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Abstract—Network configuration and policy updates occur
frequently, and must be performed in a way that minimizes
transient effects caused by intermediate states of the network. It
has been shown that accurate time can be used for coordinating
network-wide updates, thereby reducing temporary inconsisten-
cies. However, this approach presents a great challenge; even if
network devices have perfectly synchronized clocks, how can we
guarantee that updates are performed at the exact time for which
they were scheduled?

In this paper we present a practical method for implementing
accurate time-based updates, using TIMEFLIPs. A TIMEFLIP
is a time-based update that is implemented using a timestamp
field in a Ternary Content Addressable Memory (TCAM) entry.
TIMEFLIPs can be used to implement Atomic Bundle updates,
and to coordinate network updates with high accuracy. We
analyze the amount of TCAM resources required to encode
a TIMEFLIP, and show that if there is enough flexibility in
determining the scheduled time, a TIMEFLIP can be encoded
by a single TCAM entry, using a single bit to represent the
timestamp, and allowing the update to be performed with an
accuracy on the order of 1 microsecond.

I. INTRODUCTION

A. Background

Network updates are a routine necessity; policy changes or
traffic-engineered route changes may occur frequently, and of-
ten require network devices to be reconfigured. This challenge
is especially critical in Software Defined Networks (SDN),
where the control plane is managed by a logically centralized
controller, and configuration updates occur frequently. Such
configuration updates can involve multiple network devices,
potentially resulting in temporary anomalies such as forward-
ing loops or packet loss.

Network devices such as routers and switches use TCAMs
for various purposes, e.g., packet classification, Access Control
Lists (ACLs), and forwarding decisions. TCAMs are an essen-
tial building block in network devices. A typical example for
the importance of TCAMs is OpenFlow [2], [3]. An OpenFlow
switch performs its functionality using one or more flow tables,
most commonly implemented by TCAMs (see, e.g., [4], [5]).

�This technical report is an extended version of [1], which was accepted
to IEEE INFOCOM ’15, Hong Kong, April 2015.
∗This work was supported in part by the ISF grant 1520/11.
†The Israel Pollak academic chair at Technion.

The order of the entries in a TCAM determines their
priority. Hence, installing a new TCAM entry often involves
rearranging existing entries, yielding high overhead for each
TCAM update. It has been shown [6] that the latency of a
TCAM rule installation may vary from a few milliseconds to
a few seconds.

A recently introduced approach [7], [8] proposes to use
accurate time and local clocks as a means to coordinate
network updates. By using synchronized clocks, configura-
tion changes can be scheduled in a way that guarantees a
coordinated network-wide update, thereby reducing transient
anomalies. One of the main challenges in this approach is
to guarantee that scheduled updates are performed accurately
according to the desired schedule. Even if the clocks in the
network are perfectly synchronized, performing configuration
changes requires a potentially complex procedure that may be
completed at an uncertain time.

B. Introducing TIMEFLIPs

In this paper we present a method that uses TIMEFLIPs
to perform accurate time-based network updates. We define a
TIMEFLIP to be a scheduled update that is implemented using
TCAM ranges to represent the scheduled time of operation.
We analyze TCAM lookups (Fig. 1) that take place in network
devices, such as switches and routers. We assume that the
device maintains a local clock, and that a timestamp T
recording the local arrival time is associated with every packet
that is received by the device. Typically, TCAM search keys
consist of fields from the packet header, as well as some
additional metadata. In our setting, the metadata includes a
timestamp T . Hence, a TCAM entry can specify a range
relative to the timestamp T , as a way of implementing time-
based decisions. The timestamp T is not integrated into the
packet, as it is only used internally in the device, and thus does
not compromise the traffic bandwidth of the network device.

Using a simple microbenchmark, we show that TIMEFLIPs
can be performed by existing network devices, and analyze the
achievable scheduling accuracy of TIMEFLIPs. Accurate clock
synchronization has become a common feature in network
devices; the Precision Time Protocol (PTP), based on the IEEE
1588 standard [9], typically provides an accuracy on the order
of 1 microsecond [10], [11]. We show that the accuracy at
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Fig. 1: TCAM lookup: conventional vs. time-based.

which a TIMEFLIP is executed compared to its scheduled time
is two orders of magnitude more accurate, and hence that
network-wide updates can be timed with a 1 µsec accuracy
using PTP.

TIMEFLIPs enable two interesting scenarios:
(i) Atomic Bundle. It is sometimes desirable to reconfigure

a network device by applying a set of configuration changes as
a bundle, i.e., every packet should be processed either before
any of the modifications have been applied, or after all have
been applied. The Atomic Bundle feature in OpenFlow [3] de-
fines such functionality; the OpenFlow specification suggests
that Atomic Bundles can be implemented either by temporarily
queuing packets during the update, or by using double buffer-
ing techniques. Both approaches may yield significant cost in
terms of resources. TIMEFLIPs allow a clean and natural way
to implement Atomic Bundles; the set of configuration changes
can be enabled at all times T ≥ T0 for some chosen time T0,
and the timestamp T defines when the bundle commands
atomically come into effect.

(ii) Network-wide coordinated updates. If network de-
vices use synchronized clocks, then TIMEFLIP can be used for
updating different devices at the same time,1 or for defining a
set of scheduled updates according to a specific order [7].

TIMEFLIPs require every TCAM entry to include a times-
tamp field. We show that this per-entry overhead is relatively
small. Moreover, since TCAMs have fixed entry sizes, it is
often the case that a portion of the TCAM entry is unused.
For example, in many cases TCAM entries are used to store
the IPv4 5-tuple, requiring 104 bits, while the smallest TCAM
entry that can accommodate the 5-tuple is typically larger, e.g.,
144 bits [12] or 160 bits [13], leaving a large number of unused
bits that can be used for the timestamp field.

As TCAM resources are scarce and costly, we aim to
represent the timestamp field by as few bits as possible, and
each TIMEFLIP by as few TCAM entries as possible. Optimal
representation of TCAM ranges is a problem that has been
widely studied in the literature (e.g., [14], [15]). The problem
we address has two unique properties that, to the best of our
knowledge, have not been previously analyzed:
• The range values can be chosen in a way that minimizes

the number of TCAM entries. If the time T0 for which
a time-based network update is scheduled can be se-
lected within a scheduling tolerance (Fig. 2), given by

1Subject to the accuracy of the clock synchronization mechanism.

a range of time values [Tmin, Tmax], then the number of
entries required to represent the range can be reduced.
Notably, the scheduling tolerance does not compromise
the accuracy of the TIMEFLIP. It only presents some
flexibility in choosing T0; an SDN controller may choose
any T0 withing the given range, but once T0 is chosen,
the TIMEFLIP should occur accurately at T0.

• If some of the most significant bits of the timestamp
value are known to be constant during the TIMEFLIP, the
network device can simply ignore these bits, by placing
‘don’t care’ values in the respective bits in the TCAM.
For example, the portion of the timestamp that represents
the date is known to be constant during a TIMEFLIP, and
thus can be ignored. We refer to time ranges that ignore
some of the most significant bits as periodic ranges, and
show that the use of periodic ranges allows to represent
the time ranges by fewer TCAM entries.

C. Contributions

The main contributions of this paper are:
• We introduce TIMEFLIPs and show how to accurately

perform coordinated network updates and Atomic Bundle
updates using them.

• We present an optimal scheduling algorithm: by correctly
choosing the update time, T0, the number of TCAM
entries used for representing the timestamp range can be
significantly reduced.

• Our analysis provides an upper bound on the number of
TCAM entries required for representing a TIMEFLIP.

• We analyze the number of bits required for representing
the timestamp field in TCAM entries, and show that it is
a function of the scheduling tolerance.

• We show that in a system where the scheduling tolerance
is sufficiently relaxed, using periodic ranges, the times-
tamp field can be represented by a single bit in the TCAM
entry, and every TIMEFLIP requires a single TCAM entry.

• We use a microbenchmark to demonstrate that our ap-
proach can be effectively used to schedule accurate time-
based updates with existing commercial network devices.

D. Related Work

Consistent network updates have been widely analyzed in
the literature. A common approach to avoiding inconsistencies
during topology updates in routing protocols is to use a
sequence of configuration commands [16], whereby the order
of execution guarantees that no anomalies are caused in inter-
mediate states of the procedure. Another recently introduced
approach for consistent updates [17] uses configuration version

Tmin

time

Tmax

scheduled time

T0

Fig. 2: Scheduling tolerance: T0 ∈ [Tmin, Tmax].



tags to guarantee consistency. Dynamic traffic engineering [6],
[18] has been shown to require frequent topology updates that
must be applied carefully to optimize the network utilization.

Time and synchronized clocks are used in various dis-
tributed applications, from mobile backhaul networks [10]
to distributed databases [19]. OpenFlow [3] uses timeouts
for expiring old forwarding rules. The controller can define
a timeout for a flow rule, causing it to be removed when
the timeout expires. However, timeouts are defined with a
coarse granularity of 1 second, and thus do not allow del-
icate coordination. Moreover, since timeouts are by nature
relative, they do not allow the accurate coordination that
absolute time can provide. In [20] the authors observed that
it would be interesting to explore using time synchronization
to reconfigure routers at a specific time. In [17] the authors
argued that a simultaneous network update does not guarantee
consistency, since packets that are en-route during the update
may be processed by a mixture of configurations. However,
it was shown [7] that time can be used not only to perform
simultaneous configuration changes, but also to perform time-
based update procedures that guarantee consistent updates.

The Interface to the Routing System (I2RS) working group
of the Internet Engineering Task Force (IETF) has recognized
the value of time-based state installations [21], but decided
not to pursue this concept, as the ability to accurately perform
timed installations was not considered viable [22]. Contrarily,
we show that accurate time-based updates are in fact
viable; the current paper proposes a novel approach that en-
ables accurate time-based updates in switches and routers, and
demonstrates their applicability to existing network devices.

The simplest way to encode a range in TCAMs is known
as prefix encoding [14]. In this scheme the set of values
that match a rule is presented as a union of prefix TCAM
entries (with a sequence of don’t cares as a suffix of the
entry), representing disjoint sets of values. For instance, if
we denote by W the number of bits used for encoding the
range, then for W = 4 the range [4, 14] can be encoded
by the four TCAM entries (01**), (10**), (110*), (1110)
that respectively represent the ranges [4, 7], [8, 11], [12, 13] and
[14, 14], whose union is the requested range [4, 14]. With this
encoding, any range defined on W bits can be encoded with at
most 2W−2 entries. Moreover, an extremal range of the form
[T0, 2

W −1] or [0, T0] can be represented using at most W en-
tries. By using complementary ranges these two bounds were
improved to W and

⌈
W+1

2

⌉
, respectively [23]. An alternative

encoding that relies on the Gray-code representation of ranges
was shown to improve the maximal expansion to 2W − 4 for
general ranges [15]. While the above works concentrated on
the encoding of a single range, a wide literature discusses
efficient encodings of classifiers with an ordered list of range
rules, [24]–[31].

II. MODEL AND NOTATIONS

A. TCAM Entries

A TCAM is an associative memory device that allows fast
classification. It compares a search string against a table of

stored entries, and returns the address of the matching data.
Each address is associated with a specific action. Each TCAM
bit can have one of three possible values, 0, 1, or ∗, with the
latter representing the don’t care value. The order of entries
in a TCAM determines their priority. A TCAM search returns
the address of the first entry that matches the search key.

Our analysis focuses on a TCAM lookup that is performed
by a network device, or a device for short. We assume that
the device has access to a clock, and that before a TCAM
lookup the device produces a timestamp T , which is obtained
by capturing the value of the clock at some instant before the
TCAM lookup. For example (Fig. 1), the device can capture
the timestamp T for each received packet immediately upon
its arrival. The timestamp, together with the packet header,
will serve as an input to the TCAM lookup.

A TCAM entry is denoted by S → a, where S =
(σU , . . . , σ1) ∈ {0, 1, ∗}U . The number of bits in a TCAM
entry is denoted by U , where 0, 1 are bit values and ∗ stands
for don’t care. We denote a sequence of m don’t care bits by
(∗m). A bit that is assigned the don’t care value is said to be
masked. The set of possible actions is denoted by A, where
an individual action is denoted by a ∈ A.

Specifically, throughout our analysis S will have the form
(su, . . . , s1, tW , . . . , t1) such that u+W = U , and tW , . . . , t1
represent the bits corresponding to the timestamp T .

We denote the m most significant bits of the timestamp T
by Tm+

, and the k least significant bits of T by T k- .
We define a time-based TCAM entry to be an entry in

which at least one of the bits tW , . . . , t1 has a value in {0, 1},
whereas in a time-oblivious entry all the bits tW , . . . , t1 are ∗.

A time range is defined to be an interval [T1, T2], where T1

and T2 are W -bit integers. A time range rule is denoted by
(su, . . . , s1, [T1, T2]), or equivalently, (su, . . . , s1, [T1 ≤ T ≤
T2]). Such a rule can be represented by one or more time-based
TCAM entries. The rule expansion of a range [T1, T2] is the
minimal number of entries that can be used for representing
the range. In the context of this paper we focus on prefix-based
expansions [14], in which only prefix entries are used.

An extremal range is a range that has one of two possible
forms, either a right extremal range, which has the form
[T1, 2

W − 1], also denoted by T ≥ T1, or a left extremal
range, [0, T2]. We denote by r(T1) the prefix-based expansion
of a right range, [T1, 2

W − 1], and by `(T2) the expansion of
the left range [0, T2 − 1]. Note that `(0) is undefined.

B. TIMEFLIP: Theory of Operation

Consider a coordinated network update that is due to take
place at time T0 and requires a TCAM update. The naı̈ve
approach to update the TCAM is to schedule the device’s
management software2 to perform the required modification
as close as possible to T0. This approach allows a limited
degree of accuracy, which depends on the operating system’s
ability to perform real-time operations, and on the load caused
by other tasks that run on the CPU.

2A network device typically runs a software layer that performs various
tasks, including TCAM management.
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Fig. 3: A timed TCAM Update. Every line in the figure is a
time range rule, represented by one or more TCAM entries.
(i) Time-oblivious entry. (ii) Installation. (iii) Removal. (iv)
Rule update. (v) Action update. (vi) Action update using a
complementary timestamp range.

In our approach the TCAM management software installs
the time-based TCAM entries ahead of the activation time, T0,
allowing the update to be applied precisely at T0. After time T0

the management software performs cleanup operations, e.g.,
removing rules that apply only to times T < T0.

We address four main classes of TIMEFLIPs (see Fig. 3):
(i) Installation. A new TCAM rule S → a is installed,

effective from time T0. A timed installation is a rule of the
form (su, . . . , s1, [T ≥ T0])→ a.

(ii) Removal. An existing TCAM rule S → a is scheduled
to be deactivated at time T0, using a rule of the form
(su, . . . , s1, [T < T0])→ a.

(iii) Rule update. An existing rule S → a is modified to
S′ → a′ at T0. A rule update can simply be represented as a
pair of rules, one for removal and one for installation.

(iv) Action update. The action of an existing TCAM rule is
modified from a to a′ at time T0. Hence, prior to T0 the man-
agement software installs a rule of the form (su, . . . , s1, [T ≥
T0]) → a′ that precedes the existing S → a. The first-match
behavior of TCAMs implies that if T ≥ T0, the search matches
the newly installed rule, and a′ is performed, whereas at any
time before T0 the S → a rule prevails. After time T0 the
TCAM management software removes the excess rules: the
rule S → a is deleted, and (su, . . . , s1, [T ≥ T0]) → a′ is
replaced by (su, . . . , s1, ∗, . . . , ∗) → a′, requiring a single
entry. As shown in Fig. 3(vi), an alternative representation
of the action update uses a rule that maps T < T0 to a, and
S to a′. Complementary encoding [23], [32], also known as
negative encoding, allows in some cases to represent the rule
more efficiently, as further discussed in Section IV.

Our analysis in this paper focuses on timed installations.
The other three cases are derived from this analysis: timed
removal is similar, except that it uses left time ranges of the
form T < T0. A rule update is simply implemented by a
superposition of two rules (Fig. 3(iv)), one for installation and
one for removal. In Section IV we discuss action updates,

and show how complementary encoding can be used in this
context, allowing more efficient TCAM usage.

C. Timed Installation: Formal Definition

Let R be a time range. Given a time-oblivious TCAM entry
S → a with S = (su, . . . , s1, ∗, . . . , ∗), we define a timed
installation of S → a over R to be a TCAM rule SR → a,
such that SR := (su, . . . , s1, R). Hence, a is activated during
the time range R.

We define the expansion of a timed installation over a time
range R to be the expansion of the range R.

Since R is a time range, SR is represented by one or more
entries in the TCAM. We note that even if more than one
entry is used to represent SR, the excess entries are required
only for a brief period of time; we assume that shortly after
SR is activated the TCAM management software performs a
cleanup, leaving only a single entry, representing S → a.

III. OPTIMAL TIME-BASED RULE INSTALLATION

A. Optimal Scheduling

It has been shown [14] that an extremal range of the form
[T0, 2

W − 1] can be represented using at most W entries.
However, we observe that a careful selection of the value T0

can significantly reduce the number of entries required for
representing this update. The update time T0 may be tuned to
an optimal value in the following scenarios:

(i) In Atomic Bundle updates, a network device is required
to perform a set of changes atomically, without strict timing
constraints, and hence it is flexible to select the time T0 at
which these changes are performed.

(ii) In network-wide coordinated updates, optimal schedul-
ing can be enforced by a central entity that determines the
update time, e.g., a Network Management Station (NMS) or
an SDN controller. The central entity’s goal is to find a value
of T0 (within a set of allowed values) that will minimize
the timestamp range expansion; the underlying assumption is
that all network devices use the same format to represent the
timestamp, and the same TCAM range encoding scheme.

As depicted in Fig. 2, we assume that the value of T0 is
determined by a scheduling algorithm, subject to the constraint
Tmin ≤ T0 ≤ Tmax. We define the scheduling tolerance,
denoted by TOL, to be Tmax−Tmin + 1. This is the number
of allowable values for T0.

We wish to study how T0 should be selected. As a first step
we learn the expansion of a specific extremal range [T0, 2

W −
1]. Property 1, based on [14], shows that the expansion of this
range is given by the number of ‘1’-s in a binary representation
of 2W − T0.

Property 1. The expansion r(T0) of a right range [T0, 2
W−1]

is given by the number of ‘1’-s in a binary representation of
the number of values in the range, 2W−1−T0+1 = 2W−T0.

Proof Outline. The property follows from the definition of the
prefix encoding as defined in [14]. The encoding is composed
of entries that consider disjoint sets of inputs. The cardinality
of each set is a power of 2, and distinct sets have different



cardinalities. The sum of the cardinalities equals the number
of values in the range.

Example 1. For W = 4, the range [T0, 2
W − 1] = [9, 15]

includes 15−9+1 = 7 values. The binary representation of 7
is 0111, which has three ‘1’-s and accordingly the range can
be encoded using the three entries (1001), (101∗), (11 ∗ ∗).
Likewise, the range [11, 15] has 15 − 11 + 1 = 5 = 0101
values and can be encoded by the two entries (1011), (11∗∗).
The range [15, 15] has a single value (1 = 0001) and can be
encoded by the single entry (1111).

By symmetry, we can show that the expansion `(T0) of the
range [0, T0−1] is given by the ‘1’-s in a binary representation
of the number of values in the range, T0 − 1− 0 + 1 = T0.

The next theorem relates the expansion of a right range
[T0, 2

W − 1] and a left range [0, T0 − 1].

Theorem 1. For W ≥ 1 and T0 ∈ [1, 2W − 1] the expansion
r(T0) of the right range [T0, 2

W −1] and the expansion `(T0)
of the left range [0, T0 − 1] satisfy r(T0) + `(T0) ≤W + 1.

Proof. Let Br = 2W−1−T0+1 = 2W−T0 and B` = T0−1+
1 = T0 be the number of values in the right and the left ranges,
respectively. Clearly, Br +B` = 2W . Let (br,W , · · · , br,1) and
(b`,W , · · · , b`,1) be the binary representations of Br, B`. Let
nr = Σi∈[1,W ]br,i and n` = Σi∈[1,W ]b`,i. By Property 1, we
have that r(T0) = nr and `(T0) = n`. We show the result by
induction. First, if W = 1, we have that T0 = 1. The right
range [1, 1] and the left range [0, 0] can be both encoded in a
single entry and r(T0) + `(T0) = 1 + 1 = 2 ≤ W + 1. For
a general W , we distinguish between the two following sub-
cases. If br,1 = 1, i.e. Br is odd (and accordingly b`,1 = 1,
i.e. B` is odd as well since Br + B` = 2W ), we have that
(2W − 1)−Br = B` − 1. Since (2W − 1) can be represented
by a binary vector with W ‘1’-s, the number of ‘1’-s in
(2W − 1) − Br is W − nr. By the last equality this equals
n` − 1, the number of ‘1’-s in B` − 1. We then have that
W − nr = n` − 1 and r(T0) + `(T0) = nr + n` = W + 1.
In the second sub-case br,1 = b`,1 = 0 and Br, B` are
even. Then, r(T0) = nr = Σi∈[1,W ]br,i = Σi∈[2,W ]br,i and
`(T0) = n` = Σi∈[1,W ]b`,i = Σi∈[2,W ]b`,i. We now consider
T ′0 = 0.5 · T0 with W ′ = W − 1 and examine the expansions
r(T ′0) and `(T ′0) within the space [0, 2W

′ − 1]. We have that
2W
′ − T ′0 = 0.5 · (2W − T0) and the number of values in

[T ′0, 2
W ′ − 1] is represented by (br,W , · · · , br,2) and r(T ′0) =

Σi∈[2,W ]br,i = r(T0). Likewise, since T ′0 = 0.5·T0 the number
of values in [0, T ′0 − 1] is represented by b`,W , · · · , b`,2 and
`(T ′0) = Σi∈[2,W ]b`,i = `(T0). Accordingly, r(T0) + `(T0)
(in W ) equals the sum of the expansions r(T ′0) + `(T ′0) in
W ′ = W − 1. By the induction hypothesis we have that
r(T ′0) + `(T ′0) ≤ W ′ + 1 = W − 1 + 1 = W ≤ W + 1
and the result follows.

We can now introduce the SCHEDULE algorithm (Fig. 4),
which computes an optimal value, TSCH, for a given range
[Tmin, Tmax]. Throughout the paper we use the notation TSCH,

SCHEDULE(Tmin, Tmax,W )

1 t0 ← 0; i← 0
2 while ti /∈ [Tmin, Tmax]
3 i← i+ 1
4 if ti−1 < Tmin

5 ti ← ti−1 + 2W−i

6 else
7 ti ← ti−1 − 2W−i

8 TSCH ← ti
9 return TSCH

Fig. 4: Optimal scheduling algorithm; no other scheduling
algorithm produces an extremal range with a lower expansion.

defined by TSCH := SCHEDULE(Tmin, Tmax,W ), and the
range RSCH, defined by RSCH := [TSCH, 2

W − 1].
Intuitively, SCHEDULE performs a binary search over the

range [0, 2W − 1], and returns the first value that falls within
[Tmin, Tmax]. Notably, we shall see that due to the nature
of the binary search, SCHEDULE returns the value TSCH with
the fewest ‘1’-s in the binary representation of 2W − TSCH,
and hence, by property 1 minimizes r(TSCH). In terms of
complexity, the number of iterations in SCHEDULE is bounded
by W , as it is a binary search over a range of 2W values.

The following theorem states that SCHEDULE is optimal,
i.e., that no other scheduling algorithm produces an extremal
range with a lower expansion.

Theorem 2. If TSCH = SCHEDULE(Tmin, Tmax,W ), then
r(TSCH) ≤ r(T ) for all T ∈ [Tmin, Tmax].

Proof. Clearly, if Tmin = 0, then TSCH = 0, and the range
[TSCH, 2

W − 1] can be represented by a single entry, (∗W ).
For Tmin > 0, without loss of generality, TSCH is determined
by SCHEDULE after m iterations, i.e., i = m on line 8 of
SCHEDULE. We prove the claim by induction on m ≥ 1.
Denote 2W − TSCH by B. By property 1, r(TSCH) is equal to
the number of ‘1’-s in the representation of B. For m = 1
we have that TSCH = 2W−1, and thus B = 2W−1. Since the
binary representation of B is (10 . . . 0), we have r(TSCH) = 1,
which is of course optimal. Now we assume the claim holds
for every T ′SCH that is computed when SCHEDULE returns after
m iterations. Let TSCH be a value returned by SCHEDULE
after m + 1 iterations. We distinguish between two cases:
(i) TSCH > 2W−1: we now ignore the most significant bit of
the timestamp field, and reexamine the algorithm’s outcome.
The algorithm SCHEDULE(T

(W−1)-

min , T
(W−1)-

max ,W−1) returns
TSCH

(W−1)- after m iterations, and thus by the induction
hypothesis TSCH

(W−1)- is optimal in [0, 2W−1 − 1]. Now
assume by way of contradiction that there exists a time
Tmin ≤ T ′ ≤ Tmax such that r(T ′) < r(TSCH). Thus,
the range [T ′, 2W − 1] can be represented by fewer entries
than the expansion of [TSCH, 2

W − 1], and by removing the
most significant bit of the rule [T ′, 2W − 1] we get that
r(T ′(W−1)-) < r(TSCH

(W−1)-), contradicting the induction



hypothesis. (ii) TSCH < 2W−1: similarly to the first case, by
observing the range [0, 2W−1−1] we deduce that TSCH

(W−1)-

is obtained after m iterations, and is thus optimal. Assume
by way of contradiction that there is a T ′ ∈ [Tmin, Tmax]
such that r(T ′) < r(TSCH). Denote 2W − T ′ by B′. Note
that [Tmin, Tmax] ⊂ [0, 2W−1 − 1], since otherwise we
would have 2W−1 ∈ [Tmin, Tmax], and SCHEDULE would
terminate after one iteration. Thus, T ′ < 2W−1. It follows that
B′1

+
= B1+ = 1. Since r(T ′) < r(TSCH) in [0, 2W−1 − 1],

by property 1 we have that the number of ‘1’-s in B′ is
smaller than the number of ‘1’-s in B. We conclude that
there are less ‘1’-s in B′(W−1)- than in B(W−1)- , yielding
r(T ′(W−1)-) < r(TSCH

(W−1)-), which is in contradiction to
the induction hypothesis.

An interesting property of SCHEDULE is presented in
Lemma 3: the output of the algorithm, TSCH, has a long
sequence of least significant ‘0’ bits. This property allows
very efficient prefix encoding of extremal ranges of the form
T ≥ TSCH.

Lemma 3. The blog2(TOL)c least significant bits of TSCH are
all ‘0’.

Proof. We denote blog2(TOL)c by X . For TSCH = 0 we have
W bits of ‘0’, and the claim is satisfied. For TSCH > 0, we
prove this claim by induction on m, the number of iterations
in SCHEDULE. For m = 1 we have TSCH = 2W−1 with W −1
least significant bits of ‘0’, and since TOL < 2W , we have
X ≤ W − 1, and thus the claim is satisfied. We assume that
the claim holds for m− 1, and prove for m. We consider two
distinct cases: (i) TSCH > 2W−1: in this case [Tmin, Tmax] ⊂
[2W−1, 2W −1]. By considering the (W −1)-bit shifted range
[2W−1, 2W−1], SCHEDULE produces TSCH

(W−1)- after m−1
iterations, and thus by the induction hypothesis the X least
significant bits are ‘0’, which is true also for TSCH. (ii) TSCH >
2W−1: this case is similar to (i), except that [Tmin, Tmax] ⊂
[0, 2W−1−1], and thus we can run SCHEDULE on [0, 2W−1−
1], again concluding from the induction hypothesis that the X
least significant bits are ‘0’.

The following lemma presents an upper bound on the
expansion of the range T ≥ TSCH, as a function of the
scheduling tolerance. This captures a tradeoff between the
scheduling tolerance and the time-based range expansion; it
is possible to reduce the expansion of a timed installation by
increasing the scheduling tolerance.

Lemma 4. If TOL < 2W then r(TSCH) ≤W −blog2(TOL)c.

Proof. Denote 2W − TSCH by B, and blog2(TOL)c by X .
By Lemma 3, the X least significant bits of TSCH are ‘0’,
and hence the X least significant bits of B are ‘0’. Thus, the
number of ‘1’-s in the representation of B does not exceed
W −X , and by Property 1 we have r(TSCH) ≤W −X .

B. Average Expansion

In this section we study the influence of the scheduling
tolerance on the average expansion. We concentrate on the

average expansion of the prefix-based encoding of ranges of
the form [T0, 2

W − 1] for a given W . Intuitively, for a larger
scheduling tolerance TOL within which T0 should be selected,
the flexibility is larger and the expansion for the best of the
options is expected to be smaller.

Our model is the following. For a given W and TOL ∈
[1, 2W ], we examine the possible [Tmin, Tmax] values that
enable TOL possible options. These are the 2W − TOL + 1
values [0,TOL−1], [1,TOL], [2,TOL+1], · · · , [2W−TOL−
1, 2W − 2], [2W − TOL, 2W − 1]. As we described, for each
[Tmin, Tmax] we use the SCHEDULE algorithm to calculate a
T0 that has an expansion of minT0∈[Tmin,Tmax] r(T0). Based
on Property 1, for [Tmin, Tmax], TSCH is the value that
minimizes the number of ‘1’-s in a binary representation of
2W −T0 ∈ [2W −Tmax, 2

W −Tmin]. We calculate the average
value of r(TSCH) among the 2W − TOL + 1 possible values
of [Tmin, Tmax]. We denote this value by ρ(W,TOL).

Theorem 5. For W ≥ 1 and TOL ∈ [1, 2W ], let a =
dlog2(TOL)e. The average value of the expansion of the
easiest-to-encode range according to a set [Tmin, Tmax] with
TOL possible values is given by

ρ(W,TOL) =
1

2W − TOL + 1
·
(

1− 2W−a

+ 2W−a−1 · (W − a+ 2) · (2a − TOL + 1)

+ ΣW−a−1
i=0 2i−1 · (i+ 2) · (TOL− 1)

)
.

Proof. Denote 2W − Tmin and 2W − Tmax by Bmin and
Bmax, respectively. Likewise, let B0 represent the value of
2W − T0 for some T0. Intuitively, a value of [Tmin, Tmax]
defines [Bmax, Bmin] of which B0 can be selected. Let
d ∈ [0,W ] be the maximal number of most significant bits
such that Bd+

min = Bd+
max. We distinguish between several cases

according to the value of d. We first assume that Tmin ≥ 1
(and accordingly Bmin ≤ 2W−1). There are TOL−1 possible
values of [Bmax, Bmin] with d = 0. These are the values
that include 2W−1 − 1 and 2W−1. The TOL− 1 options are
[2W−1−TOL+1, 2W−1], · · · , [2W−1−1, 2W−1 +TOL−2].
In each of these options we can select B0 = 2W−1, T0 =
2W − B0 = 2W−1 and encode the range [T0, 2

W − 1] =
[2W−1, 2W−1] by a single entry. There are 2·(TOL−1) values
of [Bmax, Bmin] for which d = 1. These are [x + 2W−2 −
TOL+1, x+2W−2], · · · , [x+2W−1−1, x+2W−1+TOL−2]
for x ∈ {0, 2W−1}. The (TOL − 1) options with x = 0 can
be encoded with a single entry while the (TOL− 1) options
with x = 1 require 2 entries. They require a total number of
1·(TOL−1)+2·(TOL−1) = 2d ·(TOL−1)·(1+d/2) entries.
More generally, for i ∈ [0,W −a−1] there are 2i · (TOL−1)
values of [Bmax, Bmin] with d = i that require a total number
of 2i · (TOL − 1) · (1 + i/2) = 2i−1 · (TOL − 1) · (2 + i)
entries. For d = W − a, there are 2W−a · (2a − TOL + 1)
values of [Bmax, Bmin]. In 2W−a of them, B0 can be selected
such that it has a last bits of 0. Thus these 2W−a values of
[Bmax, Bmin] require a total number of 2W−a · ((W − a)/2)
entries. Similarly to the previous detailed cases, the other
2W−a · (2a −TOL) are encoded each with ((W − a)/2 + 1)



entries on average, requiring a total number of 2W−a · (2a −
TOL) ·((W −a)/2+1) = 2W−a−1 ·(2a−TOL) ·(W −a+2)
entries. By summarizing these requirements together with the
single entry required for the case of Tmin = 0, we deduce the
suggested average for the 2W − TOL + 1 possible values of
[Tmin, Tmax].

Example 2. Again, let W = 4. For TOL = 2, we consider
the 2W − TOL + 1 = 15 possible ranges [Tmin, Tmax]:
[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7], [7, 8], [8, 9], [9, 10],
[10, 11], [11, 12], [12, 13], [13, 14], [14, 15]. For TOL = 2, we
have a = dlog2(TOL)e = 1. By Theorem 5, we have
that the average expansion here is ρ(W,TOL) = 1

15 · (1 −
23 + 22 · (3 + 2) · (2 − 2 + 1) + Σ2

i=02i−1 · (i+ 2) · 1) =
25
15 = 5

3 . Indeed, for the first of these 15 options, we can
set T0 = 0 and encode the range [0,15] by the single
entry (****). For [1, 2], [2, 3] we set T0 = 2 and encode
[2, 15] by the three entries (001∗), (01 ∗ ∗), (1 ∗ ∗∗). Like-
wise, for [3, 4], [4, 5], [5, 6], [6, 7] two entries are required. For
[7, 8], [8, 9] we set T0 = 8 and encode [8, 15] in a single range.
For [9, 10], [10, 11] two entries are required (T0 = 10) while
for [11, 12], [12, 13], [13, 14], [14, 15] a single entry is required
(for T0 = 12 or T0 = 14). This yields an average number of
1
15 ·(1+2·3+4·2+2·1+2·2+4·1) = 25

15 = 5
3 = ρ(W,TOL),

as suggested by Theorem 5.

C. Installation Bounds and Periodic Ranges

As noted in Section II-B, setting up a timed installation rule
requires a two-step procedure (see Fig. 5); in the insertion
step, the TCAM management software installs the timestamp-
dependent TCAM rule representing the configuration that
should take place starting at time T0. In the cleanup step, the
management software removes the timestamp dependency of
the rules representing the new configuration, leaving a single
time-oblivious TCAM entry. In this section we assume that the
insertion and cleanup operations are performed within well-
known installation bounds,3 denoted by ∆, i.e., it is guaranteed
that the time-based rule is inserted no sooner than ∆ before
T0, and is cleaned up by time T0 + ∆− 1.

T0

time

T0+T0-

insertion cleanupscheduled

T1

time

Fig. 5: Installation bounds

We shall show that guaranteed installation bounds signif-
icantly reduce the number of TCAM entries required for a
TIMEFLIP; rather than defining a range T ≥ T0, one can
define the range [T0, T1] for some T1 ≥ T0 + ∆ − 1, using
fewer TCAM entries with effectively the same impact.

Two ranges, R1 and R2, are said to be ∆-similar, denoted
R1

∆∼R2, if there exists a value T0 such that R1 ∩ R2 ⊇

3In practice, the installation bounds may be high in some network devices.
We further discuss how this affects TIMEFLIP in Section VI-B

[T0, T0+∆−1] and (R1∪R2)∩[T0−∆, T0−1] = ∅. Given an
extremal range RT0

= [T0, 2
W−1], since RT0

is only observed
during the period [T0 − ∆, T0 + ∆ − 1], every range R that
is ∆-similar to RT0 produces the same TCAM match results
during this period. Hence, every timed installation over RT0

can be represented by an equivalent timed installation over R.
We define the 2V -periodic continuation of a time range

[T0, T1], denoted by [T0, T1]V
-

, to be the range defined by
masking the W − V most significant bits of the timestamp,

i.e., Rpc :=
2W−V −1⋃

n=0
([TV -

0 , TV -
1 ] + n · 2V ). Moreover, if

TV -
1 < TV -

0 , then Rpc =
2W−V −1⋃

n=0
(([TV -

0 , 2V −1]∪[0, TV -
1 ])+

n · 2V ). The expansion of a periodic range Rpc is the number
of entries used for representing the range.

Intuitively, periodic ranges (Fig. 6) allow efficient represen-
tation of TIMEFLIPs. A 2V -periodic range is encoded with
don’t care in its W − V most significant bits, and thus the
number of bits required to represent such a range is V .

We now introduce the BOUNDEDRANGE algorithm.
Given a scheduling time, T0, and an extremal range,
RT0

= [T0, 2
W − 1], the algorithm computes a periodic range

RBR
∆∼RT0

that, for a sufficiently small ∆, has a smaller
expansion than RT0

.

Lemma 6. If RBR = BOUNDEDRANGE(T0,∆,W ), then the
expansion of every timed installation over RBR is bounded
by dlog2(2∆)e.

Proof. We denote dlog2(2∆)e by V . We analyze the periodic
range [T0, T0 + 2V−1 − 1]V

-
, focusing on a single range of

2V values, and distinguish between two cases:
(i) T (W−V )+

0 = (T0 + 2V−1 − 1)(W−V )+ : in this case
(depicted in Fig. 6(i)) we have a shifted V -bit range,
[TV -

0 , (T0 + 2V−1 − 1)V
-
]. We shall show that this range

has a worst-case expansion of V . We analyze the two sub-
ranges [TV -

0 , 2V−1−1] and [2V−1, (T0 + 2V−1−1)V
-
]. Both

sub-ranges are in fact (V − 1)-bit shifted extremal ranges.
The expansions of these two sub-ranges are r(T (V−1)-

0 ) and
`(T

(V−1)-

0 ), respectively. By Lemma 1, over a (V − 1)-bit
field we have r(T ) + `(T ) ≤ V for all T . It follows that the

T0

time

n 2V (n+1) 2V

T1

T0

time

T1

(i)

(ii)

n 2V (n+1) 2V

Fig. 6: Periodic ranges: the 2V -periodic continuation of
[T0, T1]. (i) For TV -

2 > TV -
1 . (ii) For TV -

2 < TV -
1 .

In BOUNDEDRANGE T1 = T0 + 2V−1 − 1.



BOUNDEDRANGE(T0,∆,W )

1 V ← dlog2(2∆)e
2 return [T0, T0 + 2V−1 − 1]V

-

Fig. 7: Determining a range with installation bounds ∆.

expansion of the two sub-ranges is V .
(ii) T (W−V )+

0 6= (T0 + 2V−1 − 1)(W−V )+ : in this case (de-
picted in Fig. 6(ii)), by definition of a 2V -periodic continuation
we have a shifted V -bit range [TV -

0 , 2V −1]∪[0, (T0+2V−1−
1)V

-
]. As in case (i), we have two (V −1)-bit complementary

extremal ranges, and thus the worst-case expansion of the two
sub-ranges is V .

The following theorem states that when the scheduling
tolerance, TOL, is sufficiently large, a timed installation can
be represented by a single TCAM entry.

Theorem 7. If TOL ≥ 2dlog2(∆)e, then there exists a range R
such that R∆∼RSCH, and the expansion of every timed instal-
lation over R is 1.

Proof. Since TOL ≥ 2V−1, it follows that blog2(TOL)c ≥
2V−1. There exists an integer n such that TSCH = n ·X , since
by Lemma 3 the X least significant bits of TSCH are ‘0’. We
define RBR := BOUNDEDRANGE(TSCH,∆,W ). By definition
of BOUNDEDRANGE, RBR

∆∼RSCH. Thus, at least one of the
following must hold:
• There exists an integer n such that TSCH = n · 2V .

Using BOUNDEDRANGE we have RBR = [0, 2V−1]V
-

,
which can be encoded by a single entry where the
timestamp field has the value ∗W−V , 0, ∗V−1, i.e., the
only unmasked bit is tV = 0.

• There exists an integer n such that TSCH = (2n+1)·2V−1.
Thus, TSCH

V -
= 2V−1. By using BOUNDEDRANGE we

have RBR = [2V−1, 2V −1]V
-

, which can be encoded by
the single entry ∗W−V , 0, ∗V−1, i.e., the only unmasked
bit is tV = 1.

The following theorem generalizes the observations about
the scheduling tolerance and installation bounds, and provides
the worst-case expansion as a function of TOL and ∆.

Theorem 8. If RBR = BOUNDEDRANGE(TSCH,∆,W ), and
TOL < 2dlog2(∆)e, then the expansion of every timed instal-
lation over RBR is bounded by dlog2(2∆)e − blog2(TOL)c.

Proof Outline. The proof is based on Lemma 4 and Lemma 6.

D. Timestamp Field Size in Bits

In the analysis so far we have been assuming that the
timestamp field is a W -bit field. This implies that in every
TCAM that requires timed installations, W bits of every entry
would be “wasted” on the timestamp field. In this section we

analyze how the timestamp field can be significantly reduced,
depending on the scheduling tolerance and installation bounds.
We show that the size of the timestamp field (Fig. 8) is affected
by two factors of the system: (i) If it is well-known that every
TIMEFLIP is scheduled with a scheduling tolerance TOL, then
the X = blog2(TOL)c least significant bits of the timestamp
field are always don’t care, and thus can be omitted from the
timestamp field. (ii) If there are guaranteed installation bounds,
∆, the use of a 2V -periodic range, for V = dlog2(2∆)e, allows
the W − V most significant bits to be omitted.

* * * * *

timestamp

field * * * * * *

W bits

W-V bits X bits

function of TOLfunction of 

Fig. 8: Example of 1-bit timestamp, per Theorem 10.

Lemma 9. If TOL < 2W , then the range RSCH can be
represented by a timestamp field of W − blog2(TOL)c bits.

Proof. We denote blog2(TOL)c by X . By Lemma 3 the X
least significant bits of TSCH are ‘0’. Thus, every prefix-based
encoding of RSCH has don’t care on the X least significant
bits. Hence, RSCH can be represented by the W − X most
significant bits.

Theorem 10. If TOL ≥ 2dlog2(∆)e, then there exists a range R
such that R∆∼RSCH, and R can be represented by a timestamp
field of a single bit.

Proof. The proof is very similar to the proof of Theorem 7;
the range RBR satisfies RBR

∆∼RSCH, and can be represented
by a single rule, where the only unmasked bit is tV , for V =
dlog2(2∆)e.

Theorem 11. If TOL < 2W , the installation bounds are given
by ∆, and TOL < 2dlog2(∆)e, then there exists a range R such
that R∆∼RSCH, and R can be represented by a timestamp field
of dlog2(2∆)e − blog2(TOL)c bits.

Proof. The range RBR satisfies RBR
∆∼RSCH. By definition

of BOUNDEDRANGE, the most significant W − V bits are
masked, and can thus be omitted. By Lemma 9 the X least
significant bits are masked and can thus be omitted. Hence, we
are left with V −X = dlog2(2∆)e − blog2(TOL)c bits.

It is well-known [14] that a W -bit extremal range has a
worst-case expansion W , i.e., there is a tight coupling between
the expansion of an extremal range and the number of bits
used to represent it. Thus, it is not surprising that our results
show that this coupling applies to time-based ranges as well,
as seen in Theorems 8 and 11. Specifically, in a system that
uses a 1-bit timestamp, per Theorem 10, every TIMEFLIP is
represented by a single entry, as shown in Theorem 7.



IV. OPTIMAL TIME-BASED ACTION UPDATES

In the previous section we analyzed timed installations
(Fig. 3(ii)). In this section we briefly discuss these results in
the context of timed action updates (Fig. 3(v)), and show
that the number of entries required to represent a time-based
action update is, in the worst case, roughly half of the number
of entries required to represent a timed installation.

Significantly, timed action updates can be represented either
by positive encoding (Fig. 3(v)) or by negative encoding
(Fig. 3(vi)). It was shown [23] that a W -bit extremal range
can be represented by dW+1

2 e entries, by choosing the best of
the positive or the negative encoding.

Let R be a time range, and define Rc := [0, 2W − 1] \ R
to be the complementary range of R. Given a time-oblivious
TCAM entry S → a with S = (su, . . . , s1, ∗, . . . , ∗), we
define a timed action update of S over R as a pair of TCAM
rules (SR → aR, S → a), such that SR := (su, . . . , s1, R).
Hence, aR is activated during the time range R. Note that the
order of the rules is of importance, since a TCAM lookup can
match S only if it does not match SR. Given a timed action
update, (SR → aR, S → a), we define its negative encoding
as (SRc → a, S → aR), such that SRc := (su, . . . , s1, R

c).
We define the expansion of a timed action update over a

time range R, denoted by e(R), as the expansion of R. In this
context e(R) is the minimum between the positive encoding
of R and its negative encoding, given by Rc. Note that in both
cases, positive and negative, the expansion does not include
the time-oblivious entry, S. The following theorem defines an
upper bound on the expansion of a timed action update over
a W -bit extremal range.

Theorem 12. If e(RT0,W ) is the expansion of a timed action
update over RT0,W = [T0, 2

W −1], then e(RT0,W ) ≤ bW+1
2 c.

Proof Outline. The proof is based on the dW+1
2 e result

of [23], with the exception that, in contrast to [23], our
definition of timed action updates excludes the entry that
assigns don’t care to the timestamp field. Due to this minor
difference, the expansion is bW+1

2 c rather than dW+1
2 e.

The following lemma presents the worst-case expansion of
using both positive and negative encoding, as a function of the
scheduling tolerance. The result generalizes Theorem 12.

Lemma 13. If e(RSCH) is the expansion of RSCH, and
TOL < 2W , then e(RSCH) ≤ bW−blog2(TOL)c+1

2 c.

Proof Outline. The proof is similar to the proof of 4, but uses
the result of Theorem 12 for the worst-case expansion when
using both positive and negative encoding.

V. EXPERIMENTAL EVALUATION

Our evaluation is composed of two parts:
(i) A simulation-based analysis was used to evaluate the

resources required for representing TIMEFLIPs, and to verify
our analytical results from the previous sections.

(ii) A microbenchmark using a commercial switch was used
to evaluate the accuracy of timed updates using our approach.

A. Simulation-based Evaluation

We implemented the SCHEDULE and BOUNDEDRANGE
algorithms, and computed the respective range expansion and
the required timestamp bit size in various cases. All of our
simulations were performed with W = 16.

We evaluated the expansion of an extremal range as a
function of the scheduling tolerance, TOL. For each value
of TOL we simulated all the possible values of Tmin, and the
graphs in Fig. 9 present both the worst-case expansion and the
average expansion (as defined in Section III-B). Fig. 9a depicts
the results for timed installation, i.e., r(T0), while Fig. 9b
illustrates the results for timed action updates. It can be shown
that the expansion of the latter is roughly half of the former,
since timed action updates make use of both the positive and
the negative encoding.
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(a) Timed installation: expansion
as a function of TOL.
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Theorem 5.
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(b) Timed action update:
expansion as a function of TOL
using both positive and negative
encoding. Theoretical max based
on Lemma 13.

Fig. 9: Expansion as a function of TOL

Fig. 10 depicts the effect of the installation bounds, ∆, on
the time range expansion. SCHEDULE was used for computing
T0, and BOUNDEDRANGE was used for selecting the time
range. Fig. 10a illustrates the expansion for TOL = 1, and
includes both the simulated values and the analytical values,
based on Lemma 6. Fig. 10b depicts the worst-case expansion
for several values of TOL. The star-shaped markers indicate
the points where TOL = 2dlog2(∆)e, illustrating that, as stated
in Theorem 7, if ∆ is small enough, i.e., TOL ≥ 2dlog2(∆)e,
the time range can be represented by a single entry.

Fig. 11 illustrates the effect of the scheduling tolerance
and the installation bounds on the number of bits required to
represent the timestamp field. Again, the star-shaped markers
indicate the points where TOL = 2dlog2(∆)e, and thus by
Theorem 10, if ∆ has a smaller value than the star-shaped
marker, the timestamp field requires only a single bit.

The simulations confirm our theoretical results, and demon-
strate the tradeoff between the two parameters, TOL and ∆,
and the TCAM resource consumption.

B. Microbenchmark

We performed an experiment in order to demonstrate that
the method presented in this paper is applicable to real-life
switches, and that the method can effectively provide a high
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Fig. 10: Expansion as a function of ∆ with BOUNDEDRANGE
in a timed installation.
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Fig. 11: The number of bits as a function of ∆ for various
values of TOL, using BOUNDEDRANGE in a timed instal-
lation. The star-shaped markers indicate the points where
TOL = 2dlog2(∆)e.

degree of accuracy. As mentioned above, when an update is
scheduled for time T0, it is performed in practice at some
time t ∈ [T0 − δ, T0 + δ]. The scheduling accuracy, δ, is
affected by two factors, the device’s clock accuracy, which is
the maximal offset between the clock value and the value of an
accurate time reference, and the execution accuracy, which is
a measure of how accurately the device can perform a timed
update, given a clock that is perfectly synchronized to real
time. The achievable clock accuracy strongly depends on the
network size and topology, and on the clock synchronization
method being used. For example, the achievable accuracy
using the Precision Time Protocol [9] is typically on the order
of 1 microsecond [10], [11]. Our microbenchmark is focused
on the execution accuracy of time-based TCAM updates.

The experiment was performed using an evaluation board
of the Marvell 98DX4251 [33] switch silicon. The reason
we used a switch silicon evaluation board is that it provides
flexible configuration options compared to an off-the-shelf
pizza-box switch. Specifically, the evaluation board allows the
flexibility to define the structure of the TCAM key, including
an ingress timestamp field. It is important to emphasize that
we used the switch as-is, without modifications or extensions.

The experiment setup is illustrated in Figure 12a. We used
an IXIA XM12 packet generator, that was connected to ports

(a) Experiment setup
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Fig. 12: Microbenchmark

0, 1, and 2 of the switch, and was configured to continuously
transmit 64B-packets to port 0 of the switch at a full-wire-
speed of 10 Gbps. Thus, a packet was transmitted to the switch
every 67.2 ns (nanoseconds). The switch was configured to
perform a TCAM lookup on all incoming packets, with the
following two entries:
• (in port = 0, T = (∗ . . . ∗, 1, ∗15))→ out port = 1
• (in port = 0, T = (∗ . . . ∗))→ out port = 2

The only unmasked bit in the timestamp field of the first
entry was t16 = 1. T is measured in nanoseconds, and
therefore the 16th bit, t16, represents 216 ns. Consequently,
the two rules produce periodic behavior where each rule is
matched for a duration of 215 ns; the first rule is matched for
a duration of 215 ns, and then the second rule is matched for
215 ns, and so on.

In the context of this experiment, every TIMEFLIP between
out port=1 and out port=2 is a timed action update. Our
analysis focuses on the question how accurately the timed
action updates occur. To answer this question, we measured
the time between two consecutive TIMEFLIPs from out port=1
to out port=2. We repeated this measurement 50 times, and
the empirical Probability Density Function (PDF) of these
measurements is illustrated in Figure 12b.

The expected mean time interval between TIMEFLIPs was
216 = 65536 ns. The precision of our measurements was
affected by two factors: (i) the packet generator timestamped
the incoming packets with a 10 ns resolution, and (ii) the
packet generator transmitted a packet exactly every 67.2 ns.
Due to these two factors, the precision of the measurement
was on the order of tens of nanoseconds. Notably, since
the measurement is performed by the packet generator, as a
difference between two TIMEFLIP events, no synchronization
is required between the packet generator and the switch.

As shown in Figure 12b, the timed action updates were all
performed within tens of nanoseconds of the expected time,
which is well within the margin of error of our measurement
method. Hence, the execution accuracy in our experiment
was no worse than tens of nanoseconds, which is negligible
compared to the clock accuracy in a typical network, on the
order of 1 microsecond. Thus, the microbenchmark indicates
that using the method we present in this paper, updates can



be timed in a typical network with a microsecond accuracy.

VI. DISCUSSION

A. The Scheduling Tradeoff

TIMEFLIP allows accurate scheduling while allowing ef-
ficient TCAM resource consumption. Notably, the execution
accuracy of TIMEFLIPs is not affected by the scheduling
tolerance, TOL, and the installation bound, ∆, whereas the re-
source consumption, namely the number of bits per timestamp
and the number of entries per TIMEFLIP is indeed affected by
these two parameters.

Consider a scenario where n different updates need to be
performed, all having the same constraint, [Tmin, Tmax]. The
SCHEDULE algorithm computes the same TSCH for the n
updates, resulting in two potential drawbacks: (i) If a large
number of updates must be installed and removed in a short
period of time around TSCH, this load on the TCAM manage-
ment software may affect the installation bound ∆. (ii) The
total number of excess TCAM entries that are used for the n
updates is on the order of n. To avoid this collision scenario,
the scheduling constraints can be defined as n disjoint ranges,
[T j

min, T
j
max] for 1 ≤ j ≤ n, producing n different scheduling

times Tj , thereby avoiding the two issues above. Intermediate
approaches can be taken, where the n ranges partially overlap.
Hence, TOL should be selected carefully; on the one hand, a
low value of TOL yields higher TCAM resources per update
(Theorem 8). On the other hand, if TOL is too large, the
collision scenario above may occur. This tradeoff regarding the
scheduling tolerance, TOL, shows that it should be carefully
selected based on the system properties, ∆ and n.

B. The Cost of High Installation Bounds

As discussed in Section III-C, guaranteed installation
bounds, ∆, can help reduce the amount of TCAM resources for
each TIMEFLIP. However, previous work [6] has demonstrated
large fluctuations in TCAM rule installation latencies, varying
from a few milliseconds to a few seconds. Does this make
TIMEFLIP impractical? Fortunately, the answer is no.

High installation bounds may yield high resource consump-
tion by each TIMEFLIP, but does not compromise their exe-
cution accuracy. A network device can reduce ∆ by limiting
the number of TCAM updates per second.

Interestingly, as shown in Theorems 8 and 11, even when
∆ is very high, if TOL is sufficiently large, then TIMEFLIPs
can still be represented very efficiently. For example, if ∆ is
as high as 10 seconds, and TOL is also 10 seconds, then every
TIMEFLIP can still be represented by a single TCAM entry,
using a single timestamp bit. Hence, TIMEFLIP can perform
well even in the presence of high installation bounds.

C. Timed Updates of Non-TCAM Memories

The concepts presented in this paper can be used for ap-
plying timed updates to non-TCAM lookup tables in network
devices. We provide an example of performing a timed update
in an IP routing table. Assume that at time T0 a set of entries in
the routing table should be updated to a new value. As shown

in Fig. 13, a time-based TCAM range is used for defining
the time range T ≥ T0, and the corresponding action is a
version metadata field, indicating whether routing should be
performed based on the old version or on the new one. The
version value is then used to access the routing table, along
with the destination IP address. This approach bears some
resemblance to the version tag approach of [17], although our
approach uses the version indication internally in the network
device, and it is not added to the packet header as in [17].

T

incoming 

packet

outgoing 

packet

TCAM

[T T0]

IP routing 

lookup

ver, IP

Fig. 13: Timed updates in non-TCAM lookups

VII. CONCLUSION

We introduced TIMEFLIP, a practical method of imple-
menting accurate time-based network updates and a natural
implementation of Atomic Bundles, using time-based TCAM
ranges. At the heart of our analysis lie two properties that
are unique to time-based TCAM ranges. First, by carefully
choosing the scheduled update time, the range values can be
selected to minimize the required TCAM resources. Second, if
there is a known bound on the installation time of the TCAM
entries, then by using periodic time ranges, the expansion
of the time range can be significantly reduced. We have
shown that TIMEFLIPs work on existing network devices,
making accurate time-based updates a viable tool for network
management.
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