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Abstract

Breast cancer is one of the leading causes of cancer in women. Most studies
attempt to perform segmentation of tumors highlighted in mammogaphic im-
ages, or analysis of the contours of tumors for classification purposes. Successful
segmentation and classification of tumors can assist physicians in revealing sus-
picious regions or masses, or differentiating malignant from benign tumors in
the mammogram. However, relevant studies do not focus on the tumor surface
statistics for the purpose of clustering or classification. In this work, we present
a statistical, fractal-based approach, for the analysis of annotated tumors, re-
duced from the DDSM database. Using local and global fractal properties,
obtained from the tumor surface, we show that malignant and benign tumors
from are separable in an appropriate feature space. K-means-based clustering
is performed, showing the efficacy of the method.

1 Introduction

Breast cancer is the most common cancer among women, and the second leading
cause of cancer death in the general population [1]. Subsequent to the introduction
of digital mammography, computer aided detection (CAD) methods have been ex-
tensively developed and used for various purposes, including classification of types
of breast tissue highlighting suspicious regions and enhancement of calcifications.

Most of the classification-based approaches extract statistical information that
is later fed to a classifier such as support vector machines (SVM) or k-nearest neigh-
bours (kNN) [1–3]. Many such methods use texture-based or fractal-based properties
for characterization of either segmented regions or complete tissues. These meth-
ods classify tissue properties related to density or fat, as these have been linked to
existence of tumors in tissues [4, 5].

In this work, we attempt to differentiate malignant and benign tissue by local
and global fractal properties. Rather than analysis for various properties such as
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density of tissue, we use the features directly. We assume that segmentation of
tumors can be performed, and our baseline data consists of high quality images of
annotated tumors.

Random fields, and specifically, fractal random fields, have been extensively
used for analysis of mammograms. In [6], Markov random fields have been used
for classification of dense tissues. In [7], the fractional Brownian motion process
(described hereinafter) has been proposed to model mammograms. In [8], fractal
properties have been proposed for texture characterization. Classification has been
performed in [9, 10]. In [11], high classification rates were obtained, based on data
from radiologists. Autoregressive-moving average processes have also been used for
mammography modelling [12]. A recent work has performed classification of malig-
nant versus normal mammograms by fractal analysis performed on the background
tissue [13].

The rest of the report is organized as follows. In Section 2, the background
required for the understanding of the paper is presented. In Section 3, the data
acquisition method is described, in Section 4 the statistical features extracted from
the images are described, and in Section 5 the clustering results are presented.

2 Preliminaries

2.1 Stochastic fractal models

Fractal properties (scale invariance) are found in many natural images and phenom-
ena [14]. Fractal analysis has been used on medical images as well, where in the
case of mammography images, it has mostly been exploited on the curvature of the
tumor boundary [15–18], but recent studies have also exploited 2D surfaces [13],
showing that tumor shapes can be used for detection of malignant tissue [19].

2.1.1 Fractional Brownian motion (fBm)

FBm is a well-known fractal process, widely used in the context of analysis of natural
images, including mammograms [20, 21]. FBm is a self-similar Gaussian random
process, which was introduced by Mandelbrot and Van-Ness as a model suitable for
natural images [22]. The fBm generalizes the well-known Brownian motion in that
the increments are stationary but not independent. It is defined, in one dimension,
as a Gaussian process with zero mean and the following autocorrelation function:

E [BH(t)BH(s)] =
σ2

2

(

|t|2H + |s|2H − |t− s|2H
)

, (1)

where

σ2 =
σ2
W

2

cos(πH)

πH
Γ(1− 2H), (2)

2



σ2
W is a known variance, and the Hurst parameter, H ∈ (0, 1), characterizes the

regularity of the process. Lower values of H correspond to rougher signals, and
higher values of H correspond to smoother signals. Statistically, the process exhibits
negative correlation between samples (anti-persistence) for H ∈

(

0, 12
)

, and positive
correlation between samples for H ∈

(

1
2 , 1

)

. A special case is H = 1
2 , for which this

process becomes the well-known Brownian motion, or Wiener process.
This process exhibits two important properties, known to characterize natural

images, in the context of Mandelbrot’s work on fractals [22]. The first one is long-
range dependencies between samples, where for H > 0.5 the sum of the correlations
of the increments diverges. The second property of the fBm, is its fractal (self-
similarity) property:

BH(at)
d
= |a|HBH(t), (3)

for a positive number a, where the equality is in distribution. This equality indi-
cates that the sample distribution across different scales is varied only by a constant
depending on the scale, a, and the Hurst parameter. These two properties high-
light the relevance of this process to natural textures, as the latter often exhibit
similarities between adjacent as well as distant pixels.

The fBm can be extended to two dimensions, and be used as a model for mam-
mograms. However, the process is isotropic and governed by a single parameter,
H, and it is, therefore, not suitable for proper characterization of mammographies,
which have been shown to be anisotropic [20].

2.1.2 Extensions for multiple fractal dimensions

More complex fractal models have been proposed to better characterize fractal sur-
faces which do not have a single fractal dimension. One such model is the mul-
tifractional Brownian motion (mBm [23]), which assumes a time (or space in 2D)
varying fractal dimension. It is obtained by extending the H of fBm to H(t). Its
corresponding covariance function (in 1D) is then:

E [BH(t)BH(s)] ∝ |t|H(t)+H(s) + |s|H(t)+H(s) − |t− s|H(t)+H(s). (4)

A different approach for complex fractal models was presented in the piecewise-
fractional Brownian motion (pfBm), which assumes two different Hurst parameters,
one for the lower scales and one for the higher scales [24]. It is derived from the
spectral definition of the fBm, given by [25]:

BH(t) =
1

2π

∫

∞

−∞

F (ω)
(

ejtω − 1
)

dβ(ω), (5)

where β(ω) is complex Brownian motion in frequency, and F (ω) = (jω)−(H+0.5).
The pfBm is obtained by using a different F (ω), specifically:
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F (ω) =

{

(jω)−(H0+0.5), 0 < |ω| < γ

γH1−H0(jω)−(H1+0.5), γ ≤ |ω| < ∞.
(6)

The resulting random process has two frequency regions, with cutoff frequency γ,
and twoH parameters,H0 andH1. Therefore, the expected variance-scale behaviour
is piecewise-linear with two distinct slopes.

2.2 Estimation of fractal dimensions

One of the most common methods for fractal dimension estimation is observation of
the variance of wavelet coefficients across scales [26,27]. In true fractal surfaces, the
decay of wavelet coefficient variance is proportional to 2j(2H+2) for a given wavelet
scale j. This power law property dictates a linear decay in log scale, where the
slope of the decay curve corresponds to the fractal dimension. In the case of fBm,
H corresponds to the fractal dimension. For more complex processes, such as the
aforementioned mBm and pfBm, estimation is more elaborate as the processes are
not governed by a single fractal dimension.

In 2D mBm, H(x, y) is a spatial function, that cannot be practically estimated
for a general function, given a limited set of images. Instead, one can propose
parametric H(x, y), or coarser functions, where the fractal dimension is piecewise
constant for small patches. This is the approach we adopt in the present study,
where we estimate patch-wise fractal dimensions. For pfBm, one has to estimate
the two H parameters, H0 and H1, for the different scales, as well as the cutoff
frequency, γ (Eq. (6)).

2.3 Principal Component Analysis (PCA)

PCA is a well-known method for dimensionality reduction and clustering [28]. The
application of PCA results in a transform that projects the given data to a space in
which its variability (variance) is maximized. This yields a more efficient represen-
tation, that minimizes the mean-squared error (MSE) obtained in reconstruction by
a given, predetermined number of basis vectors. For a centered matrix X ∈ R

n×d, of
n samples with d features per sample, the principal components are the sample co-
variance matrix eigenvectors corresponding to the highest eigenvalues. The sample
covariance matrix, for a centralized data matrix X, is given by:

Σ = XXT . (7)

PCA works well for clustering purposes on linearly separable samples. If the
samples are not linearly separable, it can be extended using kernel methods [28],
by first projecting each sample, x ∈ R

d, to a higher dimensional space by a known
mapping φ : R

d → R
N , where N > d. The resulting kernel-PCA first projects

the data onto a higher (possibly infinite) dimensional space by calculating φ(x),
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and then performs PCA in this feature space, in which the transformed data are
expected to be linearly separable.

Kernel-PCA can be performed efficiently due to what is known as the “kernel
trick”, where all the calculations are performed in the original space, rather than
the higher dimensional space. The kernel trick is possible since all data calcula-
tions in kernel-PCA are expressed via the inner product xxT , which corresponds
to φT (x)φ(x) in the feature space. Therefore, by first constructing a kernel ma-
trix, K(x, y), containing all combinations of φT (x)φ(y), no calculation in the high
dimension is required.

The kernel function, K(x, y), describes the method in which the data are trans-
formed to the feature space. Common kernel functions are order r polynomial,
K(x, y) = (xT y+1)r, and radial basis function (RBF),K(x, y) = exp

(

− 1
2σ2 (x− y)2

)

,
with a given width σ. The latter, used in this study, assigns high values for close
samples, and acts as an inverse distance function. Thus, the kernel-PCA tends to
group close samples in the feature space.

Recently, more advanced methods have been proposed, which attempt to better
represent high dimensional data on a lower dimensional manifold [29, 30]. These
methods have some advantages over PCA and, possibly, over kernel-PCA.

3 Data acquisition

The tumor images were extracted from the Digital Database for Screening Mam-
mography (DDSM) [31]. The raw data contains images in raw lossless-JPEG format
(LJPEG), as well as annotation and biopsy-confirmed pathology information indi-
cated by medical experts, which served as the ground truth for this study. The
images were first converted to PNG and the circumscribed rectangle (bounding
box) of each tumor was extracted, to be used as the data for this study. Depending
on the type of feature, either the entire bounding box content was analyzed, or only
the tumor interior.

This study is concerned with malignant/benign tumors. Therefore, any images
of normal tissues (from the normal NN volumes) were discarded. Further, images
containing only micro-calcifications, were discarded as well and were not considered
in this study. This is due to the fact that their statistical properties are different than
tumors, despite their connection to cancer prediction. The final database contained
524 images, with binary labels corresponding to malignant or benign. Due to the
various sizes of tumors, the sizes of the bounding boxes had a large variance as well,
where the smallest was of size 137×137 pixels, and the largest contained 3153×1720
pixels.

One of the contributors to successful clustering and analysis of tumors is the
high resolution of the DDSM images. Using other databases, such as the Mini-
MIAS database which contains smaller versions of size 1024×1024 pixels per image,
would produce significantly lower resolution of the tumors, which only occupy a
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relatively small area of the mammogram.

4 Statistical features

The emerging model suitable for the tumor images is fractal, with local fractal
properties, corresponding to space-varying H. Therefore, the mBm is a suitable
model. However, there also exists global fractal behaviour, albeit too complex to be
described by a single fractal dimension (in the case of fBm) or two fractal dimensions
in different scales (in the case of pfBm), as we demonstrate hereinafter. For this
reason, we perform both local estimation of theH parameters, and parametric global
estimation for the decay of wavelet coefficient variance over scales.

4.1 Global features

Global assessment was performed for each tumor image. First, each image was
upscaled to the size of the highest dimensional tumor image. This stage may produce
artefacts, but was shown to be superior to the alternative of using original size
tumors, which produce significant differences between tumors of different sizes.

Each tumor image was decomposed by using both Coifman-2 and Coifman-5
wavelets [26], and their variance-scale curves were analyzed. Although visual assess-
ment of the tumors may lead to the conclusion they are fractal in the usual sense,
i.e. with a single fractal dimension, their accurate analysis yield more complex prop-
erties. The natural model for more complex fractal features in frequency, as is this
case, is the pfBm. This process depicts a variance-scale plot of two distinct slopes,
that are indeed characteristic of some of the encountered images. However, due to
the delicate difference between benign and malignant tumors, the three parameters
were not found to be selective (Fig. 1).

Instead of using a known fractal model for analyzing this behaviour, we extracted
the parameters of the variance-space curve itself. The two distinct properties of the
observed curve were a negative trend, and an oscillating, sine-like, behaviour. The
curve function was estimated as follows. First, the trend was estimated using a
first-order polynomial curve fitting, to yield the line (p1, p2). Then, the following
function was fitted:

f(x) = c+ d ·M2,1 · x+ b ·M2,2 · sin(ax− e), (8)

where (a, b, c, d, e) are the fit parameters, and M is a rotation matrix with angle θ,
derived from the slope of the fitted trend. This fit yields a vector of 7 parameters:
(p1, p2, a, b, c, d, e) for wavelet family.

In addition to this analysis, the same function was fitted to the derivatives in
the x and y directions of each tumor image, thus yielding 28 global features.

Examples illustrating the goodness of fit are depicted in Fig. 2. This function
can be further optimized, but it shows overall good behaviour. This expresses the
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Figure 1: Example of a characteristic image with pfBm parameters: piecewise linear
fit with a single cutoff point. While the fit yields moderately low error, it can still
be further improved. Each figure shows the true log-variance measurements (blue
circles) and the fitted function (dashed black).
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Figure 2: Example of a single, characteristic, patch. The general behavior of the
variance decay is not a straight line, as expected from a fractal surface with a single
fractal dimension. Each figure shows the true log-variance measurements (blue
circles) and the fitted function (dashed black). The R2 fit values are depicted in
Fig. (e), displaying a good fit with R2 values close to 1. The cancer and benign
fits are depicted in blue and dashed red respectively. It is also apparent that the
R2 standard deviations are different for the x- and y-directional fits, which may
indicate a difference between the two classes.
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Figure 3: Hurst (H) parameter estimation based on 16× 16-sized patches. (a) True
versus estimated H parameters for a 256× 256 images: an isotropic fBm image was
synthesized for each value of H, and its value was then estimated for each small
patch. The mean (blue line) and standard deviation (error bars) for each H value
are displayed, as well as the true value (dashed red). (b) An example of a single
image estimation error: a 256 × 256 image with H = 0.5 was synthesized, and its
H-value pixel-wise squared error was calculated. Most of the values are close to zero.

nature of the fractal behaviour of the mammographic images, which is more complex
than a single or even two fractal dimensions.

4.2 Local features

Each annotated tumor is divided into 16 × 16-sized non-overlapping patches, from
which isotropic and anisotropic Hurst parameters are extracted. Studies [32, 33],
as well as our experiments, show that this patch-size is large enough for estimation
of Hurst parameters. To evaluate the performance of the local H estimator, we
simulated 2D fBm images, with known Hurst parameters, and attempted to estimate
their value (Fig. 3).

Each estimation was performed in the wavelet domain, using Coifman-2 wavelets.
The patch was first upscaled by bicubic interpolation to 64× 64, and later decom-
posed to 7 levels. The Hurst parameter, H, was estimated via the slope of the
variance-scale curve, similarly to known fractal dimension estimation methods [34].

Each patch yielded three values of H: (H,Hx, Hy). H was obtained via the
patch itself, and Hx and Hy were obtained by evaluating the Hurst parameter on
the derivatives in the x and y directions respectively. Inasmuch as the annotated
tumor images have, in general, non rectangular shape, only patches with over 80%
tumor content were included.
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As the patch sizes vary, a standard measurement was incorporated to properly
produce uniform features for each patch. Therefore, the following statistical features
were evaluated, for each Hurst parameter and each patch: mean, variance, kurtosis
and skewness, as characteristic features for the distribution of the local parameters.
The number of local features was, therefore, 12.

5 Clustering

The main goal for mammography tumors is performing classification, using geomet-
ric and statistical features. However, as a preliminary problem, we attempted to
perform clustering. Clustering was performed using the entire features’ vector (40
features) per sample, with the annotated tumors.

Kernel-PCA with radial basis functions (RBF) was chosen for clustering. This
method was preferred due to the non-linearity of the data structure, requiring a
higher dimensional space for proper separation between malignant and benign sam-
ples.

The kernel-PCA implementing RBF required a single parameter - the width of
the Gaussian-shaped kernel function, σ. Due to the expected small distance (in the
feature space) between the malignant and benign samples, it was determined to be
small, at σ = 10−6. Kernel-PCA performs PCA on the kernel matrix, which, there-
fore, produces as many principal components as the number of samples. Correct
selection of principal components is therefore crucial, and was performed as follows:
a training set of 100 samples was selected, having an equal number of benign and
malignant tumors. Then, the eigenvalues of the kernel matrix were calculated twice:
once for each set of tumors. Using the resultant two vectors, 20 principal component
indices were chosen, corresponding to the eigenvalues that maximize the difference
between the two sets.

The results obtained by using the kernel-PCA which incorporates the chosen
principal components yields a significant difference between the two classes. These
results can be classified via k-means clustering, as will be performed hereinafter.
However, out of the 535 samples in the dataset, large variance deviations were
encountered in the principal component values; 211 samples’ components had energy
lower than 10−7, whereas the rest of the samples had values in the range of 0.1−1.0.
Therefore, the small-variance benign and cancerous samples were mapped very close
to the origin.

In order to better classify the low-variance samples, they were extracted from
the first PCA, and kernel-PCA was performed for these samples separately. Due to
the very low variance, a logarithmic function was applied:

f(x) = log(10−8 + |x|). (9)

The data was, therefore, separated into two sets, A and B, where the former had
relatively high variance, and the latter had low variance. By this division, good clus-
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tering results could be obtained, as the data were separated by a proper clustering
algorithm (Fig. 4).

K-means algorithm [28] was evaluated on both A and B, with RBF kernel, and
kernel width of 0.01 (Fig. 5). The clustering errors were 4.9% and 30.8% for A and B

respectively. Incorporating the number of samples per set, the final clustering error
was 15.1%. Due to the fact that K-means does not identify each class, the correct
class assignment was assumed. This can be based, for instance, on knowledge of a
single true classification per set. The two different sets, A and B, should be further
investigated to recover the underlying properties that yield the observed difference
in variance.

6 Discussion

This preliminary study shows that both local and global fractal properties are im-
portant ingredients in characterizing tumor image structure, with reference to their
diagnosis as malignant or benign. Once the results are further improved, classifica-
tion will become a viable goal, that can contribute to a variety of other methods for
such tasks, where the advantage of these methods is in being non-invasive.

The current study should eventually lend itself to characterization of tumors. If
the features are indeed sufficient for differentiating different tumors, they can be used
for image retrieval, where a given, unclassified, tumor may serve as a reference, and
a dedicated algorithm can then find statistically similar tumors that were previously
tagged, with their known diagnosis.

An underlying model for tumor images, emerging from this study, is a multiscale
model, with statistical behaviour that locally corresponds to mBm, but yet has some
global structure which generalizes the pfBm. Once such a field is constructed, better
parameter estimation, and better understanding of the structure of tumors will be
obtained.
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