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Abstract

This paper starts with a study of the minimum of the Rényi divergence subject to a fixed (or minimal)
value of the total variation distance. Relying on the solution of this minimization problem, we determine
the exact region of the points

(
D(Q||P1), D(Q||P2)

)
where P1 and P2 are any probability distributions

whose total variation distance is not below a fixed value, and the probability distribution Q is arbitrary
(none of these three distributions is assumed to be fixed). It is further shown that all the points of this
convex region are attained by a triple of 2-element probability distributions. As a byproduct of this
characterization, we provide a geometric interpretation of the minimal Chernoff information subject to a
minimal total variation distance.

Keywords: Chernoff information, Lagrange duality, relative entropy, Rényi divergence, total
variation distance.

I. INTRODUCTION

The Rényi divergence, introduced in [22], has been studied so far in various information-
theoretic contexts (and it has been actually used before it had a name [24]). These include
generalized cutoff rates for hypothesis testing ([1], [7]), generalized guessing moments [9], strong
converse theorems for classes of networks [11], channel coding error exponents ([14], [19], [24]),
strong data processing theorems for discrete memoryless channels [20], two-sensor composite
hypothesis testing [25], and one-shot bounds for various information-theoretic problems [29].

This work starts with a study of the minimum of the Rényi divergence subject to a fixed (or
minimal) value of the total variation distance. The derivation of an exact expression for this
minimum is initialized by adapting some arguments that have been used by Fedotov et al. [10]
for the minimization of the relative entropy (a.k.a. Kullback-Leibler divergence), subject to a
fixed value of the total variation distance. Our analysis further relies on the Lagrange duality
and a solution of the Karush-Kuhn-Tucker (KKT) equations, while asserting strong duality for
the studied problem. The use of Lagrange duality significantly simplifies the computational task
of the studied minimization problem. The exact expression for the Rényi divergence generalizes,
in a non-trivial way, previous studies of the minimization of the relative entropy under the same
constraint on the total variation distance (see [10], [15], [21]). The exact expression for this
minimum is also compared with known Pinsker-type lower bounds on the Rényi divergence
[16] when the total variation distance is fixed. It should be noted that the studied problem
minimizes the Rényi divergence w.r.t. all pairs of probability distributions with a total variation
distance which is not below a given value; this differs from the type of problems studied in [3]
and [18], in connection to the minimization of the relative entropy D(P ||Q) with a minimal
allowed value of the total variation distance, where the probability distribution (PD) Q was fixed.
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The motivation for this study is provided in the second part of this work. It is used to
obtain an exact characterization of the joint range of the relative entropies (D(Q||P1), D(Q||P2))
where P1 and P2 are arbitrary PDs whose total variation distance is not below a fixed value,
and Q is an arbitrary PD (note that none of these three PDs is set to be fixed). The use
of such a characterization can be exemplified, due to the significance of the relative entropy
in various fundamental problems in information theory and statistics. These include, e.g., the
characterization of the gap of the compression rate, in lossless source coding, to the entropy of
a memoryless and stationary source when there exists a mismatch between the assumed PD of
the source and its true PD. Such a characterization implies that if Q is an arbitrary PD of a
memoryless and stationary source, and two lossless source encoders assume arbitrary PDs of P1

and P2 whose total variation distance is not below a fixed value (the total variation distance is
used here as a quantitative measure for the distinction between P1 and P2), then the simultaneous
gaps of their compression rates to the entropy of the source is an interior or a boundary point of
the region which is specified by the joint range of the relative entropies (D(Q||P1), D(Q||P2))
as above. Every point in this region is shown to be achievable by a triple of 2-element PDs
P1, P2 and Q, and these PDs are determined by relying on the solution to the problem of
minimizing the Rényi divergence subject to a minimal total variation distance. Furthermore, no
point outside this region is achievable, irrespectively of the PDs P1, P2 and Q as above. This
region can get some other interpretations since the relative entropy plays a fundamental role in
the method of types, the large deviation theory (Sanov’s theorem), the conditional limit theorem,
and the characterization of the best achievable error exponent for a Bayesian probability of error
in binary hypothesis testing [6, Chapter 11]. Note that the studied problem here differs from the
study in [13] which considered the joint range of f -divergences for a single pair of PDs.

This paper is focused on the Rényi divergence. To avoid confusion, recall the distinction
between the Rényi divergence and the α-divergence that has been introduced by Sundaresan [27],
[28]. Unlike the Rényi divergence, it does not satisfy the data processing inequality; this property
is used in this paper for the minimization of the Rényi divergence for a fixed (or minimal) total
variation distance. Nevertheless, the α-divergence satisfies the Pythagorean property on convex
and closed sets of general PDs [2], and it has found some information-theoretic interpretations
in the context of guessing under uncertainty [28], and mismatched encoding of tasks [5].

This paper is structured as follows: Section II solves the minimization problem for the Rényi
divergence under a fixed total variation distance, Section III provides an exact characterization of
the considered joint range of the relative entropies. Proofs are mostly relegated to the appendices.

Definitions and Notation

We end this section by providing the definitions, and setting the notation used in this paper.
Definition 1 (Rényi divergence): Let P and Q be two PDs defined on a countable set X , and

let α ∈ (0, 1) ∪ (1,∞). The Rényi divergence of order α of P from Q is given by

Dα(P ||Q) =
1

α− 1
log

(∑
x∈X

Pα(x)Q1−α(x)

)
(1)

with the convention that if α > 1 and Q(x) = 0 then Pα(x)Q1−α(x) equals 0 or ∞ if P (x) = 0
or P (x) > 0, respectively. The extreme cases of α = 0, 1,∞ are defined as follows:

• If α = 0 then D0(P ||Q) = − logQ(Support(P )) where Support(P ) = {x ∈ X : P (x) > 0}
denotes the support of P ,

• If α = +∞ then D∞(P ||Q) = log
(

ess sup P
Q

)
where ess sup f denotes the essential

supremum of a function f ,



3

• If α = 1, it is defined to be the relative entropy D(P ||Q) =
∑

P (x) log P (x)
Q(x) .

If D(P ||Q) < ∞, it can be verified by L’Hôpital’s rule that D(P ||Q) = limα→1− Dα(P ||Q).
Properties of the Rényi divergence are provided in [8] (with a summary in [8, p. 3799]).

Another measure used in this paper is the total variation distance, defined as follows:
Definition 2 (Total variation distance): Let P and Q be two PDs defined on a set X . The

total variation distance between P and Q is defined by

dTV(P,Q) , sup
A⊆X

|P (A)−Q(A)|. (2)

If X is a countable set, the total variation distance in (2) can be simplified to

dTV(P,Q) =
1

2

∑
x

∣∣P (x)−Q(x)
∣∣ = ||P −Q||1

2
(3)

so, the total variation distance is equal to one-half the l1-distance between P and Q. In the
continuous setting, PDs are replaced by pdfs, and the sum in (3) is replaced by an integral.

Throughout this paper, N denotes the set of positive integers and logarithms are to the base e.

II. MINIMIZATION OF THE RÉNYI DIVERGENCE SUBJECT TO A FIXED TOTAL VARIATION

DISTANCE

The task of minimizing an arbitrary symmetric f -divergence for a fixed total variation distance
has been studied in [15], leading to a closed-form solution of this optimization problem. Although
the Rényi divergence is not an f -divergence, it is a function of an f -divergence; however, this
f -divergence is asymmetric, except for the case where α = 1

2 , so the closed-form expression in
[15] cannot be utilized to obtain a tight lower bound on the Rényi divergence subject to a fixed
total variation distance.

In this section, we derive a tight lower bound on the Rényi divergence Dα(P1||P2) subject
to a fixed total variation distance between P1 and P2. We further show that this lower bound
is attained with equality for a pair of 2-element probability distributions P1 and P2, and both
distributions are obtained explicitly in terms of the order α and the fixed total variation distance
dTV(P1, P2) = ε ∈ [0, 1) (note that if ε = 1 then Supp(P1) ∩ Supp(P2) = ∅, and consequently
Dα(P1||P2) = ∞). For orders α ∈ (0, 1), the new tight lower bound is compared with existing
Pinsker-type lower bounds on the Rényi divergence [16]. The special case where α = 1, which is
particularized to the minimization of the relative entropy subject to a fixed total variation distance,
has been studied extensively, and three equivalent forms of the solution to this optimization
problem have been derived in [10], [15] and [21].

In [16, Corollaries 6 and 9], Gilardoni derived two Pinsker-type lower bounds on the Rényi
divergence of order α ∈ (0, 1) in terms of the total variation distance. Among these two bounds,
the improved lower bound is

Dα(P ||Q) ≥ 2αε2 +
4

9
α(1 + 5α− 5α2)ε4, ∀α ∈ (0, 1) (4)

where ε , dTV(P,Q) denotes the total variation distance between P and Q (see Definition 2).
Note that in the limit where ε → 1, this lower bound converges to a finite limit that is at most
22
9 . This, however, is an artifact of the lower bound, as it is stated in the following:

Lemma 1:
lim
ε→1−

inf
P,Q : dTV(P,Q)=ε

Dα(P ||Q) = ∞, ∀α > 0. (5)

Proof: See Appendix I-A.
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Lemma 1 motivates a study of the exact characterization of the infimum (or minimum) of the
Rényi divergence for a fixed total variation distance. In the following, we derive a tight lower
bound which is shown to be achievable by pairs of 2-element PDs for any fixed value ε ∈ [0, 1)
of the total variation distance. For α > 0, let

gα(ε) , inf
P1,P2 : dTV(P1,P2)=ε

Dα(P1||P2), ∀ ε ∈ [0, 1). (6)

Since gα(ε) is monotonic non-decreasing in ε ∈ [0, 1), it can be expressed as

gα(ε) = inf
P1,P2 : dTV(P1,P2)≥ε

Dα(P1||P2), ∀ ε ∈ [0, 1). (7)

Remark 1: For α ∈ [0, 1], since Dα(P ||Q) is jointly convex in (P,Q), the same arguments
by Fedotov et al. [10] yield that gα is convex, and the infimum in (6) and (7) is a minimum.

In the following, we evaluate the function gα in (6) and (7). Following [10, Section 2] that
characterizes the minimum of the relative entropy in terms of the total variation distance, we
first extend their argument to prove this lemma:

Lemma 2: There is no loss of generality by restricting the minimization in (6) or (7) to pairs
of 2-element PDs.

Proof: See Appendix I-B.
The following proposition provides an expression for gα.
Proposition 1: Let α ∈ (0, 1) ∪ (1,∞) and ε ∈ [0, 1). The function gα in (6) satisfies

gα(ε) = min
p,q∈[0,1] : |p−q|≥ε

dα(p∥q) (8)

where

dα(p∥q) ,
log
(
pαq1−α + (1− p)α(1− q)1−α

)
α− 1

(9)

is the Rényi divergence Dα(P∥Q) between the 2-element PDs P = (p, 1−p) and Q = (q, 1−q).

Proof: Eq. (8) follows from Lemma 2 where Dα(P1||P2) is minimized over all pairs of
2-element PDs P1 = (p, 1− p), P2 = (q, 1− q) with |p− q| = dTV(P1, P2) ≥ ε.

Corollary 1: For α ∈ (0, 1) and ε ∈ [0, 1)

gα(ε) =

(
α

1− α

)
g1−α(ε), (10)

and
gα(ε) ≥ c1(α) log

(
1

1− ε

)
+ c2(α), (11)

where c1(α) , min
{
1, α

1−α

}
, and c2(α) , − log(2)

1−α .

For α = 1
2 and α = 2, the function gα admits the following closed-form expressions:

g 1

2
(ε) = − log(1− ε2), (12)

and

g2(ε) =

{
log(1 + 4ε2), if ε ∈

[
0, 12
]
,

log
(

1
1−ε

)
, if ε ∈

(
1
2 , 1
)
.

(13)

Proof: See Appendix II.
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Remark 2: The lower bound on gα in (11) provides another proof of Lemma 1, showing that

lim
ε→1−

gα(ε) = ∞

for α ∈ (0, 1); this lemma also holds for α ≥ 1 since Dα is monotonic non-decreasing in
α ∈ (0,∞), and due to the definition of gα in (6).

Solving the Optimization Problem in Proposition 1 for α ∈ (0, 1)

In the following, we use Lagrange duality to obtain an alternative expression for a solution of
the minimization problem. This simplifies considerably the computational task of the solution
to this problem, as explained below.

Lemma 3: Let α ∈ (0, 1) and ε ∈ (0, 1). The function

fα,ε(q) ,

(
1− ε

1−q

)α−1
−
(
1 + ε

q

)α−1(
1 + ε

q

)α
−
(
1− ε

1−q

)α , ∀q ∈ (0, 1− ε). (14)

is strictly monotonic increasing, positive, continuous, and

lim
q→0+

fα,ε(q) = 0, lim
q→(1−ε)−

fα,ε(q) = +∞. (15)

Proof: The proof of the following lemma is tricky, and it is given in Appendix III.
Corollary 2: For α ∈ (0, 1) and ε ∈ (0, 1), the equation

fα,ε(q) =
1− α

α
(16)

has a unique solution q ∈ (0, 1− ε).
Proof: It is a direct consequence of Lemma 3, and the mean value theorem for continuous

functions.
Remark 3: Since fα,ε : (0, 1− ε) → (0,∞) and this function is strictly monotonic increasing

(see Lemma 3), the task of numerically solving equation (16) and finding its unique solution is
easy.

A solution of the optimization problem in Proposition 1 is provided in the following for
α ∈ (0, 1).

Proposition 2: Let α ∈ (0, 1) and ε ∈ (0, 1) denote, respectively, the order of the Rényi
divergence and the fixed value of the total variation distance. A solution of the minimization
problem for gα in Proposition 1 is obtained by calculating the binary Rényi divergence dα(p∥q)
in (9) while taking the unique solution q ∈ (0, 1− ε) of equation (16), and setting p = q + ε.

Proof: The proof of this proposition relies on the Lagrange duality and KKT conditions,
while strong duality is first asserted by verifying the satisfiability of Slater’s condition. The proof
is given in Appendix IV.

Remark 4: In light of Remark 3, Proposition 2 enables a quick and high-precision computation
of gα(ε). The running time of our computer program for a numerical calculation of gα(ε) with
Proposition 2 has been considerably reduced (by a factor of 100) in comparison to its direct
computation with Proposition 1. This significant reduction has been very helpful, especially in
the context of the computations that are performed in Section III.
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Fig. 1. A plot of the minimum of the Rényi divergence Dα(P1||P2) of order α = 0.25, 0.50, 0.75, 1.00 (the special
case of α = 1 gives the Kullback-Leibler divergence) as a function of the total variation distance ε between the PDs
P1 and P2.
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Fig. 2. A plot of the minimum of the Rényi divergence Dα(P1||P2) of order α = 0.90 subject to a fixed total
variation distance between P1 and P2 where dTV(P1||P2) = ε ∈ [0, 1). This tight lower bound is compared with
the two Pinsker-type lower bounds in [16, Corollaries 6 and 9] (the improved lower bound from [16, Corollary 9]
appears in Eq. (4)).
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III. THE ACHIEVABLE REGION OF (D(Q||P1), D(Q||P2)) FOR ARBITRARY Q,P1, P2

SUBJECT TO A MINIMAL TOTAL VARIATION DISTANCE BETWEEN P1 AND P2

In this section, we address the following question:
Question 1: What is the achievable region of

(
D(Q||P1), D(Q||P2)

)
when P1 and P2 are

arbitrary PDs whose total variation distance is at least ε ∈ (0, 1), and Q is any PD that is
absolutely continuous w.r.t. P1 and P2 ? (note that none of these three distributions is fixed).

The present section characterizes this achievable region exactly by relying on the results of
Section II, and by using the following lemma which expresses the Rényi divergence as a linear
combination of relative entropies.

Lemma 4: Let P1 and P2 be mutually absolutely continuous probability measures, and let Q
be a third probability measure such that Q ≪ P1. Then, for an arbitrary α > 0,

Dα(P1||P2) = D(Q||P2) +
α

1− α
·D(Q||P1) +

1

α− 1
·D(Q||Qα) (17)

where Qα is given by

Qα(x) ,
Pα
1 (x)P

1−α
2 (x)∑

u P
α
1 (u)P

1−α
2 (u)

, ∀x ∈ Supp(P1). (18)

Proof: See Appendix V.
As a corollary of Lemma 4, the following tight inequality holds, which is attributed to

Shayevitz (see [26, Section IV.B.8]). It will be useful for the continuation of this section, jointly
with the results in Section II.

Corollary 3: If α ∈ (0, 1) then
α

1− α
·D(Q||P1) +D(Q||P2) ≥ Dα(P1||P2) (19)

with equality if and only if Q = Qα (see (18)). For α > 1, inequality (19) is reversed with the
same necessary and sufficient condition for an equality.

Remark 5: Corollary 3 with the optimizing PD Qα in (18) strengthens Eq. (6) in [25] in the
sense that it was stated there that, for α > 1,

Dα(P1||P2) = max
Q≪P1

{
D(Q||P2) +

α

α− 1
·D(Q||P1)

}
(20)

where the max is replaced by min for α ∈ (0, 1). Equality (20) was proved in [25] by the method
of types, and the optimizing PD Q = Qα was stated in [26, Section IV.B.8]. The identity in
Lemma 4, which to the best of our knowledge was not explicitly mentioned earlier, leads directly
to the maximizing/ minimizing distribution Q = Qα (due to the non-negativity of the relative
entropy). The knowledge of the maximizing distribution in (18) plays an important role in the
characterization of the achievable region studied in this section.

The region that includes all the achievable points of
(
D(Q||P1), D(Q||P2)

)
is determined as

follows: let dTV(P1, P2) ≥ ε for a fixed ε ∈ (0, 1), and let α ∈ (0, 1) be chosen arbitrarily. By
the tight lower bound in Section II, we have

Dα(P1||P2) ≥ gα(ε) (21)

where gα is expressed in (8) or by the efficient algorithm in Proposition 2. For α ∈ (0, 1) and
for a fixed value of ε ∈ (0, 1), let p = pα and q = qα in (0, 1) be set to achieve the global
minimum in (8) (note that, without loss of generality, one can assume that p ≥ q since if (p, q)
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achieves the minimum in (8) then also (1−p, 1−q) achieves the same minimum). Consequently,
the lower bound in (21) is attained by the pair of 2-element PDs

P1 = (pα, 1− pα), P2 = (qα, 1− qα). (22)

From Corollary 3, and Eqs. (21) and (22), it follows that for every α ∈ (0, 1)

gα(ε) ≤ D(Q||P2) +
α

1− α
·D(Q||P1) (23)

where equality in (23) holds if P1 and P2 are the 2-element PDs in (22), and Q is the respective
PD in (18) for P1 and P2 in (22). Hence, there exists a triple of 2-element PDs P1, P2, Q that
satisfy (23) with equality, and they are easy to calculate for every α ∈ (0, 1) and ε ∈ (0, 1).

Remark 6: Similarly to (23), since dTV(P1, P2) = dTV(P2, P1), it follows from (23) that

gα(ε) ≤ D(Q||P1) +
α

1− α
·D(Q||P2). (24)

By multiplying both sides of inequality (24) by 1−α
α and relying on the skew-symmetry property

in (10), it follows that (24) is equivalent to

g1−α(ε) ≤ D(Q||P2) +
1− α

α
·D(Q||P1)

which is inequality (23) when α ∈ (0, 1) is replaced by 1−α. Hence, since (23) holds for every
α ∈ (0, 1), there is no additional information in (24).

Proposition 3: The intersection of the half spaces that are given in (23), where the parameter
α varies continuously in (0,1), determines the joint range of

(
D(Q||P1), D(Q||P2)

)
that is

addressed in Question 1. Furthermore, all the points in this region are achievable by triples of
2-element PDs P1, P2 and Q.

Proof: The boundary of this region is determined by letting α increase continuously in
(0,1), and by drawing the following straight lines in the plane of

(
D(Q||P1), D(Q||P2)

)
:

D(Q||P2) +
α

1− α
·D(Q||P1) = gα(ε), ∀α ∈ (0, 1). (25)

Once the boundary of this region is determined (see Figure 3), every point on the boundary
of this region is a tangent point to one of the straight lines in (25). Furthermore, the triple of
2-element PDs P1, P2 and Q that achieves an arbitrary point on the boundary of this region is
determined as follows:

• Find the slope s of the tangent line (s < 0), and let α = − s
1−s ; this implies that α ∈ (0, 1)

satisfies − α
1−α = s (see (25)).

• Determine the 2-element PDs P1 = (p, 1− p), P2 = (q, 1− q) such that dα(p∥q) = gα(ε).
This is done by Proposition 2 where one first obtains the unique solution q ∈ (0, 1 − ε)
of equation (16) (recall that, from Lemma 3, the function on the right-hand side of (16) is
monotonic increasing in q, and it maps the interval (0, 1− ε) to (0,∞)), and set p = q+ ε.

• Calculate the PD Q = Qα in (18) for α, P1 and P2.
Every point on the plane

(
D(Q||P1), D(Q||P2)

)
, which is to the left of the boundary (i.e.,

the colored regions in Figures 3 and 4) is not achievable by any triple of PDs P1, P2 and Q
with dTV(P1, P2) ≥ ε. This is because every such a point violates at least one of the inequality
constraints in (23). On the other hand, every point which is to the right of this boundary is
achievable by a triple of 2-element PDs P1, P2, Q. To verify the last claim, first note that it has
been demonstrated to hold for all the points on the boundary. Furthermore, based on the set of
inequalities in (23) for α ∈ (0, 1) and ε ∈ [0, 1), choose an arbitrary interior point in the convex
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region which is to the right of the boundary. Note that gα(·) is strictly monotonic increasing
and continuous in (0, 1); it also tends to infinity as we let ε tend to 1 (see Lemma 1). This
implies that the achievable region of

(
D(Q||P1), D(Q||P2)

)
, subject to the constraint where

D(P1||P2) ≥ ε, shrinks continuously as the value of ε ∈ (0, 1) is increased, and it therefore lies
on the boundary of the respective achievable region for some ε′ > ε. One can find, accordingly,
the 2-element probability distributions P1, P2 and Q in a similar way to the 3-item procedure
outlined above (earlier in this proof) where ε is replaced by ε′. This therefore shows that all
points on the boundary of this region, as well as all the interior points to the right of this
boundary, are all achievable by 2-element PDs; furthermore, none of the points to the left of
this boundary is achievable. This concludes the proof of Proposition 3.

Note that, from Figure 4, the boundaries of these achievable regions for different values of
ε ∈ (0, 1) do not form parallel lines; they become less curvy as the value of ε gets closer to 1.

On the Chernoff information and the point on the boundary with equal coordinates

We consider in the following the point in Figure 4 which is specified, in the plane of(
D(Q||P1), D(Q||P2)

)
, by the intersection of the straight line D(Q||P1) = D(Q||P2) with

the boundary of the achievable region for a fixed value of ε ∈ (0, 1). Based on the above expla-
nation (see, e.g., the third item after equation (25)), this intersection point satisfies the equality
D(Qα||P1) = D(Qα||P2) for some α ∈ (0, 1), 2-element PDs P1, P2 with dTV(P1, P2) = ε,
and Qα in (18). The two equal coordinates of this intersection point are therefore equal to
the Chernoff information C(P1, P2) (see [6, Section 11.9]). In this case, due to the symmetry
of the achievable region w.r.t. the line D(Q||P1) = D(Q||P2) (this symmetry follows from
the symmetry of the total variation distance dTV(P1, P2)), the slope of the tangent line to the
boundary at this intersection point is s = −1 (see Figure 4). This implies that α = − s

1−s = 1
2 ,

and from Corollary 1 we have gα(ε) = − log(1−ε2) for ε ∈ [0, 1). Hence, from (25) with α = 1
2 ,

the equal coordinates of this intersection point are D(Q||P1) = D(Q||P2) = −1
2 log(1 − ε2).

Based on [23, Proposition 2], this value is equal to the minimum of the Chernoff information
subject to a fixed total variation distance ε ∈ [0, 1). In the following, we also calculate the three
PDs P1, P2 and Q that achieve this intersection point. Eq. (8) with α = 1

2 gives that

−2 log
(√

pq +
√

(1− p)(1− q)
)
= − log(1− ε2)

subject to the inequality constraints p, q ∈ [0, 1] and |p−q| ≥ ε. A possible solution of this equa-
tion is p = 1+ε

2 and q = 1−ε
2 , so the respective 2-element PDs are given by P1 =

(
1+ε
2 , 1−ε

2

)
,

P2 =
(
1−ε
2 , 1+ε

2

)
and, from (18), Q =

(
1
2 ,

1
2

)
. As a byproduct of the characterization of this

achievable region, we therefore provide a geometric interpretation of the minimal Chernoff
information subject to a minimal total variation distance.

The straight line D(Q||P1) = D(Q||P2), in the plane of Figure 4, intersects the boundaries of
the respective regions at points whose coordinates are equal to the minimum Chernoff information
for the fixed total variation distance (ε). The equal coordinates of each of these 4 intersection
points in Figure 4, referring to ε = 0.50, 0.70, 0.90, 0.99, are equal to −1

2 log(1 − ε2) =
0.144, 0.337, 0.830, 1.959 nats, respectively.

The reader is also referred to [17] where a geometric interpretation of the Chernoff distribution
(achieving the Chernoff information) has been provided. As a concluding remark, recall that the
Chernoff information is related to the Rényi divergence by the equality

C(P1, P2) = max
α∈[0,1]

{
(1− α)Dα(P1||P2)

}
.
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Fig. 3. The boundary of the achievable region of (D(Q||P1), D(Q||P2)) where Q goes over all possible PDs, and
P1 and P2 go over all possible pairs of PDs whose total variation distance is at least ε = 0.5. The achievable region
is the white region (i.e., it is to the right of its boundary), which is the intersection of all the inequality constraints
in (23) where the parameter α varies continuously in (0,1); in this plot, α gets values between 0.05 and 0.95 with
increments of 0.05.
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Fig. 4. This plot shows the boundaries of the 4 achievable regions of (D(Q||P1), D(Q||P2)) where Q goes
over all possible PDs, and P1 and P2 go over all possible pairs of PDs whose total variation distance is at least
ε = 0.50, 0.70, 0.90, 0.99. The respective achievable region for a fixed ε is to the right of its boundary, and it shrinks
as the value of ε is increased.
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APPENDIX I
PROOFS OF LEMMAS 1 AND 2

A. Proof of Lemma 1

For α = 1
2 , D 1

2
(P ||Q) = −2 logZ(P,Q) where Z(P,Q) ,

∑
x

√
P (x)Q(x) denotes the

Bhattacharyya coefficient between the two PDs P,Q. From [23, Proposition 1], it follows that
D 1

2
(P ||Q) ≥ − log(1 − ε2) when dTV(P,Q) = ε, so (5) holds for α = 1

2 . Since Dα is non-
decreasing in α (see [8, Theorem 3]), it follows that (5) holds for α ≥ 1

2 . Finally, due to the
skew-symmetry property of Dα (see [8, Proposition 2]) where Dα(P ||Q) =

(
α

1−α

)
D1−α(Q||P )

for α ∈ (0, 1), and since the total variation distance is a symmetric measure and α
1−α > 0 for

α ∈ (0, 1), the satisfiability of (5) for α ∈ (12 , 1) yields that it also holds for α ∈ (0, 12).

B. Proof of Lemma 2

Let P1 and P2 be PDs that are defined on an arbitrary set A of k ≥ 2 elements. Denote by
ϕ : A → {1, 2} the map given by

ϕ(x) =

{
1, if P1(x) ≥ P2(x),
2, if P1(x) < P2(x)

and define ϕ(Pi) = Qi for i ∈ {1, 2} where

Qi(j) ,
∑

x∈A : ϕ(x)=j

Pi(x), ∀ i, j ∈ {1, 2}. (I.1)

We have

dTV(P1, P2) =
1

2

∑
x∈A

∣∣P1(x)− P2(x)
∣∣

=
1

2

∑
x∈A : ϕ(x)=1

(
P1(x)− P2(x)

)
+

1

2

∑
x∈A : ϕ(x)=2

(
P2(x)− P1(x)

)
=

1

2

(
Q1(1)−Q2(1)

)
+

1

2

(
Q2(2)−Q1(2)

)
=

1

2

∑
j∈{1,2}

∣∣Q1(j)−Q2(j)
∣∣

= dTV(Q1, Q2).

Furthermore, from the data processing theorem for the Rényi divergence (see [8, Theorem 9]),

Dα(P1||P2) ≥ Dα(Q1||Q2) (I.2)

where Q1 and Q2 are the 2-element PDs defined in (I.1). This completes the proof of this lemma
where it has been proved that for every pair of PDs P1 and P2, there exists a pair of 2-element
PDs Q1 and Q2 whose total variation distance is preserved, and they satisfy inequality (I.2).
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APPENDIX II
PROOF OF COROLLARY 1

Eq. (10) in Corollary 1 holds since

gα(ε) = min
p,q∈[0,1] : |p−q|≥ε

log
(
p1−αqα + (1− p)1−α(1− q)α

)
α− 1

=

(
α

1− α

)
g1−α(ε)

where the first equality holds by switching between p and q in (8), and the second equality also
follows from (8). Alternatively, (10) follows from (6) and the skew-symmetry property of the
Rényi divergence (see [8, Proposition 2]).

The lower bound on gα in (11) follows from (8), which implies that for α ∈ (0, 1) and
ε ∈ [0, 1)

gα(ε) =
log
(
maxp,q∈[0,1] : |p−q|≥ε

(
pαq1−α + (1− p)α(1− q)1−α

))
α− 1

(II.1)

and, we have

0 ≤ max
p,q∈[0,1] : |p−q|≥ε

(
pαq1−α + (1− p)α(1− q)1−α

)
≤ max

p,q∈[0,1] : |p−q|≥ε
pαq1−α + max

p,q∈[0,1] : |p−q|≥ε
(1− p)α(1− q)1−α

= 2 max
p,q∈[0,1] : |p−q|≥ε

pαq1−α

= 2 max
{
(1− ε)α, (1− ε)1−α

}
. (II.2)

The lower bound on gα in (11) follows from the combination of (II.1) and (II.2).
Eq. (12) follows from the equality D 1

2
(P ||Q) = −2 logZ(P,Q) where Z(P,Q) is the

Bhattacharyya coefficient between P,Q, and since (see [23, Proposition 1])

max
P,Q : dTV(P,Q)=ε

Z(P,Q) =
√

1− ε2, ∀ ε ∈ [0, 1).

Eq. (13) follows from (8), which gives

g2(ε) = min
p,q∈[0,1] : |p−q|≥ε

log

(
p2

q
+

(1− p)2

1− q

)
.

The solution of this minimization problem is q = 1
2 and p = 1

2 ± ε if ε ∈
[
0, 12
]
, and its solution

is p = 1 and q = 1− ε if ε ∈
(
1
2 , 1
)
.

Note that D2(P1||P2) = log
(
1 + χ2(P1, P2)

)
where

χ2(P1, P2) ,
∑
x

(
P1(x)− P2(x)

)2
P2(x)

=
∑
x

P 2
1 (x)

P2(x)
− 1

is the χ2-divergence (a.k.a. the quadratic divergence or Pearson divergence) between the two
PDs P1 and P2. An alternative way to derive g2 in (13) is by relying on the closed-form solution
of a minimization of the χ2-divergence, subject to a fixed value of the total variation distance
ε ∈ [0, 1), which is given by (see, e.g., [21, Eq. (58)])

min
P1,P2 : dTV(P1,P2)=ε

χ2(P1, P2) =

{
4ε2, if ε ∈

[
0, 12
]
,

ε
1−ε , if ε ∈

(
1
2 , 1
)
.
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APPENDIX III
PROOF OF LEMMA 3

For α ∈ (0, 1) and ε ∈ (0, 1), we have

lim
q→0+

(
1 +

ε

q

)α−1

= 0, lim
q→0+

(
1 +

ε

q

)α

= +∞,

=⇒ lim
q→0+

fα,ε(q) = lim
q→0+

(1− ε)α−1(
1 + ε

q

)α
− (1− ε)α

= 0,

and

lim
q→(1−ε)−

(
1− ε

1− q

)α−1

= +∞, lim
q→(1−ε)−

(
1− ε

1− q

)α

= 0,

=⇒ lim
q→(1−ε)−

fα,ε(q) = lim
q→(1−ε)−

(
1− ε

1−q

)α−1
− (1− ε)1−α

(1− ε)−α −
(
1− ε

1−q

)α = +∞.

This proves the two limits in (15).
We prove in the following that fα,ε(·) is strictly increasing on the interval

[
1−ε
2 , 1− ε), and

we also prove later in this appendix that this function is monotonic increasing on the interval(
0, 1−ε

2

]
. These two parts of the proof yield that fα,ε(·) is strictly monotonic increasing on the

interval (0, 1− ε). The positivity of fα,ε on (0, 1− ε) follows from the first limit in (15), jointly
with the monotonicity of this function which is proved in the following.

For a proof that fα,ε(·) is strictly monotonic increasing on
[
1−ε
2 , 1 − ε), this function (see

(14)) is expressed as follows:

fα,ε(q) =
1

1 + ε
q

(
1− ε

1−q

1+ ε

q

)α−1
− 1

1−
(
1− ε

1−q

1+ ε

q

)α
=

(
1 +

ε

q

)−1

uα
(
zε(q)

)
(III.1)

where

zε(q) ,
1− ε

1−q

1 + ε
q

, (III.2)

uα(t) ,
{

tα−1−1
1−tα , if t ∈ (0,∞) \ {1},

1−α
α , if t = 1.

(III.3)

Note that uα in (III.3) was defined to be continuous at t = 1. In order to proceed, we need the
following two lemmas:

Lemma III.1: Let ε ∈ (0, 1). The function zε in (III.2) is strictly monotonic increasing on(
0, 1−ε

2

]
, and it is strictly monotonic decreasing on

[
1−ε
2 , 1− ε). This function is also positive

on (0, 1− ε).
Proof: zε(q) > 0 for q ∈ (0, 1− ε) since 1− ε

1−q > 0, and 1 + ε
q > 0. In order to prove

the monotonicity properties of zε, note that its derivative satisfies the equality

z′ε(q) = ε zε(q)

(
1

q(ε+ q)
− 1

(1− q)(1− ε− q)

)
(III.4)
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which is derived by taking logarithms on both sides of (III.2), followed by their differentiation.
By setting the derivative z′ε(q) to zero, we have q = 1−ε

2 . Since zε(q) > 0 for q ∈ (0, 1 − ε),
it follows from (III.4) that z′ε(q) > 0 for q ∈

(
0, 1−ε

2

)
, and z′ε(q) < 0 for q ∈

(
1−ε
2 , 1 − ε).

Hence, zε is strictly monotonic increasing on
(
0, 1−ε

2

]
, and it is strictly monotonic decreasing

on
[
1−ε
2 , 1− ε).

Lemma III.2: Let α ∈ (0, 1). The function uα in (III.3) is strictly monotonic decreasing and
positive on (0,∞).

Proof: Differentiation of uα in (III.3) gives that for t > 0

u′α(t) =
tα−2 (tα − αt+ α− 1)

(tα − 1)2
. (III.5)

Note that d
dt (t

α − αt+ α− 1) = α(tα−1 − 1), so the derivative is zero at t = 1, it is positive
if t ∈ (0, 1), and it is negative if t ∈ (1,∞). This implies that tα − αt + α − 1 ≤ 0 for every
t ∈ (0,∞), and it is satisfied with equality if and only if t = 1. From (III.5), it follows that
uα is strictly monotonic decreasing on (0,∞). Since limt→∞ uα(t) = 0 (see (III.3)) and uα is
strictly monotonic decreasing on (0,∞) then it is positive on this interval.

From Lemmas III.1 and III.2, it follows that zε is strictly monotonic decreasing and positive
on
[
1−ε
2 , 1− ε

)
, and uα is strictly monotonic decreasing and positive on (0,∞). This therefore

implies that the composition uα
(
zε(·)

)
is strictly monotonic increasing and positive on the

interval
[
1−ε
2 , 1− ε

)
. Hence, from (III.1), since fα,ε(·) is expressed as a product of two positive

and strictly monotonic increasing functions on
[
1−ε
2 , 1 − ε

)
, also fα,ε has these properties on

this interval. This completes the first part of the proof where we show that fα,ε(·) is strictly
monotonic increasing and positive on

[
1−ε
2 , 1− ε).

We prove in the following that fα,ε(·) is also strictly monotonic increasing and positive on(
0, 1−ε

2 ]. For this purpose, the function fα,ε is expressed in the following alternative way:

fα,ε(q) =
1

1− ε
q−1

(
1− ε

q−1

1 + ε
q

)α 1−
(

1+ ε

q

1− ε

q−1

)α−1

1−
(
1− ε

1−q

1+ ε

q

)α
=

(
1− ε

1− q

)−1

rα
(
zε(q)

)
(III.6)

where zε is defined in (III.2), and

rα(t) ,
{

tα(1−t1−α)
1−tα , if t ∈ (0,∞) \ {1},

1−α
α , if t = 1.

(III.7)

Note that it follows from Lemma III.1 and (III.2) that

zε(q) ≤ zε

(
1− ε

2

)
=

(
1− ε

1 + ε

)2

< 1

so the composition rα
(
zε(·)

)
in (III.6) is independent of rα(1); the value of rα(1) is defined in

(III.7) to obtain the continuity of rα, which leads to the following lemma:
Lemma III.3: For α ∈ (0, 1), the function rα in (III.7) is strictly monotonic increasing and

positive on (0,∞).
Proof: A differentiation of rα in (III.7) gives

r′α(t) =
(1− α)tα + αtα−1 − 1

(tα − 1)2
(III.8)
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so the sign of r′α is the same as of (1− α)tα + αtα−1 − 1. Since α ∈ (0, 1), and
d

dt

(
(1− α)tα + αtα−1 − 1

)
= α(1− α)tα−2(t− 1)

it follows that the last derivative is negative for t ∈ (0, 1), zero at t = 1, and positive for
t ∈ (1,∞). This implies that t = 1 is a global minimum of the numerator of r′α (see (III.8)), so

(1− α)tα + α tα−1 − 1 ≥ 0, ∀ t ∈ (0,∞)

and equality holds if and only if t = 1. It therefore follows from (III.8) that r′α(t) > 0 for
t ∈ (0,∞) \ {1}, so rα(·) is strictly monotonic increasing on (0,∞). Since limt→0 rα(t) = 0,
the monotonicity of rα(·) on (0,∞) yields that it is positive on this interval.

From Lemmas III.1 and III.3, zε is strictly monotonic increasing and positive on
(
0, 1−ε

2

]
, and

rα is strictly monotonic increasing and positive on (0,∞). This implies that the composition
rα
(
zε(·)

)
is strictly monotonic increasing and positive on the interval

(
0, 1−ε

2

]
. From (III.6),

fα,ε is expressed as a product of two strictly increasing and positive functions on the interval(
0, 1−ε

2

]
, which implies that fα,ε(·) also has these properties on this interval. This completes the

second part of the proof where we show that fα,ε(·) is strictly monotonic increasing and positive
on
(
0, 1−ε

2

]
. The combination of the two parts of this proof completes the proof of Lemma 3.

APPENDIX IV
PROOF OF PROPOSITION 2

For α ∈ (0, 1) and ε ∈ (0, 1) are fixed parameters, solving (8) is equivalent to solving the
optimization problem

maximize pαq1−α + (1− p)α(1− q)1−α

subject to (IV.1){
p, q ∈ [0, 1],

|p− q| ≥ ε

where p, q are the optimization variables. The objective function of the optimization problem
(IV.1) is concave for α ∈ (0, 1), so this maximization problem is a convex optimization problem.
Since the problem is also strictly feasible at an interior point of the domain in (IV.1), Slater’s
condition yields that strong duality holds for this optimization problem (see [4, Section 5.2.3]).
Note that the replacement of p, q with 1− p and 1− q, respectively, does not affect the value of
the objective function and the satisfiability of the constraints in (IV.1). Consequently, it can be
assumed with loss of generality that p ≥ q; together with the inequality constraint |p− q| ≥ ε,
it gives that p− q ≥ ε. The Lagrangian of the dual problem is given by

L(p, q, λ) = pαq1−α + (1− p)α(1− q)1−α + λ(q − p+ ε)

and the KKT conditions lead to the following set of equations:
∂L
∂p = α

[
pα−1q1−α − (1− p)α−1(1− q)1−α

]
− λ = 0,

∂L
∂q = (1− α)

[
pαq−α − (1− p)α(1− q)−α

]
+ λ = 0,

∂L
∂ε = q − p+ ε = 0.

(IV.2)

Eliminating λ from the first equation in (IV.2), and substituting it into the second equation gives

(1− α)

[(p
q

)α
−
(1− p

1− q

)α]
+ α

[(p
q

)α−1
−
(1− p

1− q

)α−1
]
= 0. (IV.3)

From the third equation of (IV.2), Substituting p = q + ε into (IV.3), and re-arranging terms
gives the equation fα,ε(q) =

1−α
α , where fα,ε is the function in (14).



16

APPENDIX V
PROOF OF LEMMA 4

For α ∈ (0,∞) \ {1}, the following equalities hold:

D(Q||P2) +
α

1− α
·D(Q||P1) +

1

α− 1
D(Q||Qα)

=
∑
x

Q(x) log

(
Q(x)

P2(x)

)
+

α

1− α

∑
x

Q(x) log

(
Q(x)

P1(x)

)
+

1

α− 1

∑
x

Q(x) log

(
Q(x)

Qα(x)

)
= −

∑
x

Q(x) logP2(x)−
α

1− α

∑
x

Q(x) logP1(x)−
1

α− 1

∑
x

Q(x) logQα(x)

=
1

α− 1

∑
x

Q(x) log

(
Pα
1 (x)P

1−α
2 (x)

Qα(x)

)
(a)
=

1

α− 1

∑
x

Q(x) log

(∑
u

Pα
1 (u)P

1−α
2 (u)

)

=
1

α− 1
log

(∑
u

Pα
1 (u)P

1−α
2 (u)

)
= Dα(P1||P2)

where equality (a) follows from the expression for Qα in (18). This proves the identity in (17).

Acknowledgment
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divergence approach,” July 2014. [Online]. Available: http://arxiv.org/abs/1407.2417.
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