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Fast 3D radiative transfer tomography

Aviad Levis, Yoav Y. Schechner, Amit Aides, Anthony B. Davis

Abstract

This paper introduces a method to preform optical tomography in 3D, using

radiative transfer as the forward model. We use an iterative approach to solve the

optimization problem in a scalable manner. Finally we show an application in

remote sensing of the atmosphere.

1 Introduction

Optical tomography is an imaging technique that uses optical measurements on the

boundary of a domain, to find the spatial distribution of parameters within. It finds

applications in bio-medical imaging and remote sensing of the earth atmosphere [1–

4]. For a list of applications we refer the reader to [5, 6] and the references therein.

Solving the inverse problem using the radiative transfer equation (RTE) as a forward

model can be difficult and computationally demanding. For some applications it is

possible to use an approximate model. In dense media (mean free path small compared

the distance of propagation), with scattering dominant over absorption, it is possible

to use a diffusion approximation of the RTE. This results in the inverse problem of

Diffuse Optical Tomography (DOT) [7–9]. When the mean free path is large compared

to the propagation distance, the measured energy is dominated by direct and single

scattered intensities. The resulting inverse problem is single scattering tomography

[6, 10, 11]. Other approximations and their derivations can be found in [12]. We wish

to solve the inverse problem using the RTE, with neither single scattering, nor diffusion

approximations. However, a numerical solution of the RTE in 3D is time consuming.

Therefore, to make the inverse problem tractable, we derive an iterative optimization

framework.

2 Theoretical background

2.1 Radiative transfer

Our forward model is the time-independent radiative transfer. This model is used in

passive imaging, such as atmospheric tomography, or when source gating is sufficiently

slow. The RTE governs propagation of light through a medium. Consider a domain

Ω having boundary ∂Ω whose outward facing normal is ϑ (Fig. 1a). The domain is

indicated by position x ∈ R
3 and direction ω ∈ S

2 (unit sphere). The radiation (light)
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Figure 1: (a) Domain and boundary conditions; (b) Aperture function. Blue marks the

spatial support and red marks the angular support

field is Iλ (x,ω). The superscript λ indicates wave-length dependency and will be

omitted from here on, for simplicity. A boundary condition (Fig. 1a) is

I (x,ω) = Iincident (x,ω) if ω · ϑ < 0, x ∈ ∂Ω, (1)

where ω · ϑ < 0 defines incoming radiation. In the absence of emission within the

domain, the propagation of light is formulated in terms of the following conservation

law [13, 14]:

ω · ▽I (x,ω) = β (x) [J (x,ω)− I (x,ω)] x ∈ Ω, (2)

where β is the extinction coefficient. Here J (x,ω) is called the source function or

in-scattering term, since it accounts of an increase of radiation due to in-scattering. It

is

J (x,ω) =
̟

4π

∫

S2

p (ω · ω′) I (x,ω′) dω′, (3)

where ̟ is the single scattering albedo and p (ω · ω′) is the phase function. The phase

function describes the probability of a photon traveling in direction ω′ to scatter1 to

direction ω′. The phase function satisfies a normalization condition

1

4π

∫

S2

p (ω · ω′) dω′ = 1. (4)

1In principle the phase function depends on both incoming and outgoing directions (ω,ω
′). However,

dependency is often assumed to be solely on the scattering angle, equivalent to ω · ω
′.
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Operator Symbol Domain Range

Radiance forward mapping I Θ - Extinction fields Z - Radiance fields

Measurement M Z - Radiance fields Y - Measurements

Forward operator F Θ - Extinction fields Y - Measurements

Scatter forward mapping J Θ - Extinction fields V - Scatter fields

Transformation operator T V - Scatter fields Z - Radiance fields

Table 1: Operator notation summary

Eq. (2) and it’s corresponding boundary condition (1), define a radiative transfer for-

ward model. Integrating Eq. (2) along a specific direction ω results in the integral form

of the RTE [14]

I(x,ω) = I0 exp



−

x0
∫

x

β (r) dr



+

+

x0
∫

x

J(x′,ω)β (x′) exp



−

x
′

∫

x

β (r) dr



dx′, (5)

Where x0 is a point on the boundary and I0 holds the boundary condition (1).

2.2 Operator Notation

We follow the definitions of [6] to formulate the forward model using operator nota-

tions (Table 1 summarizes the notations). Denote by Θ the space of extinction fields

over the domain Ω. Let β (x) ∈ Θ be an extinction field over the domain Ω. Let S
represent a set of radiation sources over ∂Ω. For a given source s ∈ S , denote Zs as the

set of all possible radiation fields that satisfy Eqs. (1,2) across all possible β ∈ Θ. The

set Zs is infinite, since for each extinction field β(x) there is a corresponding radiation

field Is = Is (β). More generally the radiance forward mapping, I : Θ → Z , is a

mapping from the optical parameter domain, to the radiance field range Z =
⋃

s Zs.

Measurements are an operator M : Z → Y , mapping the continuous function space

to a vector space Y . Consequently the forward operator F is defined as

F = MI : Θ → Y. (6)

The measurement operator M is defined by the detector’s aperture function, w ∈ Ω× S
2

(Fig. 1b). The aperture function defines the manner in which the detector collects radi-

ance, over a spatial and angular support. A given aperture and source pair (w, s) yields

an element

yw,s = Fw,s (β) = MwIs (β) = 〈w, Is〉Ω, (7)
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Figure 2: Illustration of a 1D linear interpolation kernel

for a specific extinction field β, where

〈· , ·〉Ω ≡

∫

Ω

∫

S2

· · dωdx. (8)

For an idealized single-pixel detector positioned at x∗, collecting radiation flowing in

direction ω∗,

yw,s = 〈δ (x− x∗) δ (ω − ω∗) , Is〉Ω = Is (x
∗,ω∗) . (9)

We can define a matrix Y whose elements yw,s correspond to different source-detector

configurations. A column of Y represents measurements by a single detector, for mul-

tiple sources. A row represents measurements by multiple detectors, for one particular

light source. The vector y is the column stack of Y .

2.3 Optical tomography

Using the operators defined in Sec. 2.2 we express the process of optical tomography.

Tomographic reconstruction is an estimator of β that minimizes a defined cost

β̂ = argmin
β

{E [y,F (β)] + αΨ(β)} , (10)

where E [y,F (β)] is the data fit (fidelity) functional and Ψ(β) is a regularization on

the optical parameters. Here α is a tunable parameter, chosen in accordance with the

noise level, to balance the two terms. Solving Eq. (10) for β

Except for a few special geometric configurations [6,15], 3D tomographic recovery

cannot be done analytically. Thus, the continuous function is often discretized (Fig. 2)

β (x) =

Ngrid
∑

k=1

βkbk (x) , (11)
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where {βk}
Ngrid

k=1 are discrete parameters, bk (x) is an interpolation kernel and Ngrid is

the number of grid points used for discretization. We apply (11) to Eq. (10) to seek an

estimator for β =
(

β1, ..., βNgrid

)T
, where ( · )T denotes transposition.

We focus here on gradient-based optimization methods. The forward operator F

is a non-linear function of the optical parameters. Thus, one approach [6,16] estimates

(10) by linearizing F . Suppose the solution is βδ = β0 + δβ, which is a perturbation

of an initial guess β0. It is possible to linearize F and solve δβ using a linear set for

equations. However, this approach requires an initial guess very close to the true so-

lution. Another approach [17–20] iteratively estimates the gradient with respect to β.

However, this approach has high computational complexity, as it requires O (Ngrid)
simulations of the forward model per iteration (i.e for a single computation of the gra-

dient). Forward model simulation is time consuming particularly in the presence of

multiple scattering. Simulating the forward model per element of the gradient does not

scale well as Ngrid increases.

Our approach is also iterative, however each iteration is computationally simple,

having run-time independent of Ngrid. The approach does not directly optimize the

nonlinear F . Instead, I is decomposed into a product of two operators. Each is op-

timized in time. This concept is analogous to EM-Like optimization, which is used in

DOT [21–23].

3 Optimization Approach

3.1 Forward map decomposition

In Sec. 2 the forward operator was defined in terms of the radiance field I . We now

show that defining F in terms of the in-scatter field J considerably speeds up the

computation time. We decompose the radiance forward mapping into two operators,

I = T J , which we now introduce. For a particular radiation source s ∈ S , let

Js = Js (β) be the in-scatter field that satisfies Eq. (3), while Is satisfies Eqs. (1,2).

Define Vs as the set of possible in-scatter fields for a particular source. The in-scatter

forward mapping, J : Θ → V , is a mapping from the optical parameter domain to the

in-scatter field range V =
⋃

s Vs. We define the following transformation operator

T : V → Z, Is = T (β) Js. (12)

Eq. (3) defines a relation between a given light field I and a corresponding in-scatter

field J . The transformation operator T , defined by Eq. (5), defines the inverse relation:

for a given in-scatter field J , a corresponding light field I is attained. Consequently we

define the forward operator in terms of the in-scatter forward mapping

F = MT (β)J (β) : Θ → Y. (13)

Define ℓ as a line of sight from x∗ in direction −ω∗ (Fig. 3a). For a convex spa-
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Figure 3: (a) A line integral over the in-scatter field Js. (b) Integration over the field f

for an arbitrary aperture spatial and angular support w

tial domain, the intersection point between line of sight and the domain’s bound-

ary is unique and denoted by x0 = ∂Ω ∩ ℓ (Fig. 3a). Operator T is defined by

Eq. (5). For source s ∈ S , the response of an idealized single pixel with aperture

w = δ (x− x∗) δ (ω − ω∗) is

yw,s = MwT Js

= Is(x0,ω
∗) exp



−

x0
∫

x
∗

β (r) dr



+

x0
∫

x
∗

Js(x,ω
∗)β (x) exp



−

x
∫

x
∗

β (r) dr



dx

(14)

The operation

x0
∫

x
∗

f(x)dx (15)

is a line-integral over a field f(x). Numerically this is preformed by back-projecting

(BP) a ray through a medium. Eq. (14) is simply an accumulation of the scattered radi-

ance along the line of sight weighted by its corresponding attenuation factor (Fig. 3a).

Applying a general measurement operation is a manner of integrating over the aperture

function of the detector (Fig. 3b).

3.2 Iterative surrogate function optimization

Optimizing Eq. (10) directly over β is computationally expensive. Finding the gradient

direction in each iteration requires O (Ngrid) numerical computations of the forward

model. With our approach, however, we iteratively keep Js constant and estimate β

solely based on T . Instead of optimizing through a function that is difficult to compute
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Figure 4: (a) Gradient decent optimization (b) Surrogate function iterative optimiza-

tion; Both depend on the initial guess β0

(Fig. 4b) we optimize β using a surrogate function [24], which is efficiently computed

(Fig. 4a). We define the following iterative optimization process. Define βn as an

estimate of β in the ”n” iteration. The first step, consists of computing the in-scatter

field which corresponds to the current estimate βn

Jn = J (βn)

In the second step, keeping the in-scatter field constant, we solve the following opti-

mization problem to find our next estimate of β

βn+1 = argmin
β

{

[y −MT (β) Jn]
T
Σ

−1
meas [y −MT (β) Jn] + αΨ(β)

}

(16)

= argmin
β

{E [y,Fn (β)] + αΨ(β)} ,

Where

Fn (β) = MT (β) Jn, (17)

is the nth surrogate function, and Σ
−1
meas is the covariance matrix of our measurements.

Eq. (16) defines an iterative optimization process,

i. Start with an initial guess β0.

ii. Based on the current estimate βn, numerically find the in-scatter field Jn = J (βn).
iii. Optimize (16) to find the next estimate βn+1.

iv. Repeat steps ii-iii until convergence.

3.3 Scalability

For a given measurement vector y ∈ Y , we solve the optimization of (16) with a

gradient-based method. We use the discretization described in (11). Assuming uncor-

related measurements

Σmeas = diag (σ2
meas), σ2

meas =
(

σ2
1 , ..., σ

2
Nmeas

)T
, (18)
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(a) (b)

Figure 5: (a) Each gradient element is computed by tracing all the rays. Only the red

rays contribute to the computation of the red grid point gradient. (b) A single trace of

each ray is performed. While tracing each ray we compute the gradient contribution to

each relevant grid point

where Nmeas = Nw +Ns is the number of measurements, Nw is the number of detec-

tors and Ns is the number of sources. The task is thus to recover the gridded extinction

{βk}
Ngrid

k=1 . For this purpose we find the k’th gradient element. Without loss of gener-

ality we formulate the problem in terms of a single source and many detectors.

∂

∂βk

E [y,Fn (β)] =

Nmeas
∑

w=1

1

σ2
w

[Fn (β)− yw]Mw

[

∂

∂βk

T (β)

]

Jn, (19)

For an ideal single-pixel detector positioned at x∗, collecting radiation flowing in di-

rection ω∗ we get

Mw

[

∂

∂βk

T (β)

]

Jn = Aw,k +Bw,k (20)

where

Aw,k =



−

x0
∫

x
∗

bk (r) dr



 I(x0,ω
∗) exp



−

x0
∫

x
∗

β (r) dr



 (21)

and

Bw,k =

x0
∫

x
∗

Jn (x,ω
∗)



bk(x)− β(x)

x
∫

x
∗

bk (r) dr



 exp



−

x
∫

x
∗

β (r) dr



dx. (22)

Term A results from the boundary illumination and can be readily computed. Term B

defines a line-integral over a field, computed using back-projection of rays from the

detector through the medium. A straight-forward approach calculates each element

of the gradient vector by summing all the back-projected rays from all the detectors

(Alg. 2a). The complexity of this approach is O (Nmeas ×Ngrid) back-projecting op-

erations. However, most of back-projected rays do not contribute to B since the in-

terpolation kernel bk(x) typically has a small support region (Fig. 5a). Instead, for
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1: for k = 1 → Ngrid do

2: Gradk = 0
3: for w = 1 → Nmeas do

4: BP to compute Aw,k, Bw,k

5: Err = 1
σ2
w

[Fn (β)− yw]

6: Gradk = Gradk +
+ Err (Aw,k +Bw,k)

7: end for

8: end for

(a) Straight forward approach

1: Grad = 0

2: for w = 1 → Nmeas do

3: Err = 1
σ2
w

[Fn (β)− yw]

4: for k ∈ Support region do

5: BP to compute Aw,k,Bw,k

6: Gradk = Gradk +
+ Err (Aw,k +Bw,k)

7: end for

8: end for

(b) Scalable approach

Alg. 2: Comparison of the two approaches to compute the gradient of the surrogate

function. Grad =
(

Grad1, ...,GradNgrid

)

each point along a ray we define a support region of grid points, according to the sup-

port region of the interpolation kernel (Fig. 5b). A specific ray will contribute to the

computation of gradient elements associated with the grid points in the support region.

In the case of linear interpolation kernel, a support region is composed of the eight

corner grid points that make a grid cell. Since the support region is typically small,

for each point along the ray we only need to look at a finite amount of neighboring

grid points (Alg. 2b). The complexity of this approach is O (Nmeas) back-projecting

operations. Hence, the computational complexity is independent of the number of grid

points which makes this approach scalable.

4 Application to remote sensing

4.1 General setup

We use large eddy simulation (LES) [25, 26] to generate the microphysical quantities

of a realistic cloud field (Fig .6). We use Mie scattering to transform the microphysical

quantities (liquid water content, effective droplet radius) to optical quantities (extinc-

tion, phase function, single-scattering albedo). We add the extinction and phase func-

tion due to molecular scattering by air molecules (Rayleigh scattering ). We seek to

recover the extinction of the cloud droplets on a cartesian grid, where the air is taken to

be a known parameter dependent only on the height. The boundary conditions for the

domain are

• Sun radiation at the top of the atmosphere (TOA), at a zenith angle of 60 deg.

• Open boundary for the side faces.

• Lambertian reflectance at the surface (earth) with albedo of 0.05.

In order to find the in-scatter field Jn, we use the Spherical Harmonics Discrete Ordi-

nates Method (SHDOM) [27, 28].
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10 [km]

10 [km]

Figure 6: Cumulus cloud field generated by the LES. The image was generated with

MYSTIC [29, 30] monte-carlo code. We focus on the retrieval of the cloud circled in

green.

4.2 SHDOM

Running the forward model is a balance between speed and accuracy. Monte-Carlo

methods, and can handle very complex optical phenomena. However, Monte-Carlo

methods approximate radiometric quantities by random sampling the domain of possi-

ble light paths. This introduces stochastic noise at the output, which can be controlled

by increasing the number of samples (photon paths). When many radiometric outputs

of the same scene are sought, as in the case of many viewpoints, a model that solves the

RTE directly has a much preferable run time [27]. A discrete ordinates representation

models the flow of radiant energy in the domain easily and intuitively [28,31,32]. The

SHDOM model uses a grid for the spatial dependency, and a linear interpolation kernel

bk(x). Spherical Harmonic expansion [12, 33], computes angular integrals. SHDOM

solves the forward model integro-differential equation for the source function. It can

adaptively truncate negligible coefficients in the series expansion.

4.3 Simulation Results

We simulate an atmosphere of size 2km×0.72km×1.44km. The unknown extinction

is composed of 100×136×36 grid points (129,600 unknowns). The measurements are

taken to simulate the resolution of airMSPI (airborne multi-angle spectro-polarimeter

imager) [34], which is an air-born instrument that samples the radiance at 20m resolu-

tion and at 9 view zenith angles: (±70.5,±60,±45.6,±26.1, 0) (Fig. 7). We simulate

10
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Figure 7: airMSPI measurements: 9 angles in the long track

the measurements using SHDOM for 672nm wave-length, and add 3% gaussian noise

to simulate the radiometric calibration noise, which is the dominant factor for this

sensor. We initialize our algorithm with β = 0 (an atmosphere containing only air

molecules). The converged result is displayed in Fig. 8. Simulated images as viewed

from the airMSPI instrument flying over the recovered cloud are shown in Fig. 9. We

compare the total extinction recovered, which is relative to the total LWC, with the

ground truth. We define a relative error measure

Relative Error =
βgroundtruth − βrecovered

∑

k β
groundtruth
k

The performance for the recovery is summarized in Table 3.

5 Discussion

We derive a novel iterative optimization method to perform radiative transfer tomogra-

phy. The unknown β directly affects T (β). From (5), this principle can only retrieve

parameters that relate to the extinction. We cannot estimate the phase function using

this formulation. Sec. 3.3 explains the computational advantage of this approach. We

show an application to remote sensing of Earth’s atmosphere (Sec. 4), however, this

approach could potentially be applied to preform optical tomography of biological tis-

sues. We use SHDOM as our forward mapping engine. Nevertheless, it is possible to

use different radiative transfer engines, such as Monte Carlo. Further enhancement of

scalability may be obtained by use of adjoint operators [35]. This is a subject intended

for further research.
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∑

k β
recovered
k 9.8001e+04

∑

k β
groundtruth
k 8.6062e+04

Sum of relative error 0.6055

Maximum relative error 8.0250e-04

Table 3: Recovery results
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Figure 8: A volumetric comparison between the ground truth LES generated cloud and

the recovered cloud

flight direction

+45.6o0o−45.6o

Figure 9: A simulated fly-over of the airMSPI using SHDOM to generate the radiance

measurements at 9 viewing angels. The cloud extinction field is that of the recovered

cloud.
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