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Abstract

We consider the model of random binning and finite–temperature decoding for Slepian–Wolf codes,
from a statistical–mechanical perspective. While ordinary random channel coding is intimately
related to the random energy model (REM) – a statistical–mechanical model of disordered mag-
netic materials, it turns out that random binning (for Slepian–Wolf coding) is analogous to an-
other, related statistical mechanical model of strong disorder, which we call the random dilution
model (RDM). We use the latter analogy to characterize phase transitions pertaining to finite–
temperature Slepian–Wolf decoding, which are somewhat similar, but not identical, to those of
finite–temperature channel decoding. We then provide the exact random coding exponent of the
bit error rate (BER) as a function of the coding rate and the decoding temperature, and discuss its
properties. Finally, a few modifications and extensions of our results are outlined and discussed.

Index Terms Slepian–Wolf codes, error exponent, bit–error probability, finite–temperature de-
coding, random energy model, phase transitions, phase diagram.
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1 Introduction

The famous paper by Slepian and Wolf [16], on separate (almost) lossless compression and joint

decompression of statistically dependent sources, has triggered an intensive research activity of

information theorists during the last forty years. Among its various generalizations and modifica-

tions, several recent works have been dedicated to detailed performance analysis, first and foremost,

to exponential error bounds for the Slepian–Wolf (SW) decoder. Specifically, Gallager [6] obtained

a lower bound on the random coding error exponent associated with random binning, by employing

a very similar technique to the one he used in his famous derivation of the random (channel) coding

error exponent [5, Sections 5.5–5.6]. A few years later, this error exponent was shown by Csiszár,

Körner and Marton [2], [4] to be achievable by a universal decoder, that is independent of the

channel. In [3] Csiszár and Körner have studied universally achievable error exponents pertaining

to linear codes, as well as ordinary (non-universal) expurgated exponents. Later, Csiszár [1] and

Oohama and Han [13] have developed error exponents for situations of coded side information. For

high rates at one of the two encoders, Kelly and Wagner [7] have improved relative to these results,

but not in the general case.

This paper continues the above described line of work on exponential error bounds associated

with random binning of SW codes, but unlike the previous works mentioned above, this one is

more oriented to the statistical–mechanical point of view. Specifically, in analogy to the notion of

finite–temperature decoding, originally proposed by Ruján [15] in the context of channel coding

(see also [14, Section 6.3.3]), here we examine a similar finite–temperature decoder for SW codes,

and analyze it from various aspects. In a nutshell, finite–temperature decoding amounts to an

optimal symbol–error–probability decoder that is associated with the likelihood function, raised to

some power β ≥ 0, a parameter referred to as the inverse temperature, which is a term borrowed

from equilibrium statistical mechanics and the Boltzmann–Gibbs distribution. In channel coding,

the motivation for this parametrization by β could either stem from uncertainty concerning the

channel SNR (which is analogous to the “temperature” of the real channel), or from the fact that

it enables to analyze both the optimal symbol–error–probability decoder and the optimal block–

error–probability decoder on the same footing (β = 1 and β → ∞, respectively [14, p. 118]). In

SW coding, the motivations are similar.
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Focusing mostly on the “one–sided” version of the Slepian–Wolf setting, where one source is

compressed while the other one is available (e.g., after perfect reconstruction) as side information

at the decoder, we derive several results in this paper. First, we present a statistical–mechanical

model, henceforth referred to as the random dilution model (RDM), which is a natural analogue of

the random binning mechanism, exactly in the same way that the random energy model (REM) of

statistical mechanics is the physical analogue of the random coding mechanism (see also [8], [14,

Chapters 5 and 6] and references therein). The RDM was already mentioned briefly in an earlier

work [10], but was not developed in detail therein.

Secondly, in analogy to the phase diagrams of finite–temperature channel coding, provided in [9]

and [14, Sect. 6.3.3], here we provide a statistical–mechanical characterization in the form of a phase

diagram of SW codes with random binning, in the plane of R vs. T , where R is the coding rate and

T = 1/β is the decoding temperature. As in channel coding, there are three different phases, in

which the kinds of behavior of the posterior distribution of the source given the side information and

the bin index, are completely different. We will elaborate on these phases in the sequel. Generally

speaking, the phase diagram of a finite–temperature SW decoder appears similar to the “mirror

image” of the one of channel coding, where the axis of the rate R is flipped over. On the one hand,

this seems to make sense, in view of the fact that a SW code at rate R is nearly equivalent to

a channel code at rate H − R, where H is the entropy of the compressed source. However, this

equivalence is not perfect, as there are also some non–trivial differences between channel coding and

SW coding. Accordingly, there are differences also in the phase diagram beyond the aforementioned

“mirror reflection”.

Next, we derive the exact exponent of the symbol error probability of the finite–temperature

decoder, as a function of R and β, and we make a few observations concerning the properties of the

resulting error exponent, denoted E(R,β). It turns out that E(R,β) also exhibits phase transitions,

which are related to the above mentioned phases of the posterior, but are not identical.

Finally, we outline a few extensions and modifications of the above described results, in sev-

eral directions, including: mismatched decoding, universal decoding, variable–rate coding, and the

“two–sided” SW problem, where both sources are compressed separately and decompressed jointly.

The outline of the paper is as follows. In Section 2, we establish notation conventions, define the
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problem setting, and provide some physics background. In Section 3, we derive the phase diagram,

and in in Section 4, we derive the error exponent of the finite–temperature decoder.

2 Notation Conventions, Problem Setting and Background

2.1 Notation Conventions

Throughout the paper, random variables will be denoted by capital letters, specific values they may

take will be denoted by the corresponding lower case letters, and their alphabets will be denoted by

calligraphic letters. Random vectors and their realizations will be denoted, respectively, by capital

letters and the corresponding lower case letters, both in the bold face font. Their alphabets will

be superscripted by their dimensions. For example, the random vector X = (X1, . . . ,XN ), (N –

positive integer) may take a specific vector value x = (x1, . . . , xN ) in XN , the N–th order Cartesian

power of X , which is the alphabet of each component of this vector.

The expectation operator will be denoted by E{·}. Logarithms and exponents will be understood

to be taken to the natural base unless specified otherwise. The indicator function will be denoted

by I(·). The notation function [t]+ will be defined as max{t, 0}. For two positive sequences, {aN}

and {bN}, the notation aN
·
= bN will mean asymptotic equivalence in the exponential scale, that

is, limN→∞
1
N log(aN

bN
) = 0. Similarly, aN

·
≤ bN will mean lim supN→∞

1
N log(aN

bN
) ≤ 0, and so on.

2.2 Problem Setting and Objectives

Let {(Xi, Yi)}
N
i=1 be N independent copies of a random vector (X,Y ), distributed according to

a given probability mass function P (x, y), where x and y take on values in finite alphabets, X

and Y, respectively. The source vector x = (x1, . . . , xN ), which is a generic realization of X =

(X1, . . . ,XN ), is compressed at the encoder by random binning, that is, each N–tuple x ∈ XN is

randomly and independently assigned to one out ofM = eNR bins, whereR is the coding rate in nats

per symbol. Given a realization of the random partitioning into bins (revealed to both the encoder

and the decoder), let f : XN → {0, 1, . . . ,M − 1} denote the encoding function, i.e., u = f(x) is

the encoder output. Accordingly, the inverse image of u, defined as f−1(u) = {x : f(x) = u}, is

the bin of all source vectors mapped by the encoder into u. The decoder has access to u and to

y = (y1, . . . , yN ), which is a realization of Y = (Y1, . . . , YN ), namely, the side information at the
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decoder.

As is well known, the optimal decoder in the sense of minimum word error probability is the

word–level maximum a-posteriori (MAP) decoder,

x̂ = arg max
x∈f−1(u)

P (x|y) = arg max
x∈f−1(u)

P (x,y). (1)

Similarly, the optimal decoder in the sense of minimum symbol error probability is given by the

symbol–level MAP decoder,

x̂i = arg max
x∈X

∑

x∈f−1(u): xi=x

P (x,y), i = 1, 2, . . . , N. (2)

Following the notion of finite–temperature decoding in channel coding [15] (see also [14, Section

6.3.3]), we consider a parametric family of decoders, that generalizes both (1) and (2), and which

is of the form

x̂i = arg max
x∈X

∑

x∈f−1(u): xi=x

P β(x,y), i = 1, 2, . . . , N, (3)

where the parameter β ≥ 0 is referred to as the inverse temperature, a term borrowed from equilib-

rium statistical physics (see next subsection). The motivation for considering the finite–temperature

decoder is two–fold (see also [9] for even more motivations): First, as said, it is a common general-

ization of both the symbol–level MAP decoder (β = 1) and the word–level MAP decoder (β → ∞).

Secondly, in some important cases, it refers to a situation of a certain mismatch that may stem

from uncertainty concerning the joint distribution of (X,Y ), or even more specifically, the quality

of the ‘channel’ P (y|x), connecting X to Y . For example, if (X,Y ) is a double binary symmetric

source (BSS), that is, X is a BSS and Y given X is generated by binary symmetric channel (BSC),

then the choice of β manifests the decoder’s ‘belief’ concerning the quality of this BSC: β < 1

corresponds to a pessimistic decoder, whereas β > 1 is associated with an optimistic one.

In order to understand the behavior of the finite–temperature decoder (3), one has to first gain

some insight concerning the behavior the posterior distribution induced by that decoder, namely,

Pβ(x|y, u) =

{

P β(x,y)
P

x′∈f−1(u)
P β(x′,y)

x ∈ f−1(u)

0 elsewhere
(4)

Accordingly, we first focus on studying the properties of this posterior in the random binning

regime. In particular, similarly as in [9] and [14], we view it as an instance of the Boltzmann–Gibbs
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(B-G) distribution of statistical mechanics by rewriting it in the form

Pβ(x|y, u) =

{

exp{−βE(x,y)}
P

x′∈f−1(u)
exp{−βE(x′,y)} x ∈ f−1(u)

0 elsewhere
(5)

where E(x,y) is the energy function (Hamiltonian), defined as E(x,y)
∆
= − lnP (x,y). We then

study the phase diagram of the corresponding statistical–mechanical model in the plane of R vs.

β, or more precisely, R vs. T , where T = 1/β is the decoding temperature. In analogy to the role

of the random energy model (REM) as the statistical–mechanical counterpart of ordinary random

coding (see [8, Chap. 6], [14, Chapters 5 and 6]), it turns out that random binning corresponds to

a somewhat different (though related) physical model, which we call the random dilution model

(RDM), and which was first mentioned in [10]. The RDM and its relevance to random binning will

be presented in the next subsection.

Our second objective would be to derive the exact error exponent of the symbol error probability,

denoted E(R,β), that is associated with the finite–temperature decoder (3), as a function of R and

β, in the random binning regime. The properties of E(R,β), as well as its phase diagram, will be

studied in some detail.

Finally, we briefly discuss several variations of these results, covering situations of mismatch,

universal decoding, variable–rate compression, and the “two–sided” version of SW coding, namely,

separate encodings and joint decoding of both sources (as opposed to the “one–sided” version de-

scribed above, of encoding and decoding of one source while the other one serves as side information

at the decoder).

2.3 Background: The REM, the RDM and Random Binning

In ordinary random coding, the analysis of bounds on the probability of error (especially in Gal-

lager’s method) are often associated with expressions of the form
∑

x∈C P
β(y|x), where P (y|x) is

the conditional distribution pertaining to the channel, C is randomly drawn codebook and β > 0

is a parameter. As described in [8, Chap. 6], from the statistical–mechanical perspective, this can

be thought of as a partition function (depending on y):

Z(β|y) =
∑

x∈C

e−βE(x,y), (6)
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where β is the inverse temperature and where here the energy function is E(x,y) = − lnP (y|x).

The same partition function is relevant for the Boltzmann–Gibbs form of the finite–temperature

posterior associated with the channel decoder, in the spirit of eqs. (4) and (5):

Pβ(x|y) =

{

P β(y|x)
Z(β|y) x ∈ C

0 elsewhere
(7)

=

{

exp{−βE(x,y)}
Z(β|y) x ∈ C

0 elsewhere
(8)

As the codewords are selected independently at random, then for fixed y, the energy values

{E(x,y), x ∈ C} are i.i.d. random variables. This is essentially the same as in the random energy

model (REM), a well known model of disorder in statistical physics of spin glasses, which under-

goes a phase transition: below a certain temperature (β > βc), the system is frozen in the sense

that the partition function is dominated by a non–exponential number of microstates {x} at the

ground–state energy (zero thermodynamical entropy). This is called the frozen phase or the glassy

phase. The other phase, β < βc, is called the paramagnetic phase (see more details in [14, Chap.

5]). Owing to this analogy between the REM and random coding, the corresponding exponential

error bounds associated with random coding then undergo a similar phase transition (see [8] and

references therein).

In random binning, as opposed ordinary random coding, the mechanism is somewhat different,

and the analogous statistical–mechanical model, which we call the RDM, is defined as follows.

Consider a partition function of a certain physical system, with a microstate x and Hamiltonian

E(x), i.e.,

Z(β) =
∑

x∈XN

e−βE(x), β > 0, (9)

where β is, as said, the inverse temperature. The diluted version of Z(β), according to the RDM

(hence the name), is defined as

ZD(β) =
∑

x∈XN

I(x) · e−βE(x), (10)

where {I(x), x ∈ XN} are i.i.d. Bernoulli random variables with p
∆
= Pr{I(x) = 1} = 1−Pr{I(x) =

0} = e−NR for all x ∈ XN , and R ≥ 0 is a given constant. Thus, ZD(β) is a partial version of

the full partition function Z(β), with randomly chosen (surviving) microstates {x}. Equivalently,
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ZD(β) can be thought of as being defined just like Z(β), but with an Hamiltonian redefined as

ED(x) = E(x) + ψ(x), where ψ(x) are i.i.d. random variables, taking the value ψ(x) = 0 with

probability e−NR and the value ψ(x) = ∞ with probability 1 − e−NR. From the physical point

of view, ψ(x) can be thought of as some disordered potential energy function, that due to long–

range interactions, disables access to certain points in the configuration space (those that have not

‘survived’ the dilution).

Let s(ǫ) denote the normalized (per–particle) entropy as a function of the normalized energy,

associated with the full system, Z(β). More precisely, denoting by ΩN(E) the number of vectors

{x} for which E(x) = E, then

s(ǫ)
∆
= lim

N→∞

ln ΩN(Nǫ)

N
, (11)

provided that the limit exists. Let ∆ǫ be an arbitrarily small quantity (increment) of the normalized

energy. Then,

ZD(β) ≈
∑

i





∑

x: Ni∆ǫ≤E(x)<N(i+1)∆ǫ

I(x)



 · e−βNi∆ǫ. (12)

Observe that the expression in the square brackets is a binomial RV with exponentially about

eNs(i∆ǫ) trials and probability of success p = e−NR. Thus, in a typical realization the RDM, this

number is about exp{N [s(i∆ǫ) − R]} whenever s(i∆ǫ) − R ≥ 0 and by zero otherwise. Thus, in

the limit of ∆ǫ→ 0,

φD(β) = lim
N→∞

lnZD(β)

N
= sup

{ǫ: s(ǫ)≥R}
[s(ǫ) −R− βǫ] (13)

=

{

φ(β) −R β < βc

−βǫ0 β ≥ βc
(14)

where φ(β) is the asymptotic normalized log–partition function associated with the full system

(before the dilution), ǫ0 is ground–state (minimum energy state) of the RDM, i.e., the solution to

the equation s(ǫ) = R, and βc = s′(ǫ0), s
′(·) being the derivative of s(·). Note that both βc and

ǫ0 depend on R. Thus, the system undergoes a glassy phase transition (similarly to the REM) at

inverse temperature βc. At low temperatures, it freezes at zero entropy and ZD(β) is dominated by

a subexponential number of configurations {x} at the ground–state energy E0 = Nǫ0. This is then

the glassy phase of the RDM. Above the critical temperature (the paramagnetic phase), the diluted

system behaves essentially like the full one, i.e., it is dominated by exponentially many (actually,
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about eN [s(ǫβ)−R]) configurations with energy Eβ = Nǫβ, where ǫβ is the typical per–particle energy

level pertaining to inverse temperature β in the full system, that is, the solution to the equation

s′(ǫ) = β. Note that

βc(R) = s′[s−1(R)], (15)

where s−1(·) is the inverse function of s(·) (in the range where it is monotonically increasing and

hence one–to–one). In this range s−1(·) is increasing as well, but since s′ is decreasing, then βc is

a decreasing function of R. This means that, as the dilution becomes more aggressive, the critical

temperature goes up. Since s(·) is concave (see, e.g., [8, pp. 13–14]) and increasing, s−1(·) is convex,

so the overall behavior depends on s′(·).

Example 1. Let E(x) = κ
2‖x‖

2, with X = {0,±a,±2a, . . .}, i.e., an harmonic potential applied

to particles in a grid with spacing a. Then, ΩN (E) is approximately the volume of the shell of a

hyper–sphere of radius
√

2E/κ, divided by an elementary volume of the grid cube aN , which yields

s(ǫ) =
1

2
ln

4πeǫ

κa2
, (16)

and so,

s′(ǫ) =
1

2ǫ
. (17)

and

s−1(R) =
κa2

4πe
· e2R. (18)

Thus,

βc(R) =
2πe

κa2
· e−2R, (19)

meaning that the critical temperature grows exponentially with R. This concludes Example 1.

Remark 1. A slightly more general version of the RDM replaces the fixed parameter R by a function

of ǫ, that is, p = e−NR(ǫ). The analysis is essentially the same as before, except that now, the range

of maximization {ǫ : s(ǫ) ≥ R} is replaced by {ǫ : s(ǫ) ≥ R(ǫ)}, which, depending on the form of

the function R(·), might be rather different.

Finally, to see the relevance of the RDM to random binning for SW coding, let us return to the

problem setting described in Subsection 2.2, and consider the partition function

Z(β|y, u) =
∑

x∈f−1(u)

P β(x,y) =
∑

x∈XN

exp{−βE(x,y)} · I[f(x) = u], (20)
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pertaining to the Boltzmann-Gibbs distribution (5). We can think of this as an instance of the

RDM, with I(x) = I[f(x) = u], i.e., the microstates {x} that ‘survive’ the dilution are only those

for which the randomly selected bin index happens to coincide with the given u, which is the case

with probability e−NR, exactly like in the above defined RDM.

3 Phase Diagram of the Finite–Temperature Posterior

In this subsection, we characterize the phase diagram of the partition function (20), pertaining

to the finite–teperature posterio (5), for a typical realization of the random binning scheme and

a typical realization of (X,Y ). Generally speaking, this derivation is in the spirit of those in [8,

Chap. 6] and [14, Section 6.3.3], but there are some important differences.

We begin by decomposing Z(β|y, u) as

Z(β|y, u) = Zc(β|y, u) + Ze(β|y, u), (21)

where Zc(β|y, u) = e−βE(x,y) is the contribution of the correct x that was actually emitted by the

source, whereas Ze(β|y, u) is the sum of contributions of all other source vectors. For a typical

realization (x,y) of (X,Y ), E(x,y) is about NH(X,Y ) (by the weak law of large numbers), and

so, Zc(β|y, u) is about e−βNH(X,Y ), where H(X,Y ) is the joint entropy of (X,Y ). What makes the

real x emitted having a special stature here is the fact that it surely survives the dilution, as u is,

by definition, the bin index of x.

We next address the behavior of the second term, Ze(β|y, u). To this end, we need the entropy

function s(ǫ) (see (11)) of the full (non–diluted) system. Using the method of types, it is easily

seen that for a typical y, this function is given by

s(ǫ) = max
{Q(x|y): −

P

x,y P (y)Q(x|y) ln P (x,y)=ǫ}

∑

y

P (y)
∑

x

Q(x|y) ln
1

Q(x|y)
. (22)

It would be instructive and useful to characterize the form of the optimal ‘channel’ {Q(x|y)}, call

it {Q∗(x|y)}, that achieves s(ǫ). Intuitively, s(ǫ) can be thought of as the overall per–particle

entropy of a mixture of systems, indexed by y, each one with NP (y) particles and Hamiltonian

E(x, y) = − lnP (x, y), where x plays the role of a micro-state and y is the index. In thermal

equilibrium, all systems are at the same temperature, which we will denoted by τ = 1/α, and
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the Boltzmann factor is proportional to e−αE(x,y) = Pα(x, y), where α is chosen so as to meet the

constraint.

More precisely, let ζ(α|y) =
∑

x P
α(x, y), α ∈ IR. We argue that the conditional distribution

Q∗(x|y) that achieves s(ǫ) is always of the form

Q∗(x|y) = Qα(x|y)
∆
=
Pα(x, y)

ζ(α|y)
, (23)

where α is chosen to satisfy the constraint

∑

x,y

P (y)Qα(x|y)E(x, y) = −
∑

x,y

P (y)Qα(x|y) lnP (x, y) = ǫ. (24)

Note that for α → ∞, Qα(x|y) tends to put all its mass on the letter x which maximizes P (x, y)

and the resulting energy is ǫmin =
∑

y P (y)minx ln[1/P (x, y)], whereas for α → −∞, Qα(x|y)

tends to put all its mass on the letter x which minimizes P (x, y) and the resulting energy is

ǫmax =
∑

y P (y)maxx ln[1/P (x, y)]. Thus, as α exhausts the real line, the entire energy range

(ǫmin, ǫmax) is covered. The optimality of Qα(x|y) follows from the following consideration:

0 ≤
∑

x,y

P (y)Q(x|y) ln
Q(x|y)

Qα(x|y)

=
∑

x,y

P (y)Q(x|y) ln
Q(x|y)ζ(α|y)

Pα(x, y)

=
∑

y

P (y) ln ζ(α|y) + αǫ+
∑

y

P (y)
∑

x

Q(x|y) lnQ(x|y) (25)

or
∑

y

P (y)
∑

x

Q(x|y) ln
1

Q(x|y)
≤

∑

y

P (y) ln ζ(α|y) + αǫ, (26)

with equality for Q(x|y) = Qα(x|y). It is also seen that

s(ǫ) =
∑

y

P (y) ln ζ(α|y) + αǫ, (27)

where it should be kept in mind that α is itself a function of ǫ, defined by the constraint (24).

Now, as Ze(β|y, u) is associated with the RDM, it has two phases: the paramagnetic phase and

the glassy phase. in the plane of β vs. R, where the boundary is β = βc(R) with the entropy

function s(·) as above. The contribution of Zc(β|y, u) introduces a third phase – the so called,

ordered phase or ferromagnetic phase. The ferromagnetic phase dominates the glassy phase when
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βH(X,Y ) ≤ βs−1(R), namely, when R ≥ s[H(X,Y )]. Now, we argue that s[H(X,Y )] = H(X|Y ).

To prove this, first observe that obviously, s[H(X,Y )] ≥ H(X|Y ) (by choosing Q(x|y) = P (x|y)).

On the other hand, the reversed inequality is obtained by repeating eq. (25) with the choice α = 1.

Thus, the boundary between the ferromagnetic phase and the glassy phase is given by R = H(X|Y )

(the vertical line in the phase diagram of Fig. 1). Note also that βc[H(X|Y )] = 1.

Now, the normalized log–partition function of the non–diluted system, φ(β), is obtained by

eNφ(β) =
∑

x

P β(x,y) (28)

=
∑

x

N
∏

i=1

P β(xi, yi) (29)

=
N
∏

i=1

[

∑

x

P β(x, yi)

]

(30)

=
∏

y∈Y

[

∑

x

P β(x, y)

]NP (y)

(31)

= exp







N
∑

y∈Y

P (y) ln

[

∑

x

P β(x, y)

]







, (32)

i.e.,

φ(β) =
∑

y∈Y

P (y) ln

[

∑

x

P β(x, y)

]

. (33)

It follows that for the ferromagnetic component to dominate also the paramagnetic component, we

must have

βH(X,Y ) ≤ −
∑

y∈Y

P (y) ln

[

∑

x

P β(x, y)

]

+R, (34)

or, equivalently,

R ≥ βH(X,Y ) +
∑

y∈Y

P (y) ln

[

∑

x

P β(x, y)

]

∆
= Γ(β), (35)

and so the boundary is given by R = Γ(β) or T = 1/Γ−1(R). The boundary between the glassy

phase and the paramagnetic phase is, of course, β = βc(R) or T = Tc(R)
∆
= 1/βc(R), as mentioned

already in the general discussion on the RDM. The phase diagram of finite–temperature random

binning appears in Fig. 1, as a partition of the plane of T = 1/β vs. R into the three regions

mentioned. As can be seen, qualitatively speaking, it looks quite like the mirror image of the phase

12



diagram of random coding for channels [9], [14, p. 119, Fig. 6.5], since a rate R SW code essentially

operates like a channel code at rate H(X) − R. However, the equations of the boundary curves

T = Tc(R) and T = 1/Γ−1(R) here and in channel coding are completely different due to several

reasons:

1. In SW coding, the typical size of a bin (which is analogous to the size of the corresponding

channel codebook) is a random variable, which fluctuates around |X |N · e−NR. Only about

exp{N [H(X) −R]} members of this bin are typical to the source, but when error exponents

and large deviations effects are considered, the a-typical bin members may also play a non–

trivial role.

2. Unlike in traditional channel coding, the prior of the input is not necessarily uniform across

the bin, as it depends on the source (just like in joint source–channel coding).

3. The compositions (types) of the codewords are random.

All these differences make the analogy between SW coding and channel coding rather non–trivial

in our context. A few comments are in order concerning possible extensions and modifications of

the above phase diagram.

1. Variable–rate SW codes. Variable–rate SW codes may be related to the generalized version of

the RDM that allows R to be energy–dependent (see Remark 1). In the context of variable–rate

SW coding, this requires a slight modification, as R may be allowed to depend only on x, but not

on y. A plausible approach is then to let R depend on x only via the type class of x (see [18]).

2. Mismatch. The above analysis can easily be extended to a situation of a general mismatch.

Suppose that the partition function is defined in terms of a mismatched model P̃ (x,y), where

we assume, without loss of generality, that P̃ (y) = P (y), because as far as the finite–temperature

decoder is concerned, a general P̃ (x,y) is equivalent to P (y)P̃ (x|y), where P̃ (x|y) is the conditional

distribution induced by P̃ (x,y). Accordingly, in Fig. 1, the ferromagnetic–glassy boundary would

be replaced by the vertical straight line

R = −E ln P̃ (X|Y ) = −
∑

x,y

P (x, y) ln P̃ (x|y),

13



H(X|Y )
R

1

ln |X |

T = 1
β

paramagnetic

glassy

T = Tc(R)

ferromagnetic

T = 1
Γ−1(R)

Figure 1: Phase diagram of Z(β|y) (for a typical y) in the plane of the decoding temperature T vs. the
coding rate R.

the ferromagnetic–paramagnetic boundary would be modified to

R = Γ̃(β) = −βE ln P̃ (X,Y ) +
∑

y

P (y) ln

[

∑

x

P̃ β(x, y)

]

,

and the paramagnetic–glassy boundary would become

β = β̃c(R) = s̃′[s̃−1(R)],

where s̃(ǫ) is defined similarly as s(ǫ), except that P (x, y) is replaced by P̃ (x, y).

3. Universal decoding. It is interesting to analyze similarly the partition function pertaining to

a finite–temperature version of the (universal) minimum conditional entropy decoder. The only

difference is that here, the Hamiltonian is replaced by E(x,y) = −N
∑

y P (y)
∑

xQ(x|y) lnQ(x|y),

whereQ(x|y) is the conditional empirical distribution of X given Y , induced from (x,y). Obviously,

in this case, s(ǫ) = ǫ, and so, for a typical y:

lim
N→∞

lnZe(β|y)

N
= sup

{ǫ: ǫ≥R}
[ǫ(1 − β) −R] (36)

14



=

{

(1 − β) ln |X| −R β < 1
−βR β ≥ 1

(37)

which means that the critical temperature is always Tc = 1, independently of R. Thus, the

paramagnetic–glassy boundary becomes the horizontal straight line Tc = 1. The paramagnetic–

ferromagnetic boundary is now

R = (1 − β) ln |X | + βH(X|Y ),

or equivalently,

T =
ln |X | −H(X|Y )

ln |X | −R
.

The phase diagram is depicted in Fig. 2. As can be seen, the price of the universality is that the

paramagnetic phase partly ‘invades’ into the previous area of the ferromagnetic phase, and that,

similarly, the glassy phase has expanded at the expense of the paramagnetic phase.

H(X |Y )
R

1

ln |X |

T = 1
β

paramagnetic

glassy

Tc = 1

T = ln |X |−H(X|Y )
ln |X |−R

ferromagnetic

Figure 2: Phase diagram of the finite–temperature minimum entropy decoder in the plane of the decoding
temperature T vs. the coding rate R.

4. Two–Sided SW Coding. When both x and y are encoded, at rates RX and RY , respectively,

the partition function becomes

Z(β|u, v) =
∑

x′,y′

P β(x′,y′) · I[fX(x′) = u] · I[fY (y′) = v]. (38)
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Here, we should distinguish between four terms:

Zcc(β|u, v) = P β(x,y) = e−β ln[1/P (x,y)]

Zec(β|y, u, v) =
∑

x′ 6=x

P β(x′,y) · I[fX(x′) = u] (39)

Zce(β|x, u, v) =
∑

y′ 6=y

P β(x,y′) · I[fY (y′) = v] (40)

Zee(β|u, v) =
∑

x′ 6=x,y′ 6=y

P β(x′,y′) · I[fX(x′) = u] · I[fY (y′) = v]. (41)

As before, Zcc(β|u, v) is typically about e−NβH(X,Y ). Zec(β|y, u, v) is exactly the same as the earlier

Ze(β|y, u), and so is, Zce(β|x, u, v), with the roles of x and y being interchanged. Thus, we define

sX|Y (ǫ) = max
{Q(x|y): −

P

x,y P (y)Q(x|y) lnP (x,y)=ǫ}

∑

x,y

P (y)Q(x|y) ln
1

Q(x|y)
(42)

sY |X(ǫ) = max
{Q(y|x): −

P

x,y P (x)Q(y|x) lnP (x,y)=ǫ}

∑

x,y

P (x)Q(y|x) ln
1

Q(y|x)
(43)

and

sXY (ǫ) = max
{Q(x,y): −

P

x,y Q(x,y) ln P (x,y)=ǫ}

∑

x,y

Q(x, y) ln
1

Q(x, y)
(44)

Therefore, we have

lim
N→∞

lnZec(β)

N
= sup

{ǫ: sX|Y (ǫ)≥RX}
[sX|Y (ǫ) −RX − βǫ] (45)

=

{

φX(β) −RX β < βX

−βǫX β ≥ βX
(46)

and

lim
N→∞

lnZce(β)

N
=

{

φY (β) −RY β < βY

−βǫY β ≥ βY
(47)

where

φX(β) =
∑

y

P (y) ln

[

∑

x

P β(x, y)

]

, (48)

φY (β) =
∑

x

P (x) ln

[

∑

y

P β(x, y)

]

, (49)

ǫX is the solution to the equation sX|Y (ǫ) = RX , βX = s′X|Y (ǫX), ǫY is the solution to the equation

sY |X(ǫ) = RY , and βY = s′Y |X(ǫY ). Similarly,

lim
N→∞

lnZee(β)

N
= sup

{ǫ: sXY (ǫ)≥RX+RY }
[sXY (ǫ) −RX −RY − βǫ] (50)
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=

{

φXY (β) −RX −RY β < βXY

−βǫXY β ≥ βXY
(51)

where

φXY (β) = ln

[

∑

x,y

P β(x, y)

]

, (52)

ǫXY is the solution to the equation sXY (ǫ) = RX + RY , and βXY = s′XY (ǫXY ). Here, the phase

diagram, in the three–dimensional space (T,RX , RY ) is much more involved since each one of

the terms Zee(β), Zce(β), Zec(β) could be in two different phases, and on top of that, one should

check when Zcc(β) dominates. We will not delve into it any further here, but only note that

for β ≤ 1 (which guarantees that all three erroneous partition functions are in the paramagnetic

phases), Zee(β), Zec(β), Zce(β) and Zcc(β), dominates, wherever RX +RY − φXY (β), RX − φX(β),

RY − φY (β), and βH(X,Y ), is the smallest among all four functions, respectively. In particular,

we have the following conditions for reliable communication (where Zcc(β) dominates):

RX > βH(X,Y ) + φX(β) (53)

RY > βH(X,Y ) + φY (β) (54)

RX +RY > βH(X,Y ) + φXY (β) (55)

For β = 1, this boils down to the well–known achievability region of SW coding. Note that

there are regions where either Zec(β) or Zce(β) dominate, which means that one of the sources

is decoded reliably, while the other one is not. As expected, for β = 1, y alone is decoded

reliably within {(RX , RY ) : RX < H(X|Y ), RY > H(Y )} and x alone is decoded reliably within

{(RX , RY ) : RY < H(Y |X), RX > H(X)}.

4 Performance Evaluation

In this section, we provide an exact analysis of the error exponent, associated with the symbol

error probability of the finite–temperature decoder (3). We then discuss some properties of the

error exponent as a function of R and β and present a phase diagram. Finally, we discuss some

modifications and extensions.

For the sake of simplicity of the exposition, and without any essential loss of generality, we will

assume X = {0, 1} and evaluate the expected1 bit–error rate (BER), Pb(R,β,N) = Pr{x̂1 6= x1}

1Expectation w.r.t. the random binning.
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(which is the same as Pr{x̂i 6= xi} for every i = 1, 2, . . . , N due to symmetry). that is,

Pb(R,β,N) = Pr







∑

{x′: x′
1 6=x1}

P β(x′,y) · I[f(x′) = f(x)] ≥

∑

{x′: x′
1=x1}

P β(x′,y) · I[f(x′) = f(x)]







, (56)

or more precisely, the error exponent associated with Pb(R,β,N):

E(R,β)
∆
= lim

N→∞

[

−
lnPb(R,β,N)

N

]

. (57)

For later use, we also define the following notation.

ǫ(QXY )
∆
=

1

N
lnP (x,y) =

∑

(x,y)∈X×Y

QXY (x, y) lnPXY (x, y), (58)

where QXY is understood here to be the joint empirical distribution of (x,y) ∈ XN ×YN . Similarly,

for a generic x′, the corresponding auxiliary random variable will be denoted by X ′, so that the joint

empirical distribution of (x′,y) will be denoted by QX′Y . In general, depending on the context,

QXY and QX′Y (or just Q) may also denote generic joint distributions on X × Y, not necessarily

empirical distributions pertaining to sequences of finite length. For a given QXY , let us define

A(QXY , R, β)
∆
= min

QX′|Y

{

[R−HQ(X ′|Y )]+ : ǫ(QX′Y ) +
1

β
[HQ(X ′|Y ) −R]+ ≥ ǫ(QXY )

}

, (59)

where HQ(X ′|Y ) is the conditional entropy of X ′ given Y associated with QX′Y . Finally, define

E(R,β) = min
QXY

[D(QXY ‖P ) +A(QXY , R, β)], (60)

where D(QXY ‖P ) is the relative entropy (Kullback–Leibler divergence) between {QXY (x, y)} and

{P (x, y)}, i.e.,

D(QXY ‖P ) =
∑

x,y

QXY (x, y) ln
QXY (x, y)

P (x, y)
. (61)

The following theorem presents our main result in this section.

Theorem 1 For the ensemble of random binning pertaining to SW codes, as described in 2.2,

E(R,β) = E(R,β). (62)
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It is easy to see that E(R,β) is non-decreasing both in β and R. In particular,

E(R,∞) = min
QY |X

{

D(QXY ‖P ) + min
QX′|Y : ǫ(QX′Y )≥ǫ(QXY )

[R−HQ(X ′|Y )]+

}

, (63)

which agrees with the error exponent of the word error probability, as expected. On the other hand,

for β = 1, the finite–temperature decoder minimizes the BER and hence maximizes the exponent.

Consequently, E(R,β) must be a constant for all β ≥ 1, which is equal to E(R,∞). It is also easy

to verify that E(R,β) vanishes for every β ≤ Γ−1(R), i.e., beyond the paramagnetic–ferromagnetic

boundary curve. Thus, E(R,β) has three phases in the plane of β vs. R: (i) β ≤ Γ−1(R) or

R ≤ H(X|Y ) (the union of the paramagnetic and glassy phases of the posterior), whereE(R,β) = 0,

(ii) R > H(X|Y ) and β ≥ 1, where E(R,β) = E(R,∞) (first ferromagnetic sub–phase), and (iii)

R > H(X|Y ) and Γ−1(R) ≤ β < 1 (second ferromagnetic sub–phase), where E(R,β) < E(R,∞) is

monotonically non–decreasing both in β and R. The phase diagram of E(R,β) is depicted in Fig.

3. As can be seen, it is related to the phase diagram of the finite–temperature partition function,

but somewhat different. Here the paramagnetic and the glassy phases are united (in both of them

E(R,β) = 0), but the ferromagnetic phase is subdivided into two new phases, as described above.

E(R, β) = E(R,∞)

E(R, β) = 0

T = 1

Γ−1(R)

T = 1
β

R

ln |X |H(X|Y )

T = 1

0 < E(R, β) < E(R, ∞)

Figure 3: Phase diagram of E(R, 1/T ) in the plane of the decoding temperature T vs. the coding rate R.

Remark 2. In order to analyze the performance of other decoding metrics that depend on (x,y)
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only via their joint type, one should simply replace the definition of ǫ(QXY ) by the corresponding

metric, for example, a mismatched metric ǫ(QXY ) =
∑

x,y QXY (x, y) ln P̃ (x, y), or the minimum

conditional entropy metric ǫ(QXY ) = −HQ(X|Y ). Concerning the latter, the phase diagram of the

error exponent will be based on Fig. 2 in the same way that the phase diagram of Fig. 3 is based on

the phase diagram of Fig. 1. Here, however, there is no apparent subdivision of the ferromagnetic

phase E(R,β) > 0 by the line T = 1. In other words, there are just two phases, E(R,β) > 0 and

E(R,β) = 0.

Proof of Theorem 1. The proof is similar to the proof of Theorem 1 in [11]. For a given (x,y) ∈

XN×YN , and a given joint probability distributionQX′Y on X×Y, let Ω1(QX′Y ) denote the number

of {x′} within the bin of x, such that x′1 6= x1 and such that the empirical joint distribution with

y is given by QX′Y , that is

Ω1(QX′Y ) =
∑

x′: x′
1=x1

I{(x′,y) ∈ T (QX′Y )} · I[f(x′) = f(x)]. (64)

For a given (x,y), the BER is first calculated w.r.t. the randomness of the bins of codewords with

x′1 6= x1, but for a given binning of those with x′1 = x1. We henceforth denote C0 = {x′ : x′
1 =

x1, f(x′) = fx)} and C1 = {x′ : x′
1 6= x1, f(x′) = f(x)}.

For a given C0 and (x,y), let

r
∆
=

1

N
ln





∑

x′∈C0

P β(x′,y)



 , (65)

and so, the BER becomes

Pr







∑

x′∈C1

P β(x′,y) ≥ eNr







,

where it is kept in mind that r is a function of C0 and (x,y). Now,

Pr







∑

x′∈C1

P β(x′,y) ≥ eNr







= Pr







∑

QX′|Y

Ω1(QX′Y )eNβǫ(QX′Y ) ≥ eNr







(66)

·
= Pr

{

max
QX′|Y

Ω1(QX′Y )eNβǫ(QX′Y ) ≥ eNr

}

(67)

= Pr
⋃

QX′|Y

{

Ω1(QX′Y )eNβǫ(QX′Y ) ≥ eNr
}

(68)
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·
=

∑

QX′|Y

Pr
{

Ω1(QX′Y )eNβǫ(QX′Y ) ≥ eNr
}

(69)

·
= max

QX′|Y

Pr
{

Ω1(QX′Y ) ≥ eN [r−βǫ(QX′Y )]
}

, (70)

Now, for a given QX′|Y , Ω1(QX′Y ) is a binomial random variable with exponentially eNHQ(X′|Y )

trials and probability of ‘success’ e−NR. Thus, similarly as in [11] and [17], a standard large

deviations analysis yields

Pr
{

Ω1(QX′Y ) ≥ eN [r−βǫ(QX′Y )]
}

·
= e−NE0(r,β,R,QX′Y ), (71)

where

E0(r, β,R,QX′Y ) =







[R−HQ(X ′|Y )]+ βǫ(QX′Y ) ≥ s
0 βǫ(QX′Y ) < r, βǫ(QX′Y ) ≥ r −HQ(X ′|Y ) +R
∞ βǫ(QX′Y ) < r, βǫ(QX′Y ) < r −HQ(X ′|Y ) +R

=















R−HQ(X ′|Y ) βǫ(QX′Y ) ≥ r, HQ(X ′|Y ) ≤ R
0 βǫ(QX′Y ) ≥ r, HQ(X ′|Y ) ≥ R
0 βǫ(QX′Y ) < r, βǫ(QX′Y ) ≥ s−HQ(X ′|Y ) +R
∞ βǫ(QX′Y ) < r, βǫ(QX′Y ) < r −HQ(X ′|Y ) +R

=







R−HQ(X ′|Y ) βǫ(QX′Y ) ≥ r, HQ(X ′|Y ) ≤ R
0 βǫ(QX′Y ) ≥ r − [HQ(X ′|Y ) −R]+, HQ(X ′|Y ) ≥ R
∞ βǫ(QXY ) < r − [HQ(X ′|Y ) −R]+

=

{

[R −HQ(X ′|Y )]+ βǫ(QX′Y ) ≥ r − [HQ(X ′|Y ) −R]+
∞ βǫ(QX′Y ) < r − [HQ(X ′|Y ) −R]+

(72)

Therefore, maxQX′|Y
Pr{Ω1(QX′Y ) ≥ eN [r−βǫ(QX′Y )]} decays according to

E1(r, β,R,QY ) = min
QX′|Y

E0(r, β,R,QX′Y ),

which is given by

E1(r, β,R,QY ) = min{[R −HQ(X ′|Y )]+ : βǫ(QX′Y ) + [HQ(X ′|Y ) −R]+ ≥ r} (73)

with the understanding that the minimum over an empty set is defined as infinity. Finally,

Pb(R,β,N) is the expectation of e−NE1(r,β,R,QY ) where the expectation is w.r.t. the randomness

of the binning in C0 and the randomness of (X ,Y ). This expectation will be taken in two steps:

first, over the randomness of the binning in C0 while x (the real transmitted source vector) and y

are held fixed, and then over the randomness of X and Y . Let x and y be given and let δ > 0 be

arbitrarily small. Then,

Pb(x,y)
∆
= E[exp{−NE1(r, β,R,QY )}|X = x, Y = y]
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=
∑

r

P (r|X = x, Y = y) · exp{−NE1(r, β,R,QY )}

≤
∑

i

Pr{iδ ≤ r < (i+ 1)δ|X = x, Y = y} · exp{−NE1(iδ, β,R,QY )}, (74)

where i ranges from 1
Nδ lnP (x,y) to some constant, which is immaterial for our purposes. Now,

enr = P β(x,y) +
∑

x′: x′
1=x1

P β(x′,y) · I[f(x′) = f(x)]

= eNβǫ(QXY ) +
∑

QX′|Y

Ω0(QX′Y )eNβǫ(QX′Y ), (75)

where QXY is the empirical distribution of (x,y) and Ω0(QX′Y ) is the number of codewords in

C0 \{x} whose joint empirical distribution with y is QX′Y . The first term in the second line of (75)

is fixed at this stage. As for the second term, we have (similarly as before):

Pr







∑

QX′|Y

Ω0(QX′Y )eNβǫ(QX′Y ) ≥ ent







·
= e−NE1(t,β,R,QY ). (76)

On the other hand,

Pr







∑

QX′|Y

Ω0(QX′Y )eNβǫ(QX′Y ) ≤ eNt







·
= Pr

⋂

QX′|Y

{

Ω0(QX′Y ) ≤ eN [t−βǫ(QX′Y )]
}

. (77)

Now, if there exists at least one QX′|Y for which R < HQ(X ′|Y ) and HQ(X ′|Y )−R > t−βǫ(QX′Y ),

then this QX′|Y alone is responsible for a double exponential decay of the probability of the event

{Ω0(QX′Y ) ≤ eN [t−βǫ(QX′Y )]}, let alone the intersection over all QX′|Y . On the other hand, if

for every QX′|Y , either R ≥ HQ(X ′|Y ) or HQ(X ′|Y ) − R ≤ t − βǫ(QX′Y ), then we have an

intersection of polynomially many events whose probabilities all tend to unity. Thus, the probability

in question behaves exponentially like an indicator function of the condition that for every QX′|Y ,

either R ≥ HQ(X ′|Y ) or HQ(X ′|Y ) −R ≤ t− βǫ(QX′Y ), or equivalently,

Pr







∑

QX′Y

Ω0(QX′Y )eNβǫ(QX′Y ) ≤ eNt







·
= I

{

R ≥ max
QX′|Y

{HQ(X ′|Y ) − [t− βǫ(QX′Y )]+}

}

. (78)

Let us now find what is the minimum value of t for which the value of this indicator function is

unity. The condition is equivalent to

max
QX′|Y

min
0≤a≤1

{HQ(X ′|Y ) − a[t− βǫ(QX′Y )]} ≤ R (79)
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or:

∀QX′|Y ∃0 ≤ a ≤ 1 : HQ(X ′|Y ) − a[t− βǫ(QX′Y )] ≤ R, (80)

which can also be written as

∀QX′|Y ∃0 ≤ a ≤ 1 : t ≥ βǫ(QXY ) +
HQ(X ′|Y ) −R

a
(81)

or equivalently,

t ≥ max
QX′|Y

min
0≤a≤1

[

βǫ(QX′Y ) +
HQ(X ′|Y ) −R

a

]

(82)

= max
QX′|Y

[

βǫ(QX′Y ) +

{

HQ(X ′|Y ) −R HQ(X ′|Y ) −R ≥ 0
−∞ HQ(X ′|Y ) < R

]

(83)

= max
{QX′|Y : R≤HQ(X′|Y )}

[βǫ(QX′Y ) +HQ(X ′|Y )] −R (84)

∆
= r0(QY ). (85)

It is easy to check that E1(t, β,R,QY ) vanishes for t ≤ r0(QY ). Thus, in summary, we have

Pr







ent ≤
∑

QX′|Y

Ω0(QX′Y )eNβǫ(QX′Y ) ≤ en(t+ǫ)







·
=

{

0 t < r0(QY ) − ǫ

e−nE1(t,β,R,QY ) t ≥ r0(QY )
(86)

Therefore, for a given (x,y), the expected error probability w.r.t. the randomness of the binning

at C0 yields

Pe(x,y) = E{e−N [E1(r,β,R,QY )|X = x, Y = y} (87)

≤
∑

i

Pr







eNiδ ≤
∑

QX′|Y

Ω0(QX′Y )eNβǫ(QX′Y ) ≤ eN(i+1)δ)







×

exp{−NE1(max{iδ, βǫ(QXY )}, β,R,QY )} (88)

·
≤

∑

i≥r0(QY )/δ

exp{−NE1(iδ, β,R,QY )} ×

exp{−NE1(max{iδ, βǫ(QXY )}, β,R,QY )}, (89)

where the expression max{iδ, βǫ(QXY )} in the argument of E1(·, QY ) is due to the fact that

r =
1

N
ln



eNβǫ(QXY ) +
∑

QX′|Y

Ω0(QX′Y )eNβǫ(QX′Y )



 (90)

≥
1

N
ln

[

eNβǫ(QXY ) + eNiδ
]

(91)
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·
= max{iδ, βǫ(QXY )}. (92)

By using the fact that δ is arbitrarily small, we obtain

Pe(x,y)
·
= exp{−NE1(max{r0(QY ), βǫ(QXY )}, β,R,QY )}

= exp{−N max{E1(r0(QY ), β,R,QY ), E1(βǫ(QXY ), β,R,QY )}

= exp{−NE1(βǫ(QXY ), β,R,QY )} (93)

since the dominant contribution to the sum over i is due to the term i = r0(QY )/δ (by the non–

decreasing monotonicity of the function E1(·, QY )). After averaging w.r.t. (X ,Y ), we obtain

E(R,β) = min
QXY

{D(QXY ‖P ) + E1(βǫ(QXY ), β,R,QY )} (94)

= min
QXY

{D(QXY ‖P ) +A(QXY , R, β)}, (95)

completing the proof of Theorem 1.
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