Y · 1

|Λ|

(

|Λ| −D1(E[X
2
2 ] +D2)

E[X1X2]D1

)

(C.1)

where

|Λ| = (E[X2
1 ] +D1)(E[X

2
2 ] +D2)− E[X1X2]

2 (C.2)

The error of the optimal linear estimator is given by:

D∗
1 = E

[

X2
1

]

− E

[

X̂2
1

]

(C.3)
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Calculating the second term:

|Λ|2E
[

X̂2
1

]

=
(

|Λ| −D1

(

E[X2
2 ] +D2

))2
E

[

(Y1 − Z1)
2
]

+E[X1X2]
2D2

1E

[

(Y2 − Z2)
2
]

+2
(

|Λ| −D1

(

E[X2
2 ] +D2

))

E[X1X2]D1E [(Y1 − Z1) (Y2 − Z2)]

=
(

|Λ| −D1

(

E[X2
2 ] +D2

))2 (
E[X2

1 ] +D1

)

+E[X1X2]
2D2

1

(

E[X2
2 ] +D2

)

+2
(

|Λ| −D1

(

E[X2
2 ] +D2

))

E[X1X2]
2D1

=
(

|Λ| −D1

(

E[X2
2 ] +D2

))2 (
E[X2

1 ] +D1

)

+E[X1X2]
2D1

(

D1

(

E[X2
2 ] +D2

)

+ 2
(

|Λ| −D1

(

E[X2
2 ] +D2

)))

=
(

|Λ| −D1

(

E[X2
2 ] +D2

))2 (
E[X2

1 ] +D1

)

+E[X1X2]
2D1

(

2|Λ| −D1

(

E[X2
2 ] +D2

))

=
(

|Λ| −D1

(

E[X2
2 ] +D2

)) ((

|Λ| −D1

(

E[X2
2 ] +D2

)) (

E[X2
1 ] +D1

)

+ E[X1X2]
2D1

)

+|Λ|E[X1X2]
2D1

=
(

|Λ| −D1

(

E[X2
2 ] +D2

)) (

|Λ|
(

E[X2
1 ] +D1

)

−D1|Λ|
)

+|Λ|E[X1X2]
2D1

=
(

|Λ| −D1

(

E[X2
2 ] +D2

))

|Λ|E[X2
1 ]

+|Λ|E[X1X2]
2D1

= |Λ|2E[X2
1 ] + |Λ|D1

(

E[X1X2]
2 − E[X2

1 ]
(

E[X2
2 ] +D2

))

= |Λ|2E[X2
1 ]− |Λ|D1

(

E[X2
1 ]
(

E[X2
2 ] +D2

)

− E[X1X2]
2
)

= |Λ|2E[X2
1 ]− |Λ|D1

(

|Λ| −D1

(

E[X2
2 ] +D2

))

(C.4)

where in the second equality we used the results of Lemma 2. Therefore, we have

D∗
1 =

|Λ|D1

(

|Λ| −D1(E[X
2
2 ] +D2))

)

|Λ|2

= D1

(

1− D1(E[X
2
2 ] +D2)

|Λ|

)

= D1

(

1− D1(E[X
2
2 ] +D2)

(E[X2
1 ] +D1)(E[X2

2 ] +D2)− E[X1X2]2

)

= D1
E[X2

1 ](E[X
2
2 ] +D2)− E[X1X2]

2

(E[X2
1 ] +D1)(E[X2

2 ] +D2)− E[X1X2]2
(C.5)
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