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Abstract

This paper is about exact error exponents for the two-user interference channel under the random

coding regime. Specifically, we first analyze the standard random coding ensemble, where the codebooks

are comprised of independently and identically distributed (i.i.d.) codewords. For this ensemble, we

focus on optimum decoding, which is in contrast to other, heuristic decoding rules that have been

used in the literature (e.g., joint typicality decoding, treating interference as noise, etc.). The fact that

the interfering signal is a codeword, and not an i.i.d. noise process, complicates the application of

conventional techniques of performance analysis of the optimum decoder. Also, unfortunately, these

conventional techniques result in loose bounds. Using analytical tools rooted in statistical physics, as

well as advanced union bounds, we derive exact single-letter formulas for the random coding error

exponents. We compare our results with the best known lower bound on the error exponent, and show

that our exponents can be strictly better. It turns out that the methods employed in this paper, can also

be used to analyze more complicated coding ensembles. Accordingly, as an example, using the same

techniques, we find exact formulas for the error exponent associated with the Han-Kobayashi (HK)

random coding ensemble, which is based on superposition coding.

Index Terms

Random coding, error exponent, interference channels, superposition coding, Han-Kobayashi scheme,

statistical physics, optimal decoding, multiuser communication.
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I. INTRODUCTION

A. Previous Work

The two-user interference channel (IFC) models a general scenario of communication between two

transmitters and two receivers (with no cooperation at either side), where each receiver decodes its

intended message from an observed signal, which is interfered by the other user, and corrupted by channel

noise. The information-theoretic analysis of this model has begun over more than four decades ago and

has recently witnessed a resurgence of interest. Most of the previous work on multiuser communication,

and specifically, on the IFC, has focused on obtaining inner and outer bounds to the capacity region

(see, for example, [1, Ch. II.7]). In a nutshell, the study of this kind of channel was started in [2], and

continued in [3], where simple inner and outer bounds to the capacity region were given. Then, in [4],

by using the well-known superposition coding technique, the inner bound of [3] was strictly improved.

In [5], various inner and outer bounds were obtained by transforming the IFC model into some multiple-

access or broadcast channel. Unfortunately, the capacity region for the general interference channel is

still unknown, although it has been solved for some very special cases [6, 7]. The best known inner

bound is the Han-Kobayashi (HK) region, established in [8], and which will also be considered in this

paper. Recently, it was shown [9] that the capacity region can be strictly larger than the HK region.

To our knowledge, [10, 11] are the only previous works which treat the error exponents for the IFC

under optimal decoding. Specifically, [10] derives lower bounds on error exponents of random codebooks

comprised of i.i.d. codewords uniformly distributed over a given type class, under maximum likelihood

(ML) decoding at each user, that is, optimal decoding. Contrary to the error exponent analysis of other

multiuser communication systems, such as the multiple access channel [12], the difficulty in analyzing

the error probability of the optimal decoder for the IFC is due to statistical dependencies induced by the

interfering signal. Indeed, for the IFC, the marginal channel determining each receiver’s ML decoding

rule is induced also by the codebook of the interfering user. This indeed extremely complicates the

analysis, mostly because the interfering signal is a codeword and not an i.i.d. process. Another important

observation, which was noticed in [10], is that the usual bounding techniques (e.g., Gallager’s bounding

technique) on the error probability fail to give tight results. To alleviate this problem, the authors of

[10], combined some of the ideas from Gallager’s bounding technique [13] to get an upper bound on

the average probability of decoding error under ML decoding, the method of types [14], and used the

method of distance enumerators, in the spirit of [15], which allows to avoid the use of Jensen’s inequality

in some steps.
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B. Contributions

The main purpose of this paper is to extend the study of achievability schemes to the more refined

analysis of error exponents achieved by the two users, similarly as in [10]. Specifically, we derive exact

single-letter expressions for error exponents associated with the average error probability, for the finite-

alphabet two-user IFC, under several random coding ensembles. The main contributions of this paper are

as follows:

• Similarly as in recent works (see, e.g., [12, 16-19] and references therein) on the analysis of error

exponents, we derive exact single-letter formulas for the random coding error exponents, and not merely

bounds as in [10]. For the standard random coding ensemble, considered in Subsection III-B, we analyze

the optimal decoder for each receiver, which is interested solely in its intended message. This is in

contrast to usual decoding techniques analyzed for the IFC, in which each receiver decodes, in addition

to its intended message, also part of (or all) the interfering codeword (that is, the other user’s message),

or other conventional achievability arguments [1, Ch. II.7], which are based on joint-typicality decoding,

with restrictions on the decoder (such as, “treat interference as noise” or to “decode the interference”).

This enables us to understand whether there is any significant degradation in performance due to the

sub-optimality of the decoder. Also, since [10] also analyzed the optimal decoder, we compared our

exact formulas with their lower bound, and show that our error exponent can be strictly better, which

implies that the bounding technique in [10] is not tight.

• As was mentioned earlier, in [10] only random codebooks comprised of i.i.d. codewords (uniformly

distributed over a type class) were considered. These ensembles are much simpler than the superposition

codebooks of [8]. Unfortunately, it very tedious to analyze superposition codebooks using the methods

of [10], and even if we do so, the tightness is questionable. In this paper, however, the new tools that

we have derived enable us to: first, as was mentioned before, obtain the exact error exponents, and

secondly, to analyze more involved random coding ensembles. Indeed, in Subsection III-C, we consider

the coding ensemble used in HK achievability scheme [8], and derive the respective error exponents. We

also discuss an ensemble of hierarchical/tree codes [20]. Finally, it is worthwhile to mention that the

analytical formulas of our error exponents are less tedious than the lower bound of [10].

• The exact analysis of the error exponents, carried out in this paper, turns out to be much more difficult

than in previous works on point-to-point and multiuser communication problems, see, e.g., [12, 16-19].

Specifically, we encounter two main difficulties in our analysis: First, typically, when analyzing the

probability of error, the first step is to apply the union bound. Usually, for point-to-point systems, under
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the random coding regime, the average error probability can be written as a union of pairwise independent

error events. Accordingly, in this case, it is well-known that the truncated union bound is exponentially

tight [21, Lemma A.2]. This is no longer the case, however, when considering multiuser systems, and in

particular, the IFC. For the IFC, the events comprising the union are strongly dependent, especially due

to the fact that we are considering the optimal decoder. Indeed, recall that the optimal decoder for the

first user, for example, declares that a certain message was transmitted if this message maximizes the

likelihood pertaining to the marginal channel. This marginal channel1 is the average of the actual channel

over the messages of the interfering user, and thus depends on the whole codebook of the that user.

Accordingly, the overall error event is the union of an exponential number of error events where each

event depends on the marginal channel, and thus on the codebook of the interfering user. To alleviate

this difficulty, following the ideas of [12], we derived new exponentially tight upper and lower bounds

on the probability of a union of events, which takes into account the dependencies among the events.

The second difficulty that we have encountered in our analysis is that in contrast to previous works,

applying the distance enumerator method [15] is not simple, due to the reason mentioned above. Using

some methods from large deviations theory, we were able to tackle this difficulty.

• We believe that by using the techniques and tools derived in this paper, other multiuser systems, such

as the IFC with mismatched decoding, the MAC [12], the broadcast channel, the relay channel, etc., and

accordingly, other coding schemes, such as binning [16], and hierarchical codes [20], can be analyzed.

The paper is organized as follows. In Section II, we establish notation conventions. In Section III, we

formalize the problem and assert the main theorems. Specifically, in Subsections III-B and III-C, we give

the resulting error exponents under the standard random coding ensemble and the HK coding ensemble,

respectively. Finally, Section IV is devoted to the proofs of our main results.

II. NOTATION CONVENTIONS

Throughout this paper, scalar random variables (RVs) will be denoted by capital letters, their sample

values will be denoted by the respective lower case letters, and their alphabets will be denoted by the

respective calligraphic letters, e.g. X , x, and X , respectively. A similar convention will apply to random

vectors of dimension n and their sample values, which will be denoted with the same symbols in the

boldface font. We also use the notation Xj
i (j > i) to designate the sequence of RVs (Xi, Xi+1, . . . , Xj).

The set of all n-vectors with components taking values in a certain finite alphabet, will be denoted as

1The precise definition will be given in the sequel.
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the same alphabet superscripted by n, e.g., X n. Generic channels will be usually denoted by the letters

P , Q, or W . We shall mainly consider joint distributions of two RVs (X,Y ) over the Cartesian product

of two finite alphabets X and Y . For brevity, we will denote any joint distribution, e.g. QXY , simply by

Q, the marginals will be denoted by QX and QY , and the conditional distributions will be denoted by

QX|Y and QY |X . The joint distribution induced by QX and QY |X will be denoted by QX ×QY |X , and

a similar notation will be used when the roles of X and Y are switched.

The expectation operator will be denoted by E {·}, and when we wish to make the dependence on the

underlying distribution Q clear, we denote it by EQ {·}. Information measures induced by the generic

joint distribution QXY , will be subscripted by Q, for example, IQ(X;Y ) will denote the corresponding

mutual information, etc. The divergence (or, Kullback-Liebler distance) between two probability measures

Q and P will be denoted by D(Q||P ). The weighted divergence between two channels, QY |X and PY |X ,

with weight PX , is defined as

D(QY |X ||PY |X |PX) ,
∑
x∈X

PX(x)
∑
y∈Y

QY |X(y|x) log
QY |X(y|x)
PY |X(y|x)

. (1)

For a given vector x, let Q̂x denote the empirical distribution, that is, the vector {Q̂x(x), x ∈ X},

where Q̂x(x) is the relative frequency of the letter x in the vector x. Let T (PX) denote the type class

associated with PX , that is, the set of all sequences x for which Q̂x = PX . Similarly, for a pair of

vectors (x,y), the empirical joint distribution will be denoted by Q̂xy , or simply by Q̂, for short. All

previously defined notation rules for regular distributions will also be used for empirical distributions.

The cardinality of a finite set A will be denoted by |A|, its complement will be denoted by Ac. The

probability of an event E will be denoted by Pr {E}. The indicator function of an event E will be denoted

by I {E}. For two sequences of positive numbers, {an} and {bn}, the notation an
·
= bn means that {an}

and {bn} are of the same exponential order, i.e., n−1 log an/bn → 0 as n → ∞, where logarithms are

defined with respect to (w.r.t.) the natural basis, that is, log (·) = ln (·). Finally, for a real number x, we

denote [x]+ , max {0, x}.

III. PROBLEM FORMULATION AND MAIN RESULTS

In this section, we present the model, the main results, and discuss them. We split this section into

two subsections, where in each one, we consider a different coding ensemble. We start with a simple

random coding ensemble where random codebooks comprised of i.i.d. codewords uniformly distributed

over a type class. It is well-known [11] that this coding scheme can be improved by using superposition

coding and introducing the notion of “private” and “common” messages (to be defined in the sequel).
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Accordingly, in the second subsection, we consider the HK coding scheme [8], and derive the exact error

exponents. Finally, we discuss other ensembles that can be analyzed using the same methods.

A. The IFC Model

Consider a two-user interference channel of two senders, two receivers, and a discrete memoryless

channel (DMC), defined by a set of single-letter transition probabilities, WY1Y2|X1X2
(y1y2|x1x2), with

finite input alphabets X1,X2 and finite output alphabets Y1,Y2. Here, each sender, k ∈ {1, 2}, wishes to

communicate an independent message mk at rate Rk, and each receiver, l ∈ {1, 2}, wishes to decode its

respective message. Specifically, a (M1 , enR1 ,M2 , enR2 , n) code Cn consists of:

• Two message sets M1 , {0, . . . ,M1 − 1} and M2 , {0, . . . ,M2 − 1} for the first and second users,

respectively.

• Two encoders, where for each k ∈ {1, 2}, the k-th encoder assigns a codeword xk,i to each message

i ∈ Mk.

• Two decoders, where each decoder l ∈ {1, 2} assigns an estimate m̂l to ml.

We assume that the message pair (m1,m2) is uniformly distributed over M1 ×M2. It is clear that the

optimal decoder of the first user, for this problem, is given by

m̂1 = arg max
i∈M1

P (y1|x1,i) (2)

= arg max
i∈M1

1

M2

M2−1∑
j=1

P (y1|x1,i,x2,j) (3)

where P (y1|x1,i,x2,j) is the marginal channel defined as

P (y1|x1,i,x2,j) ,
n∏

k=1

WY1|X1X2
(y1k|x1ikx2jk), (4)

and

WY1|X1X2
(y1k|x1ikx2jk) ,

∑
y2k∈Y2

WY1Y2|X1X2
(y1ky2k|x1ikx2jk). (5)

The optimal decoder of the second user is defined similarly. Accordingly, the probability of error for the

code Cn and for the first user, is defined as

Pe,1 (Cn) , Pr {m̂1 ̸= m1} , (6)

and similarly for the second user.
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B. The Ordinary Random Coding Ensemble

In this subsection, we consider the ordinary random coding ensemble: For each k ∈ {1, 2}, we select

independently Mk codewords xk,i, for i ∈ Mk, under the uniform distribution across the type class

T (PXk
), for a given distribution PXk

on Xk. Our goal is to assess the exact exponential rate of P̄e,1 ,
E {Pe,1 (Cn)}, where the average is over the code ensemble, that is,

E∗
1(R1, R2) , lim inf

n→∞

[
− 1

n
log P̄e,1

]
, (7)

and similarly for the second user. Before stating the main result, which is a single-letter formula of

E∗(R1, R2), we define some quantities. Given a joint distribution QX1X2Y1
over X1 × X2 × Y1, we

define:

f (QX1X2Y1
) , EQ

[
logWY1|X1X2

(Y1|X1X2)
]

(8)

=
∑

(x1,x2,y1)∈X1×X2×Y1

QX1X2Y1
(x1, x2, y) logWY1|X1X2

(y1|x1x2) , (9)

t0(QX1Y1
) , R2 + max

Q̂: Q̂X1Y1=QX1Y1 , IQ̂(X2;X1,Y1)≤R2

[
f(Q̂)− IQ̂(X2;X1, Y1)

]
, (10)

and

E1(Q̃X1X2Y1
, QX1X2Y1

) , min
Q̂: Q̂X1Y1=Q̃X1Y1 , Q̂∈L(Q̃X1X2Y1 ,QX1X2Y1 )

[
IQ̂(X2;X1, Y1)−R2

]
+

(11)

where

L(Q̃X1X2Y1
, QX1X2Y1

) ,
{
Q̂ : f(Q̃X1X2Y1

) ≤ max
[
f(Q̂), t0(QX1X2Y1

), f(QX1X2Y1
)
]
,

max
[
f(Q̂), t0(QX1X2Y1

), f(QX1X2Y1
)
]
− f(Q̂) ≤

[
R2 − IQ̂(X2;X1, Y1)

]
+

}
. (12)

Finally, we define:

Ê1(QX1X2Y1
, R2) , min

Q̃: Q̃X2Y1
=QX2Y1

[
IQ̃(X1;X2, Y1) + E1(Q̃X1X2Y1

, QX1X2Y1
)
]
, (13)

Ê2(QX1X2Y1
, R2) , min

Q̃: Q̃X2Y1=QX2Y1

E1(Q̃X1X2Y1
, QX1X2Y1

), (14)

and

E∗(QX1X2Y1
, R1, R2) , max

{[
Ê1(QX1X2Y1

, R2)−R1

]
+
, Ê2(QX1X2Y1

, R2)

}
. (15)

Our main result is the following.
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Theorem 1 Let R1 and R2 be given, and let E∗(R1, R2) be defined as in (7). Consider the ensemble of

fixed composition codes of types PX1
and PX2

, for the first and second users, respectively. For a discrete

memoryless two-user IFC, we have:

E∗
1(R1, R2) = min

QY1|X1X2 : QX1X2=PX1PX2

[
D(QY1|X1X2

||WY1|X1X2
|PX1

× PX2
) + E∗(QX1X2Y1

, R1, R2)
]
.

(16)

Several remarks on Theorem 1 are in order.

• Due to symmetry, the error exponent for the second user, that is, E∗
2(R1, R2) is simply obtained from

Theorem 1 by swapping the roles of X1, Y1, and R1, with X2, Y2, and R2, respectively.

• An immediate byproduct of Theorem 1 is finding the set of rates (R1, R2) for which E∗
1(R1, R2) > 0,

namely, for which the probability of error vanishes exponentially as n → ∞. It is not difficult to show

that this set is given by:

Rordinary,1 = {R1 < I (X1;Y1)} ∪ {{R1 +R2 < I (X1, X2;Y1)} ∩ {R1 < I (X1;Y1|X2)}} (17)

evaluated with PX1X2Y1
= PX1

× PX2
×WY1|X1X2

. Fig. 1 demonstrates a qualitative description of this

region. The interpretation is as follows: The corner point (I (X1;Y1|X2) , I (X2;Y1)) is achieved by first

decoding the interference (the second user), canceling it, and then decoding the first user. The sum-rate

constraint can be achieved by joint decoding the two users (similarly to MAC), and thus, obviously, also

by our optimal decoder. Finally, the region R1 < I (X1;Y1) and R2 ≥ I (X2;Y1|X1) means that we

decode the first user while treating the interference as noise. Evidently, from the perspective of the first

decoder, which is interested only in the message that is emitted from the first sender, the second sender

can use any rate, and thus there is no bound on R2 whenever R1 < I (X1;Y1). Note that this region

was also obtained in [10], but from a lower bound on the error exponent. Accordingly, this means that

according to [10], the achievable rate could be larger. Our results, however, show that one cannot do

better when standard random coding is applied. Notice that Rach,1 is well-known to be contained in the

HK region [11, 22].

• Existence of a single code: our result holds true on the average, where the averaging is done over

the random choice of codebooks. It can be shown (see, for example, [23, p. 2924]) that there exists

deterministic sequence of fixed composition codebooks of increasing block length n for which the same

asymptotic error performance can be achieved for both users simultaneously.

• On the proof: it is instructive to discuss (in some more detail than earlier) one of the main difficulties

in proving Theorem 1, which is customary to multiuser systems, such as the IFC. Without loss of
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R1

R2

I(X1;Y1|X2)I(X1;Y1)

I(X2;Y1|X1)

I(X2;Y1)

Rordinary,1

Fig. 1. Rate region Rach,1 for which E∗
1 (R1, R2) > 0.

generality, we assume throughout, that the transmitted codewords are x1,0 and x2,0. Accordingly, the

average probability of error associated with the decoder (3) is given by

P̄e,1 = Pr

M1−1∪
i=1


M2−1∑
j=0

P (Y 1|X1,i,X2,j) ≥
M2−1∑
j=0

P (Y 1|X1,0,X2,j)


 (18)

= E

Pr

M1−1∪
i=1


M2−1∑
j=0

P (Y 1|X1,i,X2,j) ≥
M2−1∑
j=0

P (Y 1|X1,0,X2,j)


∣∣∣∣∣∣F0

 (19)

where F0 , (X1,0,X2,0,Y 1). By the union bound and Shulman’s inequality [21, Lemma A.2], we know

that for a sequence of pairwise independent events, {Ai}Ni=1, the following holds

1

2
min

{
1,

N∑
i=1

Pr {Ai}

}
≤ Pr

{
N∪
i=1

Ai

}
≤ min

{
1,

N∑
i=1

Pr {Ai}

}
, (20)

which is a useful result when assessing the exponential behavior of such probabilities. Equation (20) is

one of the building blocks of tight exponential analysis of previously considered point-to-point systems

(see, e.g., [16-19], and many references therein). However, it is evident that in our case the various events

are not pairwise independent, and therefore this result cannot be applied directly. Indeed, since we are

interested in the optimal decoder, each event of the union in (19), depends on the whole codebook of the

second user. One may speculate that this problem can be tackled by conditioning on the codebook of the

second user, and then (20). However, the cost of this conditioning is a very complicated (if not intractable)

large deviations analysis of some quantities. To alleviate this problem, we derived new exponentially tight

upper and lower bounds on the probability of union of events, which takes into account the dependencies

among the events. This was done using the techniques of [12].
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Fig. 2. Comparison between our error exponent E∗
1 (R1, R2) and the lower bound ELB(R1, R2) of [10], as a function of R1

for two different values of R2 and fixed choices of PX1 and PX2 .

• Comparison with [10]: Similarly to [10], we present results for the binary Z-channel model defined

as follows: Y1 = X1 · X2 ⊕ Z and Y2 = X2, where X1, X2, Y1, Y2 ∈ {0, 1}, Z ∼ Bern(p), “·” is

multiplication, and “⊕” is modulo-2 addition. In the numerical calculations, we fix p = 0.01. Fig. 2

presents the exact error exponents under optimal decoding, derived in this paper, compared to the lower

bound ELB(R1, R2) of [10], as a function of R1, for different values of PX1
, PX2

, and R2. It can be

seen that our exponents can be strictly better than those of [10].

C. The Han-Kobayashi Coding Scheme

Consider the channel model of Subsection III-B. The best known inner bound on the capacity region is

achieved by the HK coding scheme [8]. The idea of this scheme is to split the message M1 into “private”

and “common” messages, M11 and M12 at rates R11 and R12, respectively, such that R1 = R11 +R12.

Similarly M2 is split into M21 and M22 at rates R21 and R22, respectively, such that R2 = R21 +R22.

The intuition behind this splitting is based on the receiver behavior at low and high signal-to-noise-ratio

(SNR). Specifically, it is well-known [1] that: (1) when the SNR is low, treating the interference as noise

is an optimal strategy, and (2) when the SNR is high, decoding and then canceling the interference is

Monday 9th March, 2015 DRAFT



11

the optimal strategy. Accordingly, the above splitting captures the general intermediate situation where

the first decoder, for example, is interested only in partial information from the second user, in addition

to its own intended message.

Next, we describe explicitly the coding strategy, which was used in [8]. Fix a distribution

PZ11
PZ12

PZ21
PZ22

PX1|Z11Z12
PX2|Z21Z22

, where the latter two conditional distributions represent deter-

ministic mappings. For each k, k′ ∈ {1, 2}, randomly and conditionally independently generate a

sequence zk,k′(mk,k′) under the uniform distribution across the type class T (PZkk′ ) for a given PZk,k′ .

To communicate a message pair (m11,m12), sender 1 transmits x1(z11,z12), and analogously for sender

2. All our results can be extended to the setting in which the codewords are generated conditionally on

a time-sharing sequence q. However, this leads to more complex notation. Thus, we focus primarily on

the case without time-sharing.

Let us now describe the operation of each receiver. Receiver k = 1, 2, recovers its intended message

Mk and the common message from the other sender (although it is not required to). This scheme is

illustrated in Fig. 3. Note that this decoding operation is the one that was used in [8], but there, the sub-

optimal non-unique simultaneous joint typical decoder was used. Here, in contrast, we use sub-optimal

ML decoding (the sub-optimality is due to the fact that our decoder recovers also the common message

from the other sender). It is important to emphasize here that it was shown in [22] that optimal decoding,

that is, the ML decoder that is interested only on its intended message, do not improves the achievable

region. In other words, the HK achievable region cannot be improved upon merely by using optimal

decoding. Nonetheless, in terms of error exponents, there could be an improvement.

We wish to find exact single-letter formulas for the error exponent, achieved by the HK encoding

functions, in conjunction with the above described decoding functions. To this end, note that by combining

the channel and the deterministic mappings as indicated by the dashed box in Fig. 3, the channel

(Z11, Z12, Z21, Z22) 7→ (Y1, Y2) is just a four-sender, two-receiver, DMC interference channel, with

virtual inputs. We assume that the message quadruple (M11,M12,M21,M22) is uniformly distributed

over M11×M12×M21×M22. Following the above descriptions, our decoder for this problem is given

by

(m̂11, m̂12, m̂21) = arg max
(i,j,k)∈M11×M12×M21

P (y1|z11,i, z12,j ,z21,k) (21)

= arg max
(i,j,k)∈M11×M12×M21

1

M22

M22−1∑
l=0

P (y1|z11,i, z12,j , z21,k, z22,l) . (22)
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P (Y 2

1
|X2

1
)

X1

X2

M11 7→ Z11

M12 7→ Z12

M21 7→ Z21

M22 7→ Z22

Y1 → (M̂11, M̂12, M̂21)

Y2 → (M̂12, M̂21, M̂22)

Fig. 3. Han-Kobayashi coding scheme.

Accordingly, the probability of error for the code Cn and for the first user, is defined as

Pe,1 (Cn) , Pr {(m̂11, m̂12, m̂21) ̸= (m11,m12,m21)} , (23)

and similarly for the second user. Our goal is to assess the exact exponential rate of P̄e,1 , E {Pe,1 (Cn)},

where the average is over the code ensemble, namely,

E∗
HK(R1, R2) , lim inf

n→∞

[
− 1

n
log P̄e,1

]
, (24)

and similarly for the second user.

We need some definitions. For simplicity of notation, in the following, we use the indexes {1, 2, 3, 4}

instead of {11, 12, 21, 22}, respectively. Let Z , (Z1, Z2, Z3), and U , {1, 2, 3, 12, 13, 23, 123}. For

u ∈ {1, 2, . . . , 7}, ZU(u) is a random vector consisting of the random variables which corresponds to

the indexes in U(u), for example, Z1 , ZU(1) = Z1, Z12 , ZU(4) = (Z1, Z2), Z123 , ZU(7) =

(Z1, Z2, Z3), and so on. Define:

f(QZ4
1Y1

) , EQ

[
logWY1|X1(Z1,Z2)X2(Z3,Z4)(Y1|X1X2)

]
. (25)

Also, let

r0(QZ3
1Y1

) , R22 + max
Q̂: Q̂Z3

1
Y1

=QZ3
1
Y1

, IQ̂(X2;X1,Y1)≤R22

[
f(Q̂)− IQ̂(Z4;Z

3
1 , Y1)

]
, (26)

and

E1(Q̃Z4
1Y1

, QZ4
1Y1

) , min
Q̂: Q̂Z3

1
Y1

=Q̃Z3
1
Y1

, Q̂∈D(Q̃Z4
1
Y1

,QZ4
1
Y1

)

[
IQ̂(Z4;Z

3
1 , Y1)−R22

]
+
, (27)
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where

D(Q̃Z4
1Y1

, QZ4
1Y1

) ,
{
Q̂ : max

[
f(Q̂), r0(QZ4

1Y1
), f(QZ4

1Y1
)
]
− f(Q̂) ≤

[
R22 − IQ̂(X2;X1, Y1)

]
+
,

f(Q̃Z4
1Y1

) ≤ max
[
f(Q̂), r0(QZ4

1Y1
), f(QZ4

1Y1
)
]}

. (28)

Define:

R1 , R11; R2 , R12; R3 , R21; R4 , R11 +R12;

R5 , R11 +R21; R6 , R12 +R21; R7 , R11 +R12 +R21. (29)

Now, let

Ê(1)(QZ4
1Y1

, R22) = min
Q̃: Q̃Z4

2
Y1

=QZ4
2
Y1

[
IQ̃(Z1;Z

4
2 , Y1) + E1(Q̃Z4

1Y1
, QZ4

1Y1
)
]
, (30)

Ê(2)(QZ4
1Y1

, R22) = min
Q̃: Q̃Z1Z4

3
Y1

=QZ1Z4
3
Y1

[
IQ̃(Z2;Z1, Z

4
3 , Y1) + E1(Q̃Z4

1Y1
, QZ4

1Y1
)
]
, (31)

Ê(3)(QZ4
1Y1

, R22) = min
Q̃: Q̃Z2

1
Z4Y1

=QZ2
1
Z4Y1

[
IQ̃(Z3;Z

2
1 , Z4, Y1) + E1(Q̃Z4

1Y1
, QZ4

1Y1
)
]
, (32)

and

Ê
(1)
8 (QZ4

1Y1
, R22) = min

Q̃: Q̃Z4
2
Y1

=QZ4
2
Y1

E1(Q̃Z4
1Y

, QZ4
1Y1

), (33)

Ê
(2)
8 (QZ4

1Y1
, R22) = min

Q̃: Q̃Z1Z4
3
Y1

=QZ1Z4
3
Y1

E1(Q̃Z4
1Y

, QZ4
1Y1

), (34)

Ê
(3)
8 (QZ4

1Y1
, R22) = min

Q̃: Q̃Z2
1
Z4Y1

=QZ2
1
Z4Y1

E1(Q̃Z4
1Y

, QZ4
1Y1

). (35)

For u ∈ {1, 2, 4}, let

Ê(4)
u (QZ4

1Y1
, R22) = min

Q̃: Q̃Z4
3
Y1

=QZ4
3
Y1

[
IQ̃(ZU(u);Z

4
3 , Y1|Z12\U(u)) + E1(Q̃Z4

1Y1
, QZ4

1Y
)
]
, (36)

Ê
(4)
8 (QZ4

1Y1
, R22) = min

Q̃: Q̃Z4
3
Y1

=QZ4
3
Y1

E1(Q̃Z4
1Y

, QZ4
1Y1

). (37)

For u ∈ {1, 3, 5}:

Ê(5)
u (QZ4

1Y1
, R22) = min

Q̃: Q̃Z2Z4Y1=QZ2Z4Y1

[
IQ̃(ZU(u);Z2, Z4, Y1|Z13\U(u)) + E1(Q̃Z4

1Y1
, QZ4

1Y1
)
]
, (38)

Ê
(5)
8 (QZ4

1Y1
, R22) = min

Q̃: Q̃Z2Z4Y1
=QZ2Z4Y1

E1(Q̃Z4
1Y1

, QZ4
1Y1

). (39)

For u ∈ {2, 3, 6}:

Ê(5)
u (QZ4

1Y1
, R22) = min

Q̃: Q̃Z1Z4Y1=QZ1Z4Y1

[
IQ̃(ZU(u);Z1, Z4, Y1|Z13\U(u)) + E1(Q̃Z4

1Y1
, QZ4

1Y1
)
]
, (40)
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Ê
(6)
8 (QZ4

1Y1
, R22) = min

Q̃: Q̃Z1Z4Y1=QZ1Z4Y1

E1(Q̃Z4
1Y1

, QZ4
1Y1

). (41)

For u ∈ {1, 2, . . . , 7}:

Ê(7)
u (QZ4

1Y1
, R22) = min

Q̃: Q̃Z4Y1=QZ4Y1

[
IQ̃(ZU(u);Z4, Y1|Z123\U(u)) + E1(Q̃Z4

1Y1
, QZ4

1Y1
)
]
, (42)

Ê
(7)
8 (QZ4

1Y1
, R22) = min

Q̃: Q̃Z4Y1=QZ4Y1

E1(Q̃Z4
1Y1

, QZ4
1Y1

). (43)

Finally, for u ∈ {1, 2, 3}, let

E
(u)
HK (QZ4

1Y1
) , max

{[
Ê(u)(QZ4

1Y1
, R22)−Ru

]
+
, Ê

(u)
8 (QZ4

1Y1
, R22)

}
, (44)

E
(4)
HK(QZ4

1Y1
) , max

{
max

u∈{1,2,4}

[
Ê(4)

u (QZ4
1Y1

, R22)−Ru

]
+
, Ê

(4)
8 (QZ4

1Y1
, R22)

}
, (45)

E
(5)
HK(QZ4

1Y1
) , max

{
max

u∈{1,3,5}

[
Ê(5)

u (QZ4
1Y1

, R22)−Ru

]
+
, Ê

(5)
8 (QZ4

1Y1
, R22)

}
, (46)

E
(6)
HK(QZ4

1Y1
) , max

{
max

u∈{2,3,6}

[
Ê(6)

u (QZ4
1Y1

, R22)−Ru

]
+
, Ê

(6)
8 (QZ4

1Y1
, R22)

}
, (47)

E
(7)
HK(QZ4

1Y1
) , max

{
max

u∈{1:7}

[
Ê(7)

u (QZ4
1Y1

, R22)−Ru

]
+
, Ê

(7)
8 (QZ4

1Y1
, R22)

}
. (48)

Our second main result is the following.

Theorem 2 Let R11, R12, R21 and R22 be given such that R1 = R11+R12 and R2 = R21+R22, and let

E∗
HK(R1, R2) be defined as in (24). Consider the HK encoding scheme described above. For a discrete

memoryless two-user IFC, we have:

E∗
HK(R1, R2) = min

QY1|Z4
1
: QZ4

1
=PZ4

1

[
D(QY1|Z4

1
||WY1|Z4

1
|PZ4

1
) + min

u∈{1:7}
E

(u)
HK (QZ4

1Y1
)

]
. (49)

Several remarks on Theorem 2 are in order.

• As before, an immediate byproduct of Theorem 2 is finding the set of rates (R1, R2) for which

E∗
1(R1, R2) > 0, namely, for which the probability of error vanishes exponentially as n → ∞. It can be

shown that this set is given by the HK region, that is,

R11 ≤ I(Z1;Y1|Z2, Z3), (50a)

R12 ≤ I(Z2;Y1|Z1, Z3), (50b)

R21 ≤ I(Z3;Y1|Z1, Z2), (50c)

R11 +R12 ≤ I(Z1, Z2;Y1|Z3), (50d)

R11 +R21 ≤ I(Z1, Z3;Y1|Z2), (50e)
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R12 +R21 ≤ I(Z2, Z3;Y1|Z1), (50f)

R11 +R12 +R21 ≤ I(Z1, Z2, Z3;Y1), (50g)

evaluated with PZ4
1Y1

= PZ1
PZ2

PZ3
PZ4

WY1|X1(Z1,Z2)X2(Z3,Z4), and similarly for the second user. As was

mentioned earlier, it is possible to introduce a time-sharing sequence q, and accordingly, (50) remains

almost the same, but with some time-sharing random variable Q, appearing at the conditioning of each the

above mutual information terms. Also, it can be shown that the above region includes Rordinary,1, and thus,

the HK ensemble is obviously better than the standard random coding ensemble described in Subsection

III-B. Finally, it can be seen that using the ML decoder instead of the non-unique simultaneous joint

typical decoder [8] cannot improve the achievable region (but will certainly improve the error exponent).

This result is consistent with [22], where this fact was implied from another point of view.

• Using the same techniques and tools derived in this paper, we can consider other random coding

ensembles. For example, we can analyze the error exponents resulting from the hierarchical code

ensemble. Specifically, in this ensemble, the message M1 is split into a common and private messages

M11, M12 at rates R11 and R12, respectively, such that R1 = R11 + R12. Similarly M2 is split into a

common and private messages M21, M22 at rates R21 and R22, respectively, such that R2 = R21 +R22.

Then, we first randomly draw a rate R11 codebook of block length n according to a given distribution.

Then, for each such codeword, we randomly and conditionally independently generate a rate R12 codebook

of block length n. In other words, the code has a tree structure with two levels, where the first serves

for “cloud centers”, and the second for the “satellites”. We do the same for the second user. Under this

ensemble, we can analyze the optimal decoder. Note, however, that this ensemble is different from the

product ensemble considered in Theorem 2. Indeed, while for the former for each first stage codeword

(cloud center) we independently draw a new codebook (satellites), for the latter, for each cloud center we

have the same satellite. Loosely speaking, this means that the product ensemble is “less random”. From

the point of view of achievable region, however, the hierarchical ensemble is equivalent to the product

ensemble used in HK scheme [1, Ch. II.7].

• In Theorem 2 we assumed the sub-optimal decoder given in (22). Indeed, the optimal decoder for our

problem is given by:

(m̂11, m̂12) = argmax
i,j

P (y1|z11,i, z12,j) (51)

= argmax
i,j

1

M21M22

M21−1∑
k=0

M22−1∑
l=0

P (y1|z11,i, z12,j ,z21,k, z22,l) . (52)
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Unfortunately, it turns out that analyzing the HK scheme (in conjunction with (52)) is much more difficult,

and requires some more delicate tools from large deviations theory. Specifically, the main difficulty

in the derivations, is to analyze the large deviations behavior of a two-dimensional sum (due to the

double summation in (52)) involving binomial random variables which are strongly dependent (contrary

to the standard one-dimensional version, see, e.g., [16, p. 6027-6028]). Nonetheless, we note that for

the hierarchical code ensemble described above, the optimal decoder can be analyzed. Indeed, for this

ensemble, it is clear that the optimal decoder is given by

(m̂11, m̂12) = argmax
i,j

P (y1|x1(i, j)) (53)

= argmax
i,j

1

M21M22

M21−1∑
k=0

M22−1∑
l=0

P (y1|x1(i, j),x2(k, l)) (54)

where x1(i, j) , f1(x
′
1(i),x

′′
1(i, j)) and x2(i, j) , f2(x

′
2(i),x

′′
2(i, j)) due to the hierarchical structure.

Now, while here too, we will deal with two-dimensional summation, the summands will be independent,

given the cloud centers codebook, and the proof can be carried out smoothly.

IV. PROOFS

A. Proof of Theorem 1:

Without loss of generality, we assume throughout, that the transmitted codewords are x1,0 and x2,0, and

due to the fact that we analyze the first decoder, for convenience, we use y instead of y1. Accordingly,

the average probability of error associated with the optimal decoder (3), is given by

Pe = Pr

M1−1∪
i=1


M2−1∑
j=0

P (Y |X1,i,X2,j) ≥
M2−1∑
j=0

P (Y |X1,0,X2,j)


 (55)

= E

Pr

M1−1∪
i=1


M2−1∑
j=0

P (Y |X1,i,X2,j) ≥
M2−1∑
j=0

P (Y |X1,0,X2,j)


∣∣∣∣∣∣F0

 (56)

where F0 , (X1,0,X2,0,Y ). In the following, we propose new upper and lower bounds on the probability

of a union of events, which are tight in the exponential scale, and suitable for some structured dependency

between the events, as above. Before doing that, in order to give some motivation for these new bounds,

we first rewrite (55) in another (equivalent) form. Specifically, we express (56) in terms of the joint types

of (X1,0,X2,0,Y ) and {(Y ,X1,i,X2,j)}i,j . First, for a given joint distribution QX1X2Y of (x1,x2,y),

we let

f (QX1X2Y ) ,
1

n
logP (y|x1,x2) (57)
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= EQ

[
logWY |X1X2

(Y |X1X2)
]
. (58)

Now, for a given joint type QX1,0X2,0Y of the random vectors (X1,0,X2,0,Y ), we define the set:

TI

(
QX1,0X2,0Y

)
,
{
Q̃0

X1X2,0Y ∈ S0,

({
Q̃k

X1X2Y

}M2−1

k=1
,
{
Q̂k

X1,0X2Y

}M2−1

k=1

)
∈ S1 :

e
nf(Q̃0

X1X2,0Y )
+

M2−1∑
k=1

[
enf(Q̃

k
X1X2Y ) − enf(Q̂

k
X1X2Y )

]
≥ enf(QX1,0X2,0Y )

}
(59)

where

S0(QX1,0X2,0Y ) ,
{
Q̃0

X1X2,0Y : Q̃0
X1

= PX1
, Q̃0

X2
= PX2

, Q̃0
X2,0Y = QX2,0Y

}
, (60)

and

S1(QX1,0X2,0Y ) ,
{{

Q̃k
X1X2Y

}M2−1

k=1
,
{
Q̂k

X1X2Y

}M2−1

k=1
: Q̃k

X1
= PX1

, Q̃k
X2

= PX2
, Q̃k

Y = QY ,

Q̂k
X1,0

= PX1
, Q̂k

X2
= PX2

, Q̂k
X1,0Y = QX1,0Y , ∀1 ≤ k ≤ M2 − 1

Q̃k
X2Y = Q̂k

X2Y , Q̃
k
X1Y = Q̃m

X1Y , ∀k,m
}
. (61)

The set TI(QX1,0X2,0Y ) is the set of all possible types of (X1,i, C2), where C2 denotes the codebook of

the second user, which lead to a decoding error when (X1,0,X2,0,Y ) ∈ T (QX1,0X2,0Y ) is transmitted.

The various marginal constraints in (60) and (61) arise from the fact that we are assuming constant-

composition random coding and, of course, fixed marginals due to the given fixed joint distribution

QX1,0X2,0Y . Finally, the constraint:

e
nf(Q̃0

X1X2,0Y )
+

M2−1∑
k=1

[
enf(Q̃

k
X1X2Y ) − enf(Q̂

k
X1X2Y )

]
≥ enf(QX1,0X2,0Y ) (62)

in (59), represents a decoding error event, that is, it holds if and only if

M2−1∑
j=0

P (y|x1,i,x2,j) ≥
M2−1∑
j=0

P (y|x1,0,x2,j) (63)

for (x1,0,x2,0,y) ∈ T (QX1,0X2,0Y ), (x1,i,x2,0,y) ∈ T (Q̃0
X1X2,0Y

),{
(x1,i,x2,j ,y) ∈ T (Q̃j

X1X2Y
)
}M2−1

j=1
, and

{
(x1,0,x2,j ,y) ∈ T (Q̂j

X1,0X2Y
)
}M2−1

j=1
. Now, with these

definitions, fixing QX1,0X2,0Y , and letting (x1,0,x2,0,y) be an arbitrary triplet of sequences such that

(x1,0,x2,0,y) ∈ T (QX1,0X2,0Y ), it follows, by definition, that the error event

M1−1∪
i=1


M2−1∑
j=0

P (Y |X1,i,X2,j) ≥
M2−1∑
j=0

P (Y |X1,0,X2,j)

 (64)
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can be rewritten, in terms of types, as follows:

M1−1∪
i=1

∪
{Q̃j

X1X2Y ,Q̂j
X1X2Y }j

∈TI(QX1,0X2,0Y )


(X1,i,x2,0,y) ∈ T (Q̃0

X1X2,0Y
),{

(X1,i,X2,j ,y) ∈ T (Q̃j
X1X2Y

)
}M2−1

j=1
,{

(x1,0,X2,j ,y) ∈ T (Q̂j
X1,0X2Y

)
}M2−1

j=1


. (65)

We wish to analyze the probability of the event in (65), conditioned on F0. Note that the inner union in

(65) is over vectors of types (an exponential number of them). Finally, for the sake of convenience, we

simplify the notations of (65), and write it equivalently as

M1−1∪
i=1

∪
l


X1,i ∈ Al,0,

(X1,i,X2,j) ∈ Al,j , for j = 1, . . . ,M2 − 1,

X2,j ∈ Ãl,j , for j = 1, . . . ,M2 − 1

 (66)

where, again, the index “l” in the inner union runs over the combinations of types (namely, l ={
Q̃j

X1X2Y
, Q̂j

X1X2Y

}
j
) that belong to TI(QX1,0X2,0Y ), and the various sets

{
Al,j , Ãl,j

}
l,j

correspond

to the typical sets in (65) (recall that (x1,0,x2,0,y) are given at this stage). Next, following the ideas

of [12], we provide exponentially tight lower and upper bounds on a generic probability which has the

form of (66). The proof of this Lemma is relegated to Appendix A.

Lemma 1 Let {V1 (i)}L1

i=1 , V2, V3, . . . , VK be independent sequences of independently and identically

distributed (i.i.d.) random variables on the alphabets V1 × V2 × . . . × VK , respectively, with V1 (i) ∼

PV1
, V2 ∼ PV2

, . . . , VK ∼ PVK
. Fix a sequence of sets {Ai,1}Ni=1 , {Ai,2}Ni=1 , . . . , {Ai,K−1}Ni=1, where

Ai,j ⊆ V1 ×Vj+1, for 1 ≤ j ≤ K − 1 and for all 1 ≤ i ≤ N . Also, fix a set {Ai,0}Ni=1 where Ai,0 ⊆ V1

for all 1 ≤ i ≤ N , and another sequence of sets {Gi,2}Ni=1 , {Gi,3}Ni=1 , . . . , {Gi,K}Ni=1, where Gi,j ⊆ Vj ,

for 2 ≤ j ≤ K and for all 1 ≤ i ≤ N . Define

Bm,1,

v1 : v1 ∈ Al,0,

K−1∩
j=1

(v1, vj+1) ∈ Al,j ,

K∩
j=2

vj ∈ Gl,j for some {vj}Kj=2

 , (67)

and

Bm,2,

{vj}Kj=2 : v1 ∈ Al,0,

K−1∩
j=1

(v1, vj+1) ∈ Al,j ,

K∩
j=2

vj ∈ Gl,j for some v1

 , (68)

for m = 1, 2, . . . , N . Then,

1) A general upper bound is given by

Pr

{∪
i

{
N∪

m=1

{
V1(i) ∈ Al,0,

K−1∩
k=1

(V1(i), Vk+1) ∈ Am,k,

K∩
k=2

Vk ∈ Gm,k

}}}
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≤ min

{
1, L1 Pr

{
N∪

m=1

{V1 ∈ Bm,1}

}
,Pr

{
N∪

m=1

{
{Vj}Kk=2 ∈ Bm,2

}}
,

L1 Pr

{
N∪

m=1

{
V1 ∈ Am,0,

K−1∩
k=1

(V1, Vk+1) ∈ Am,k,

K∩
k=2

Vk ∈ Gm,k

}}}
(69)

with (V1, . . . , VK) ∼ PV1
· · · × PVK

.

2) If {V1 (i)}L1

i=1 , V2, V3, . . . , VK are all independent, {V1 (i)}L1

i=1 is a sequence of pairwise independent

and identically distributed random variables, and

Pr

{
N∪

m=1

{
v1 ∈ Al,0,

K−1∩
k=1

(v1, Vk+1) ∈ Am,k,

K∩
k=2

Vk ∈ Gm,k

}}
(70)

is the same for all v1 ∈ B1,1, and for all v1 ∈ B2,1, and so on till v1 ∈ BN,1, but may be different

for different Bl,1, and

Pr

{
N∪

m=1

{
V1 ∈ Al,0,

K−1∩
k=1

(V1, vk+1) ∈ Am,k,

K∩
k=2

vk ∈ Gm,k

}}
(71)

is the same for all {vj}Kj=2 ∈ B1,2, and so on till {vj}Kj=2 ∈ BN,2, but may be different for different

Bl,2, then

Pr

{∪
i

{
N∪

m=1

{
V1(i) ∈ Al,0,

K−1∩
k=1

(V1(i), Vk+1) ∈ Am,k,

K∩
k=2

Vk ∈ Gm,k

}}}

≥ 1

4
min

{
1, L1 Pr

{
N∪

m=1

{V1 ∈ Bm,1}

}
,Pr

{
N∪

m=1

{
{Vj}Kk=2 ∈ Bm,2

}}
,

L1 Pr

{
N∪

m=1

{
V1 ∈ Am,0,

K−1∩
k=1

(V1, Vk+1) ∈ Am,k,

K∩
k=2

Vk ∈ Gm,k

}}}
. (72)

Remark 1 Note that the number of sequences, K, can be arbitrarily large, and in particular, exponential,

without affecting the tightness of the lower and upper bounds. Also, note that the above lemma can be

easily generalized to the case where we have random sequences, {V2 (i)}L2

i=1 , . . . , {VK (i)}L2

i=1, rather

than single random variables V2, . . . , VK , respectively.

Next, we apply Lemma 1 to the problem at hand. To this end, we choose the following parameters in

accordance to the notations used in Lemma 1. Recall that we deal with:

M1−1∪
i=1

∪
l


X1,i ∈ Al,0, (X1,i,X2,1) ∈ Al,1, . . . , (X1,i,X2,M2−1) ∈ Al,M2−1

X2,1 ∈ Ãl,1, . . . ,X2,M2−1 ∈ Ãl,M2−1

 , (73)
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and in Lemma 1 we have considered:

∪
i

N∪
m=1


V1(i) ∈ Am,0, (V1(i), V2) ∈ Am,1, . . . , (V1(i), VK) ∈ Am,K−1

V2 ∈ Gm,2, . . . , VK ∈ Gm,K

 . (74)

Thus, comparing (73) and (74), we readily notice to the following parallels:

• The numbers of events in the unions over i is L1 = M1 − 1. Also, we have K = M2 independent

random vectors, where V1 (i) = X1,i, Vl(1) = X2,l for 2 ≤ l ≤ M2 − 1. Again, since J = 1, we have

fixed the index of Vl(1) to 1.

• We have:

1) Am,i = Al,i, for 0 ≤ i ≤ M2 − 1,

2) Gm,i = Ãl,i−1, for 2 ≤ i ≤ M2.

These sets correspond to each of the typical sets T (Q̃0
X1X2,0Y

),
{
T (Q̃k

X1X2Y
)
}M2−1

k=1
,{

T (Q̂k
X1,0X2Y

)
}M2−1

k=1
. Also, the union over m corresponds to a union over l, which as was

mentioned before, is actually a union over a vector of types.

• According to (67) and (68) we need to define Bm,1 = B1(Q̃
0
X1X2,0Y

,
{
Q̃j

X1X2Y
, Q̂j

X1X2Y

}
j
) and Bm,2 =

B2(Q̃
0
X1X2,0Y

,
{
Q̃j

X1X2Y
, Q̂j

X1X2Y

}
j
). Accordingly, by the definitions given in (67) and (68), we get

Bm,1 =


(x1,x2,0,y) ∈ T (Q̃0

X1X2,0Y
),

x1 :
{
(x1,x2,j ,y) ∈ T (Q̃j

X1X2Y
)
}M2−1

j=1
,{

(x1,0,x2,j ,y) ∈ T (Q̂j
X1,0X2Y

)
}M2−1

j=1
for some {x2,j}j


, (75)

and

Bm,2 =


(x1,x2,0,y) ∈ T (Q̃0

X1X2,0Y
),

{x2,j}j≥1 :
{
(x1,x2,j ,y) ∈ T (Q̃j

X1X2Y
)
}M2−1

j=1
,{

(x1,0,x2,j ,y) ∈ T (Q̂j
X1,0X2Y

)
}M2−1

j=1
for some x1


. (76)

Finally, note that the requirements (70) and (71) in Lemma 1 hold. For example, the requirement in

(70) means that the probability

Pr


∪

{Q̃j
X1X2Y ,Q̂j

X1X2Y }j
∈TI(QX1,0X2,0Y )


(x1,1,x2,0,y) ∈ T (Q̃0

X1X2,0Y
),{

(x1,1,X2,j ,y) ∈ T (Q̃j
X1X2Y

)
}M2−1

j=1
,{

(x1,0,X2,j ,y) ∈ T (Q̂j
X1,0X2Y

)
}M2−1

j=1




(77)
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is constant over Bm,1 for every m (but may be different for different m). This is true because everything

is expressed in terms of types. Indeed, if we fix m, then over Bm,1, the first and third constraints in

the event of (77) are held fixed, and the second constraint is also independent of the specific sequence

x1,1 from Bm,1 because the joint empirical distribution of (x1,1,y) is fixed to Q̃0
X1Y

, and this type is

consistent with the distribution Q̃j
X1X2Y

, which have, by construction, the same marginal of (x1,1,y).

Due to the same reasoning, the probability

Pr


∪

{Q̃j
X1X2Y ,Q̂j

X1X2Y }j
∈TI(QX1,0X2,0Y )


(X1,1,x2,0,y) ∈ T (Q̃0

X1X2,0Y
),{

(X1,1,x2,j ,y) ∈ T (Q̃j
X1X2Y

)
}M2−1

j=1
,{

(x1,0,x2,j ,y) ∈ T (Q̂j
X1,0X2Y

)
}M2−1

j=1




(78)

is constant over Bm,2 for every m (but may be different for different m).

Thus, invoking Lemma 1, we may write

P̃e , Pr

M1−1∪
i=1


M2−1∑
j=0

P (Y |X1,i,X2,j) ≥
M2−1∑
j=0

P (Y |X1,0,X2,j)


∣∣∣∣∣∣F0

 (79)

·
= min

1,M1 · Pr

 ∪
{Q̃j

X1X2Y ,Q̂j
X1X2Y }j

∈TI(QX1,0X2,0Y )

X1,1 ∈ B1

(
Q̃0

X1X2,0Y , (Q̃
j
X1X2Y

, Q̂j
X1X2Y

)j)
) ,

Pr

 ∪
{Q̃j

X1X2Y ,Q̂j
X1X2Y }j

∈TI(QX1,0X2,0Y )

{X2,j}j≥1 ∈ B2

(
Q̃0

X1X2,0Y , (Q̃
j
X1X2Y

, Q̂j
X1X2Y

)j)
) ,

M1 · Pr


∪

{Q̃j
X1X2Y ,Q̂j

X1X2Y }j
∈TI(QX1,0X2,0Y )


(X1,1,x2,0,y) ∈ T (Q̃0

X1X2,0Y
),{

(X1,1,X2,j ,y) ∈ T (Q̃j
X1X2Y

)
}M2−1

j=1
,{

(x1,0,X2,j ,y) ∈ T (Q̂j
X1,0X2Y

)
}M2−1

j=1






(80)

where each of the probabilities at the r.h.s. of (80) are conditioned on F0. Therefore, we were able

to simplify the problematic union over the codebook of the first user. Note, however, that we cannot

(directly) apply here the method of types due to the fact that the union is over an exponential number

of types, and thus a more refined analysis is needed. We start by analyzing the last term at the r.h.s. of

(80). To this end, we will invoke the type enumeration method, but first, the main observation here is that
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similarly to the passage from (64) to (65), the last term at the r.h.s. of (80) can be rewritten as follows:

Pr


∪

{Q̃j
X1X2Y ,Q̂j

X1X2Y }j
∈TI(QX1,0X2,0Y )


(X1,1,x2,0,y) ∈ T (Q̃0

X1X2,0Y
),{

(X1,1,X2,j ,y) ∈ T (Q̃j
X1X2Y

)
}M2−1

j=1
,{

(x1,0,X2,j ,y) ∈ T (Q̂j
X1,0X2Y

)
}M2−1

j=1




= Pr


M2−1∑
j=0

P (Y |X1,1,X2,j) ≥
M2−1∑
j=0

P (Y |X1,0,X2,j)


∣∣∣∣∣∣F0

 (81)

= E

Pr


M2−1∑
j=0

P (Y |X1,1,X2,j) ≥
M2−1∑
j=0

P (Y |X1,0,X2,j)


∣∣∣∣∣∣F0,X1,1

∣∣∣∣∣∣F0

 . (82)

That is, we returned back to the structure of the original probability, but now, without the union over the

codebook of the first user. Note that conditioning on the random vector X1,1 in (82), is due to the fact

that X1,1 is common to all the summands in the inner summation over the codebook of the second user.

We next evaluate the exponential behavior of the probability in (82). For a given realization of Y = y,

X1,0 = x1,0, X1,1 = x1,1, and X2,0 = x2,0, let us define

s , 1

n
logP (y|x1,0,x2,0) , (83)

and

r , 1

n
logP (y|x1,1,x2,0) . (84)

For a given (y,x1,0,x1,1,x2,0), and a given joint probability distribution QX1X2Y on X1 × X2 × Y , let

N1 (QX1X2Y ) designate the number of codewords {X2,j}j (excluding x2,0) whose conditional empirical

distribution with y and x1,1 is QX1X2Y , that is,

N1 (QX1X2Y ) ,
M2−1∑
j=1

I {(x1,1,X2,j ,y) ∈ T (QX1X2Y )} , (85)

and let N2 (QX1X2Y ) designate the number of codewords {X2,j}j (excluding x2,0) whose conditional

empirical distribution with y and x1,0 is QX1X2Y , that is

N2 (QX1X2Y ) ,
M2−1∑
j=1

I {(x1,0,X2,j ,y) ∈ T (QX1X2Y )} . (86)

Also, recall that

f (QX1X2Y ) =
1

n
logP (y|x1,x2) (87)

=
∑

(x1,x2,y)∈X1×X2×Y

QX1X2Y (x1, x2, y) logWY |X1X2
(y|x1x2) (88)
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where QX1X2Y is understood to be the joint empirical distribution of (x1,x2,y) ∈ X n
1 ×X n

2 ×Yn. Thus,

in terms of the above notations, we may write:
M2−1∑
j=0

P (y|x1,1,X2,j) = enr +
∑

QX2|X1Y ∈S(QX1Y )

N1 (QX1X2Y ) e
nf(QX1X2Y ) (89)

, enr +N1(QX1Y ). (90)

where for a given QX1Y , S(QX1Y ) is defined as the set of all distributions
{
QX2|X1Y

}
, such that∑

(x1,y)∈X1×Y QX1Y (x1, y)QX2|X1Y (x2|x1, y) = PX2
(x2) for all x2 ∈ X2. Similarly,

M2−1∑
j=0

P (y|x1,0,X2,j) = ens +
∑

QX2|X1,0Y ∈S(QX1,0Y )

N2

(
QX1,0X2Y

)
enf(QX1,0X2Y ) (91)

, ens +N2(QX1,0Y ). (92)

where for a given QX1,0Y , S(QX1,0Y ) is defined as the set of all distributions
{
QX2|X1,0Y

}
, such that∑

(x1,y)∈X1×Y QX1,0Y (x1, y)QX2|X1,0Y (x2|x1, y) = PX2
(x2) for all x2 ∈ X2. For simplicity of notation,

in the following, we use Q and Q̃ to denote QX1X2Y and QX1,0X2Y , respectively. Therefore, with these

definitions in mind, we wish to calculate (given (F0,X1,1))

Pr

M2−1∑
j=0

P (Y |x1,1,X2,j) ≥
M2−1∑
j=0

P (Y |x1,0,X2,j)

 = Pr
[
N1(QX1Y )−N2(QX1,0Y ) ≥ ens − enr

]
.

(93)

Let ε > 0 be arbitrarily small. Then,

Pr
[
N1(QX1Y )−N2(QX1,0Y ) ≥ ens − enr

]
=

∑
i

Pr
{
eniε ≤ N2(QX1,0Y ) ≤ en(i+1)ε,N1(QX1Y )−N2(QX1,0Y ) ≥ ens − enr

}
≤

∑
i

Pr
{
eniε ≤ N2(QX1,0Y ) ≤ e(i+1)ε,N1(QX1Y ) ≥ eniε + ens − enr

}
(94)

=
∑
i

Pr
{
eniε ≤ N2(QX1,0Y ) ≤ en(i+1)ε

}
× Pr

{
N1(QX1Y ) ≥ eniε + ens − enr

∣∣ eniε ≤ N2(QX1,0Y ) ≤ en(i+1)ε
}

(95)

where i ranges from 1
nϵ logP (y|x1,0,x2,0) to R2/ε. It is not difficult to show that can be show that (see,

e.g., [16, p. 6028]):

Pr
{
ent ≤ N2(QX1,0Y ) ≤ en(t+ε)

}
·
=


0 t < t0(QX1,0Y )− ε

exp
[
−nE(t,QX1,0Y )

]
t ≥ t0(QX1,0Y )

(96)
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where

t0(QX1,0Y ) , R2 + max
Q̃∈S(QX1,0Y ): IQ̃(X2;X1,0,Y )≤R2

[
f(Q̃)− IQ̃(X2;X1,0, Y )

]
, (97)

and

E(t,QX1,0Y ) , min

{[
IQ̃(X2;X1,0, Y )−R2

]
+
: f(Q̃) +

[
R2 − IQ̃(X2;X1,0, Y )

]
+
≥ t

}
. (98)

Substituting the last result in (95), we get

Pr
[
N1(QX1Y )−N2(QX1,0Y ) ≥ ens − enr

]
≤

∑
i

Pr
{
eniε ≤ N2(QX1,0Y ) ≤ en(i+1)ε,N1(QX1Y ) ≥ eniε + ens − enr

}
(99)

·
=

∑
i≥t0(QX1,0Y )/ε

exp
[
−nE(iε,QX1,0Y )

]
× Pr

{
N1(QX1Y ) ≥ eniε + ens − enr

∣∣ eniε ≤ N2(QX1,0Y ) ≤ en(i+1)ε
}
. (100)

Next, we use the following lemma.

Lemma 2 Let {Ak}k≥0 and {Bk}k≥0 be a sequence of events, that may statistically depend each on

another. If:

• The event A0 is an almost-sure event, i.e, Pr {A0} = 1

• The probability Pr {Bk} is monotonically decreasing as a function of k

Then,

max
k

Pr {Ak ∩ Bk} = Pr {B0} . (101)

Proof of Lemma 2: Note that:

Pr {A0 ∩ B0} ≤ max
k

Pr {Ak ∩ Bk} ≤ max
k

Pr {Bk} = Pr {B0} = Pr {A0 ∩ B0} (102)

where the first and second equalities follow from the second and first assumptions of this lemma,

respectively.

We now apply Lemma 2 to (100), where Ak ,
{
enkε ≤ N2(QX1,0Y ) ≤ en(k+1)ε

}
and Bk ,{

N1(QX1Y ) ≥ enkε + ens − enr
}

. Note that under this choice of Ak and Bk, the assumptions of Lemma

2 hold, where k = 0 in the lemma is replaced by k = t0(QX1,0Y )/ε. Indeed, according to (96) the event

At0 is an almost-sure event (the exponent E(kε,QX1,0Y ) vanishes), and as shall be seen in the sequel,

Pr {Bk} is monotonically decreasing with k. Thus, applying Lemma 2, we conclude that the dominant

contribution to the sum over i is due to the first term, i = t0(QX1,0Y )/ε. Whence, using the above
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arguments and the fact that ε is arbitrarily small, we get by using standard large deviations techniques

(see, e.g., [16, p. 6027])

Pr
[
N1(QX1Y )−N2(QX1,0Y ) ≥ ens − enr

] ·
= Pr

{
N1(QX1Y ) ≥ ent0(QX1,0Y ) + ens − enr

}
(103)

·
= max

Q∈S(QX1Y )
Pr

{
N1(Q) ≥ en[t0(QX1,0Y )−f(Q)] + en[s−f(Q)] − en[r−f(Q)]

}
(104)

·
= max

Q∈S(QX1Y )



1 r > max [f(Q), t0, s]

e−n[IQ(X2;X1,Y )−R2]+ r ≤ max [f(Q), t0, s] , Q ∈ L

0 r ≤ max [f(Q), t0, s] , Q ∈ Lc

(105)

= exp
{
−nE1(QX1X2,0Y , QX1,0X2,0Y )

}
(106)

where

L ,
{
Q : max [f(Q), t0, s]− f(Q) ≤ [R2 − IQ(X2;X1, Y )]+

}
. (107)

Note that when r > max [f(Q), t0, s], the r.h.s. term of the inequality in the probability in (104) is

negative, and due to the fact that the enumerator is nonnegative, the overall probability is unity. Finally,

we average over X1,1 given F0. Using the method of types we obtain

E

Pr


M2−1∑
j=0

P (Y |X1,1,X2,j) ≥
M2−1∑
j=0

P (Y |X1,0,X2,j)


∣∣∣∣∣∣F0,X1,1

∣∣∣∣∣∣F0

 (108)

·
= exp

{
−n min

QX1|X2,0Y ∈S(QX1,0X2,0Y )

[
IQ(X1;X2,0, Y ) + E1(QX1X2,0Y , QX1,0X2,0Y )

]}
(109)

, exp
{
−nÊ1(QX1,0X2,0Y , R2)

}
. (110)

This completes the analysis of the last term at the r.h.s. of (80).

Next, we analyze the second and third terms at the r.h.s. of (80). Recall that the later is given by:

Pe,3 , Pr

 ∪
{Q̃j

X1X2Y ,Q̂j
X1X2Y }j

∈TI(QX1,0X2,0Y )

{X2,j}j≥1 ∈ B2

(
Q̃0

X1X2,0Y , (Q̃
j
X1X2Y

, Q̂j
X1X2Y

)j)
) .

(111)

Accordingly, in the spirit of (82), we note that Pe,3 can be equivalently rewritten as:

Pe,3 = Pr

 ∪
QX1|X2,0Y

M2−1∑
j=0

P (y|x1,1,X2,j) ≥
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M2−1∑
j=0

P (y|x1,0,X2,j) , for some x1,1 ∈ T (QX1X2,0Y )

∣∣∣∣∣∣F0

 . (112)

Note that in comparison to the probability that we have analyzed before, here x1,1 is some given sequence

from a type that leads to erroneous decoding. Continuing, we may write

Pe,3
·
= max

QX1|X2,0Y ∈S(QX1,0X2,0Y )
Pr

M2−1∑
j=0

P (y|x1,1,X2,j) ≥
M2−1∑
j=0

P (y|x1,0,X2,j)

∣∣∣∣∣∣F0

 . (113)

However, the probability in (113) is exactly what we have already analyzed above, and thus we get

Pe,3
·
= max

QX1|X2,0Y ∈S(QX1,0X2,0Y )
exp

{
−nE1(QX1X2,0Y , QX1,0X2,0Y )

}
(114)

= exp

{
−n min

QX1|X2,0Y ∈S(QX1,0X2,0Y )

[
E1(QX1X2,0Y , QX1,0X2,0Y )

]}
(115)

, exp
{
−nÊ2(QX1,0X2,0Y , R2)

}
. (116)

Note that the difference between Ê1(QX1,0X2,0Y , R2) and Ê2(QX1,0X2,0Y , R2) is the additional mutual

information term, IQ(X1;X2,0, Y ), in Ê1(QX1,0X2,0Y , R2), which is due to the averaging over X1,1. This

completes the analysis of the third term at the r.h.s. of (80). Finally, recall that the second term at the

r.h.s. of (80) is given by

A , M1 · Pr

 ∪
TI(QX1,0X2,0Y )

X1,1 ∈ B1

(
Q̃0

X1X2,0Y , (Q̃
j
X1X2Y

, Q̂j
X1X2Y

)j)
) (117)

and is equivalent to

A = M1 · Pr


∪

TI(QX1,0X2,0Y )


(X1,1,x2,0,y) ∈ T (Q̃0

X1X2,0Y
),{

(X1,1,x2,j ,y) ∈ T (Q̃j
X1X2Y

)
}M2−1

j=1
, for some {x2,j}{

(x1,0,x2,j ,y) ∈ T (Q̂j
X1,0X2Y

)
}M2−1

j=1



 . (118)

This term can be analyzed as before, but, we claim that it is actually larger than the fourth term at the

r.h.s. of (80), and thus, essentially, does not affect the minimum in (80). Indeed, recall that the fourth

term is given by

B , M1 · Pr


∪

TI(QX1,0X2,0Y )


(X1,1,x2,0,y) ∈ T (Q̃0

X1X2,0Y
),{

(X1,1,X2,j ,y) ∈ T (Q̃j
X1X2Y

)
}M2−1

j=1
,{

(x1,0,X2,j ,y) ∈ T (Q̂j
X1,0X2Y

)
}M2−1

j=1



 , (119)

and since the factor M1 is common to both A and B, we just need to compare the probabilities in these

terms. However, it is obvious that the probability term in B is smaller (in the exponential scale) than the
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probability in A, due to the fact that events in the former are contained in the events in the latter. Indeed,

this is equivalent to comparing between Pr {(Z1, Z2) ∈ Z} and Pr {(Z1, z2) ∈ Z, for some z2 ∈ Z2},

where Z1 and Z2 are random variables that are defined over the alphabets Z1 and Z2, respectively, and

Z ⊆ Z1 ×Z2. Let V , Ṽ × Z2, in which

Ṽ , {z1 ∈ Z1 : (z1, z2) ∈ Z, for some z2 ∈ Z2} . (120)

Then, it is obvious that Z ⊆ V , and thus

Pr {(Z1, Z2) ∈ Z} =
∑

(z1,z2)∈Z

P (z1, z2) ≤
∑

(z1,z2)∈V

P (z1, z2) (121)

=
∑
z1∈Ṽ

P (z1) = Pr {(Z1, z2) ∈ Z, for some z2} . (122)

Wrapping up, using (56), (80), and the last results, after averaging w.r.t. F0, we get

Pe
·
= E

{
min

{
1, e−n(Ê1(QX1,0X2,0Y ,R2)−R1), e−nÊ2(QX1,0X2,0Y ,R2)

}}
(123)

= E
{
min

{
e
−n[Ê1(QX1,0X2,0Y ,R2)−R1]

+ , e−nÊ2(QX1,0X2,0Y ,R2)
}}

(124)

= E
{
exp

[
−nmax

{[
Ê1(QX1,0X2,0Y , R2)−R1

]
+
, Ê2(QX1,0X2,0Y , R2)

}]}
(125)

·
= exp

{
−n

[
min

QY |X1,0X2,0

[
D(QY |X1,0X2,0

||WY |X1,0X2,0
|PX1,0

× PX2,0
) + E∗(Q,R1, R2)

]]}
(126)

where

E∗(Q,R1, R2) , max

{[
Ê1(QX1,0X2,0Y , R2)−R1

]
+
, Ê2(QX1,0X2,0Y , R2)

}
. (127)

B. Proof of Theorem 2:

Without loss of generality, we assume throughout, that the transmitted codewords are x1,0 and x2,0

which correspond to z11,0, z12,0, z21,0 and z22,0, and due to the fact that we will analyze the first decoder,

for convenience, we use y instead of y1. Here, we distinguish between several types of errors. Recall

that the overall error probability is given by

Pe = Pr
{
(M̂11, M̂12, M̂21) ̸= (0, 0, 0)

}
, (128)

so there are seven possible types of errors: (M̂11 ̸= 0, M̂12 = 0, M̂21 = 0), (M̂11 = 0, M̂12 ̸= 0, M̂21 =

0), (M̂11 = 0, M̂12 = 0, M̂21 ̸= 0), (M̂11 ̸= 0, M̂12 ̸= 0, M̂21 = 0), (M̂11 ̸= 0, M̂12 = 0, M̂21 ̸= 0),

(M̂11 = 0, M̂12 ̸= 0, M̂21 ̸= 0), and (M̂11 ̸= 0, M̂12 ̸= 0, M̂21 ̸= 0). Obviously, the exponent of the

overall error probability in (128) is given by the minimum between error exponents of each of the type
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of error individually. Accordingly, we start with analyzing the last error event, which is also the most

involved one. For this event, the average probability of error, associated with the decoder (22), is given

by

P (7)
e , Pr

M11−1∪
i=1

M12−1∪
j=1

M21−1∪
k=1

{
M22−1∑
l=0

P (Y |Z̃ijk,Z22,l) ≥
M22−1∑
l=0

P (Y |Z̃0,Z22,l)

} (129)

= E

Pr

M11−1∪
i=1

M12−1∪
j=1

M21−1∪
k=1

{
M22−1∑
l=0

P (Y |Z̃ijk,Z22,l) ≥
M22−1∑
l=0

P (Y |Z̃0,Z22,l)

}∣∣∣∣∣∣F0


(130)

where Z̃ijk , (Z11,i,Z12,j ,Z21,k), Z̃0 , (Z11,0,Z12,0,Z21,0), and F0 , (Z̃0,Z22,0,Y ). For simplicity

of notation, in the following, we use the indexes {1, 2, 3, 4} instead of {11, 12, 21, 22}. We will assess

the exponential behavior of (130) in the same manner as we did for (56). Specifically, we start with

expressing (130) in terms of types. First, for a given joint distribution QZ4
1Y

, we let

f(QZ4
1Y

) , 1

n
logP (y|x1(z1, z2),x2(z3, z4)) . (131)

Now, for a given joint type QZ4
1,0Y

of the random vectors
(
Z4

1,0,Y
)
, we define the set:

TI(QZ4
1,0Y

),
{
Q̃0

Z3
1Z4,0Y

∈ S0,

({
Q̃l

Z4
1Y

}M22−1

l=1
,
{
Q̂l

Z3
1,0Z4Y

}M22−1

l=1

)
∈ S1 :

e
nf(Q̃0

Z3
1
Z4,0Y

)
+

M22−1∑
l=1

[
e
nf(Q̃l

Z4
1
Y
) − e

nf(Q̂l

Z3
1,0

Z4Y
)
]
≥ e

nf(QZ4
1,0

Y )

}
(132)

where

S0(QZ4
1,0Y

) ,
{
Q̃0

Z3
1Z4,0Y

: Q̃0
Z3

1Z4,0
= PZ4

1
, Q̃0

Z4,0Y = QZ4,0Y

}
, (133)

and

S1(QZ4
1,0Y

) ,
{{

Q̃l
Z4

1Y

}M22−1

l=1
,
{
Q̂l

Z3
1,0Z4Y

}M22−1

l=1
: Q̃l

Z4
1
= PZ4

1
, Q̃l

Y = QY ,

Q̂l
Z3

1,0Z4
= PZ4

1
, Q̂l

Z3
1,0Y

= QZ3
1,0Y

, ∀1 ≤ l ≤ M22 − 1

Q̃l
Z4Y = Q̂l

Z4Y , Q̃
l
Z3

1Y
= Q̃m

Z3
1Y

, ∀l,m
}
. (134)

Now, with these definitions, fixing QZ4
1,0Y

, it follows, by definition, that the error event

M11−1∪
i=1

M12−1∪
j=1

M21−1∪
k=1

{
M22−1∑
l=0

P (Y |Z̃ijk,Z4,l) ≥
M22−1∑
l=0

P (Y |Z̃0,Z4,l)

}
(135)
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can be rewritten, in terms of types, as follows:

M11−1∪
i=1

M12−1∪
j=1

M21−1∪
k=1

∪
TI(QZ4

1,0
Y )


(Z̃ijk, z4,0,y) ∈ T (Q̃0

Z3
1Z4,0Y

),{
(Z̃ijk,Z4,l,y) ∈ T (Q̃l

Z4
1Y

)
}M22−1

l=1
,{

(z̃0,Z4,l,y) ∈ T (Q̂l
Z3

1,0Z4Y
)
}M22−1

l=1


. (136)

We wish to analyze the probability of (136), conditioned on F0. Note that the inner union in (136) is

over vectors of types (an exponential number of them). Finally, for the sake of convenience, we simplify

the notations of (136), and write it equivalently as

M11−1∪
i=1

M12−1∪
j=1

M21−1∪
k=1

∪
l


Z̃ijk ∈ Al,0,

(Z̃ijk,Z4,m) ∈ Al,m, for m = 1, . . . ,M22 − 1

Z4,m ∈ Ãl,m, for m = 1, . . . ,M22 − 1

 . (137)

where, again, the index “l” in the inner union runs over the combinations of types (namely, l ={
Q̃l

Z4
1Y

, Q̂l
Z3

1,0Z4Y

}
l
) that belong to TI(QZ4

1,0Y
), and the various sets

{
Al,j , Ãl,j

}
l,j

correspond to the

typical sets in (136) (recall that (z4
1,0,y) are given in this stage). Next, as before, we derive tight

lower and upper bounds on a generic probability which have the form of (137). In the following, we

give a generalization of Lemma 1 to the probability of a union indexed by K values, which is stated

without proof. For a given subset J =
{
j1, . . . , k|J |

}
of {1, . . . , J} we write ZJ as a shorthand for

(Zj1 , . . . , Zj|J |).

Lemma 3 Let {Z1 (i)}N1

i=1 , . . . , {ZJ (i)}NJ

i=1 , {V1 (i)}NJ+1

i=1 , {V2 (i)}NJ+1

i=1 , . . . , {VK (i)}NJ+1

i=1 be indepen-

dent sequences of independently and identically distributed (i.i.d.) random variables on the alphabets

Z1 × . . . × ZJ × V1 × . . . × VK , respectively, with Z1 (i) ∼ PZ1
, . . . , ZJ (i) ∼ PZJ

, V1 (i) ∼

PV1
, . . . , VK (i) ∼ PVK

. Fix a sequence of sets {Ai,1}Ni=1 , {Ai,2}Ni=1 , . . . , {Ai,K}Ni=1, where Ai,j ⊆

Z1 × . . . × ZJ × Vj , for 1 ≤ j ≤ K and for all 1 ≤ i ≤ N . Also, fix a set {Ai,0}Ni=1 where

Ai,0 ⊆ Z1×. . .×ZJ for all 1 ≤ i ≤ N , and another sequence of sets {Gi,1}Ni=1 , {Gi,2}Ni=1 , . . . , {Gi,K}Ni=1,

where Gi,j ⊆ Vj , for 1 ≤ j ≤ K and for all 1 ≤ i ≤ N . Let U = (Z1, Z2, . . . , ZJ , UJ+1) with

UJ+1 , (V1, . . . , VK). Finally, define

Bl,J,

uJ : zJ1 ∈ Al,0,

K∩
j=1

(
zJ1 , vj

)
∈ Al,j ,

K∩
j=1

vj ∈ Gl,j for some uJ c

 , (138)

for l = 1, 2, . . . , N , and Z(iJ1 ) = (Z1(i1), . . . , ZJ(iJ)). Then,
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1) A general upper bound is given by (we denote Z(iJ1 ) , (Z1(i1), . . . , ZJ(iJ)))

Pr

∪
iJ1 ,j

{
N∪
l=1

{
Z(iJ1 ) ∈ Al,0,

K∩
k=1

(
Z(iJ1 ), Vk(j)

)
∈ Al,k,

K∩
k=1

Vk(j) ∈ Gl,k

}}
≤ min

1, min
J⊆{1,...,J+1}J ̸=∅

∏
j∈J

Nj

Pr

{
N∪
l=1

UJ ∈ Bl,J

} . (139)

2) If the above are independent sequences of pairwise independent and identically distributed random

variables , and

Pr

{
N∪
l=1

{
Z(iJ1 ) ∈ Al,0,

K∩
k=1

(
Z(iJ1 ), Vk(j)

)
∈ Al,k,

K∩
k=1

Vk(j) ∈ Gl,k

}∣∣∣∣∣UJ = uJ

}
(140)

is the same for all uJ ∈ B1,J , and for all uJ ∈ B2,J , and so on till uJ ∈ BN,J , but may be

different for different Bl,J , for a given J ⊆ {1, . . . , J + 1}, then

Pr

∪
iJ1 ,j

{
N∪
l=1

{
Z(iJ1 ) ∈ Al,0,

K∩
k=1

(
Z(iJ1 ), Vk(j)

)
∈ Al,k,

K∩
k=1

Vk(j) ∈ Gl,k

}}
≥ 2−(J+1)min

1, min
J⊆{1,...,J+1}J ̸=∅

∏
j∈J

Nj

Pr

{
N∪
l=1

UJ ∈ Bl,J

} . (141)

Applying Lemma 3 on (136) (or, (137)) we obtain

Pr


M11−1∪
i=1

M12−1∪
j=1

M21−1∪
k=1

{
M22−1∑
l=0

P (Y |Z̃ijk,Z4,l) ≥
M22−1∑
l=0

P (Y |Z̃0,Z4,l)

}∣∣∣∣∣∣F0


·
= min

1, min
J⊆{1,...,4}J ̸=∅

∏
j∈J

Nj

Pr

{∪
l

UJ ∈ Bl,J

} (142)

where N1 = M11, N2 = M12, N3 = M21, N4 = 1, and

U = (Z11,Z12,Z21,U4) (143)

in which U4 = (Z4,1, . . . ,Z4,M22−1), and

Bl,J =


(z̃ijk, z4,0,y) ∈ T (Q̃0

X1X2,0Y
),

uJ :
{
(z̃ijk, z4,l,y) ∈ T (Q̃l

Z4
1Y

)
}M22−1

l=1
,{

(z̃0, z4,l,y) ∈ T (Q̂j
X1,0X2Y

)
}M22−1

l=1
, for some uJ c


. (144)
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Now, the various possibilities for the set J are:

1; 2; 3; 4;

12; 13; 14; 23; 24; 34;

123; 124; 134; 234;

1234


, (145)

that is, we have 15 possibilities. Now, we claim that possibilities {1, 2, 3, 12, 13, 23, 123} do not affect

the outer minimum in (142), and so we left with possibilities {4, 14, 24, 34, 124, 134, 234, 1234}. This

is due to the same reasoning used in (122) for the second term at the r.h.s. of (80). Indeed, note that

possibilities {1, 2, 3} do not affect due to possibilities 14, 24, 34, respectively. Indeed, the multiplicative

factor for each of the pairs ((1, 14), (2, 24), and (3, 34)) is the same, but the respective probabilities in

(142) are smaller for 14, 24, 34. Similarly, possibilities {12, 13, 23, 123} do not affect due to possibilities

124, 134, 234, 1234, respectively.

In the following, we analyze the “surviving” terms. For example, the term that corresponds to possibility

1234, is given by

Pe,1234 , M11M12M21 Pr

{∪
l

U ∈ Bl,1234

}
, (146)

which can be rewritten as

M11M12M21 Pr

{
M22−1∑
l=0

P (Y |Z̃111,Z4,l) ≥
M22−1∑
l=0

P (Y |Z̃0,Z4,l)

∣∣∣∣∣F0

}

= M11M12M21E

{
Pr

{
M22−1∑
l=0

P (Y |Z̃111,Z4,l) ≥
M22−1∑
l=0

P (Y |Z̃0,Z4,l)

∣∣∣∣∣F0, Z̃111

}∣∣∣∣∣F0

}
. (147)

But this has the same form of the probability in (108), which we already analyzed. Accordingly, we

obtain:

E

{
Pr

{
M22−1∑
l=0

P (Y |Z̃111,Z4,l) ≥
M22−1∑
l=0

P (Y |Z̃0,Z4,l)

∣∣∣∣∣F0, Z̃111

}∣∣∣∣∣F0

}
(148)

·
= exp

{
−n min

QZ3
1
|Z4,0Y ∈S(QZ4

1,0
Y )

[
IQ(Z

3
1 ;Z4,0, Y ) + E(7)(QZ3

1Z4,0Y , QZ4
1,0Y

)
]}

(149)

, exp
{
−nÊ

(7)
7 (QZ4

1,0Y
, R22)

}
. (150)

where

E(7)(QZ3
1Z4,0Y , QZ4

1,0Y
) , min

Q̂: Q̂Z3
1
Y =QZ3

1
Y , Q̂∈L(QZ3

1
Z4,0Y ,QZ4

1,0
Y )

[
IQ̂(Z4;Z

3
1 , Y )−R22

]
+
, (151)
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in which

L(QZ3
1Z4,0Y , QZ4

1,0Y
) ,

{
Q̂ : max

[
f(Q̂), t0(QZ4

1,0Y
), f(QZ4

1,0Y
)
]
− f(Q̂) ≤

[
R22 − IQ̂(Z4;Z

3
1 , Y )

]
+
,

f(QZ3
1Z4,0Y ) ≤ max

[
f(Q̂), t0(QZ4

1,0Y
), f(QZ4

1,0Y
)
]}

, (152)

and

t0(QZ4
1,0Y

) , R22 + max
Q̂: Q̂Z3

1
Y =QZ3

1,0
Y , IQ̂(Z4;Z3

1 ,Y )≤R22

[
f(Q̂)− IQ̂(Z4;Z

3
1 , Y )

]
. (153)

The other terms are handled in a similar fashion. Specifically, let Ẑ , {Z1, Z2, Z3}, and define

the sets U = {1, 2, 3, 12, 13, 23, 123}, and Ũ = {14, 24, 34, 124, 134, 234, 1234}. Then, define for any

u ∈ {1, 2, . . . , 7}:

P (7)
e,u , MU(u) · Pr

{∪
l

UU(u) ∈ Bl,U(u)

}
, (154)

where

MU(1) , M11; MU(2) = M12; MU(3) = M21;MU(4) = M11M12;

MU(5) , M11M21; MU(6) = M12M21 MU(7) = M11M12M21. (155)

Accordingly, we have

P (7)
e,u

·
= exp

{
−n min

QZ3
1
|Z4,0Y ∈S(QZ4

1,0
Y )

[
IQ(ẐU(u);Z4,0, Y |Ẑ123\U(u)) + E(7)(QZ3

1Z4,0Y , QZ4
1,0Y

)
]}

, exp
{
−nÊ(7)

u (QZ4
1,0Y

, R22)
}
. (156)

Finally, for possability {4}, we have

P
(7)
e,8

·
= exp

{
−n min

QZ3
1
|Z4,0Y ∈S(QZ4

1,0
Y )

E(7)(QZ3
1Z4,0Y , QZ4

1,0Y
)

}

, exp
{
−nÊ8(QZ4

1,0Y
, R22)

}
. (157)

Wrapping up, after averaging w.r.t. F0, we get

P (7)
e

·
= E

{
min

{
1, min

u∈{1:7}
e
−n

[
Ê(7)

u (QZ4
1,0

Y ,R22)−n−1 logMŨ(u)

]
, e

−nÊ
(7)
8 (QZ4

1,0
Y ,R22)

}}
(158)

= E

{
min

{
min

u∈{1:7}
e
−n

[
Ê(7)

u (QZ4
1,0

Y ,R22)−n−1 logMŨ(u)

]
+ , e

−nÊ
(7)
8 (QZ4

1,0
Y ,R22)

}}
(159)

= E
{
exp

[
−nmax

{
max
u

[
Ê(7)

u (QZ4
1,0Y

, R22)−
1

n
logMŨ(u)

]
+

, Ê
(7)
8 (QZ4

1,0Y
, R22)

}]}
(160)
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·
= exp

{
−n

[
min

QY |Z4
1,0

[
D(QY |Z4

1,0
||WY |Z4

1,0
|PZ4

1,0
) + E

(7)
HK(QZ4

1,0Y
, R1, R2)

]]}
(161)

where

E
(7)
HK(QZ4

1,0Y
, R1, R2) , max

{
max

u∈{1:7}

[
Ê(7)

u (QZ4
1,0Y

, R22)−Ru

]
+
, Ê

(7)
8 (QZ4

1,0Y
, R22)

}
, (162)

and Ru for u = 1, 2, . . . , 7 is defined in (29).

This concludes the analysis of the error event (M̂11 ̸= 0, M̂12 ̸= 0, M̂21 ̸= 0) in (128). The other

types of errors are analyzed in a similar fashion. Indeed, for (M̂11 ̸= 0, M̂12 = 0, M̂21 = 0), the average

probability of error, associated with the decoder given in (22), is given by:

P (1)
e = Pr

[
M11−1∪
i=1

{
M22−1∑
l=0

P (Y |Z̃i00,Z22,l) ≥
M22−1∑
l=0

P (Y |Z̃0,Z22,l)

}]
(163)

= E

{
Pr

[
M11−1∪
i=1

{
M22−1∑
l=0

P (Y |Z̃i00,Z22,l) ≥
M22−1∑
l=0

P (Y |Z̃0,Z22,l)

}∣∣∣∣∣F0

]}
(164)

where F0 , (Z̃0,Z22,0,Y ). Thus, due to the fact that (Z12,0,Z21,0) are now fixed, they play a same

role as Y and Z22,0. Accordingly, we have

P (1)
e

·
= exp

{
−n

[
min

QY |Z4
1,0

[
D(QY |Z4

1,0
||WY |Z4

1,0
|PZ4

1,0
) + E

(1)
HK(QZ4

1,0Y
, R1, R2)

]]}
(165)

where

E
(1)
HK(QZ4

1,0Y
, R1, R2) , max

{[
Ê(1)(QZ4

1,0Y
, R22)−R1

]
+
, Ê

(1)
8 (QZ4

1,0Y
, R22)

}
, (166)

and

Ê(1)(QZ4
1,0Y

, R22) = min
QZ1|Z4

2,0
Y ∈S(QZ4

1,0
Y )

[
IQ(Z1;Z

4
2,0, Y ) + E(1)(QZ1Z4

2,0Y
, QZ4

1,0Y
)
]
, (167)

and

Ê
(1)
8 (QZ4

1,0Y
, R22) = min

QZ1|Z4
2,0

Y ∈S(QZ4
1,0

Y )
E(1)(QZ1Z4

2,0Y
, QZ4

1,0Y
), (168)

where

E(1)(QZ1Z4
2,0Y

, QZ4
1,0Y

) , min
Q̂: Q̂Z3

1
Y =QZ1Z3

2,0
Y , Q̂∈L(QZ1Z4

2,0
Y ,QZ4

1,0
Y )

[
IQ̂(Z4;Z1, Z

3
2,0, Y )−R22

]
+
. (169)

In a similar manner, one obtains error exponents of P
(2)
e and P

(3)
e , corresponding to (M̂11 = 0, M̂12 ̸=

0, M̂21 = 0) and (M̂11 = 0, M̂12 = 0, M̂21 ̸= 0), respectively. Indeed, P (2)
e is obtained by replacing the
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role of Z1 with Z2 and R1 with R2, in P
(1)
e , and P

(3)
e is obtained by replacing the role of Z1 with Z3

and R1 with R3, in P
(1)
e . Similarly, P (4)

e , corresponding to (M̂11 ̸= 0, M̂12 ̸= 0, M̂21 = 0), is given by:

P (4)
e

·
= exp

{
−n

[
min

QY |Z4
1,0

[
D(QY |Z4

1,0
||WY |Z4

1,0
|PZ4

1,0
) + E

(4)
HK(QZ4

1,0Y
, R1, R2)

]]}
(170)

where

E
(4)
HK(QZ4

1,0Y
, R1, R2) , max

{
max

u∈{1,2,4}

[
Ê(4)

u (QZ4
1,0Y

, R22)−Ru

]
+
, Ê

(4)
8 (QZ4

1,0Y
, R22)

}
, (171)

and

Ê(4)
u (QZ4

1,0Y
, R22) = min

QZ2
1
|Z4

3,0
Y ∈S(QZ4

1,0
Y )

[
IQ(ẐU(u);Z

4
3,0, Y |Ẑ12\U(u)) + E(4)(QZ2

1Z
4
3,0Y

, QZ4
1,0Y

)
]
,

(172)

and

E(4)(QZ2
1Z

4
3,0Y

, QZ4
1,0Y

) , min
Q̂: Q̂Z3

1
Y =QZ2

1
Z3,0Y , Q̂∈L(QZ2

1
Z4
3,0

Y ,QZ4
1,0

Y )

[
IQ̂(Z4;Z

2
1 , Z3,0, Y )−R22

]
+
. (173)

Finally, in a similar fashion, we can obtain the error exponents of P
(5)
e and P

(6)
e , corresponding to

(M̂11 ̸= 0, M̂12 = 0, M̂21 ̸= 0) and (M̂11 = 0, M̂12 ̸= 0, M̂21 ̸= 0), respectively. For P
(5)
e we just need

to replace the role of Z2 with Z3, and the minimization in (171) is over the indexes {1, 3, 5}, and P
(6)
e is

obtained by replacing the role of Z1 with Z3, and the minimization in (171) is over the indexes {2, 3, 6}.

APPENDIX A

PROOF OF LEMMA 1

In order to prove Lemma 1, we feel that it is more convenient and deductive to prove first a simpler

version of it. To assist the reader, the road in proving Lemma 1 is as follows: we first state and prove

Lemma 4, and then using this Lemma we state and prove Lemma 5, which is a special case of Lemma 1.

Then, we prove Lemma 6, which is a generalization of Lemma 4. Finally, using Lemma 6 we eventually

prove Lemma 1. In the following, we actually prove a generalized version of Lemma 1, where we consider

random sequences, {V2 (i)}L2

i=1 , . . . , {VK (i)}L2

i=1, rather than single random variables V2, . . . , VK . Lemma

1 is then obtained on substituting L2 = 1. We start with the following result which can be thought of as

an extension of [12, Lemma 2].

Lemma 4 Let {V1 (i)}L1

i=1, {V2 (i)}L2

i=1, and {V3 (i)}L2

i=1 be independent sequences of i.i.d. random

variables on the alphabets V1 ×V2 ×V3, respectively, with V1 (i) ∼ PV1
, V2 (i) ∼ PV2

, and V3 (i) ∼ PV3
.
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For any sequence of sets {Ai,1}Ni=1 and {Ai,2}Ni=1 such that Ai,1 ⊆ V1 × V2 and Ai,2 ⊆ V1 × V3 for all

1 ≤ i ≤ N , we have

Pr

∪
i,j

{
N∪
l=1

{(V1 (i) , V2 (j)) ∈ Al,1, (V1 (i) , V3 (j)) ∈ Al,2}

}
≤ min

{
1, L1E

[
min

{
1, L2 Pr

{
N∪
l=1

{(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2}

∣∣∣∣∣V1

}}]
,

L2E

[
min

{
1, L2 Pr

{
N∪
l=1

{(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2}

∣∣∣∣∣V2, V3

}}]}
(A.1)

with (V1, V2, V3) ∼ PV1
× PV2

× PV3
. Also, if {V1 (i)}L1

i=1 are pairwise independent, {V2 (i)}L2

i=1 are

pairwise independent, {V3 (i)}L2

i=1 are pairwise independent, then

Pr

∪
i,j

{
N∪
l=1

{(V1 (i) , V2 (j)) ∈ Al,1, (V1 (i) , V3 (j)) ∈ Al,2}

}
≥ 1

4
min

1, L1

Pr
{∪N

l=1 {(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2}
}2

Pr
{∪N

l=1 {(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2} ∩
∪N

l=1 {(V1, V ′
2) ∈ Al,1, (V1, V ′

3) ∈ Al,2}
} ,

L2

Pr
{∪N

l=1 {(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2}
}2

Pr
{∪N

l=1 {(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2} ∩
∪N

l=1 {(V ′
1 , V2) ∈ Al,1, (V

′
1 , V3) ∈ Al,2}

} ,

L1L2 Pr

{
N∪
l=1

{(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2}

} (A.2)

where (V1, V
′
1 , V2, V

′
2 , V3, V

′
3) ∼ PV1

(v1)× PV1
(v′1)× PV2

(v2)× PV2
(v′2)× PV3

(v3)× PV3
(v′3).

Proof of Lemma 4: Starting with the upper bound, the second term in (A.1) follows by first applying

the union bound over i

Pr

∪
i,j

{
N∪
l=1

{(V1 (i) , V2 (j)) ∈ Al,1, (V1 (i) , V3 (j)) ∈ Al,2}

}
≤ L1 Pr

∪
j

{
N∪
l=1

{(V1, V2 (j)) ∈ Al,1, (V1, V3 (j)) ∈ Al,2}

} (A.3)

≤ L1E

Pr

∪
j

{
N∪
l=1

{(V1, V2 (j)) ∈ Al,1, (V1, V3 (j)) ∈ Al,2}

}∣∣∣∣∣∣V1


 . (A.4)
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Now, we apply the truncated union bound to the union over j, and obtain

Pr

∪
i,j

{
N∪
l=1

{(V1 (i) , V2 (j)) ∈ Al,1, (V1 (i) , V3 (j)) ∈ Al,2}

}
≤ L1E

[
min

{
1, L2 Pr

{
N∪
l=1

{(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2}

∣∣∣∣∣V1

}}]
. (A.5)

The third term is obtained similarly by applying the union bounds in the opposite order, and the upper

bound of 1 is trivial.

The lower bound follows from de Caen’s bound, which states that for for any set of events {Ai}Mi=1,

Pr

{
M∪
i=1

Ai

}
≥

∑
i

Pr {Ai}2∑
i′ Pr {Ai ∩ Ai′}

. (A.6)

In our case, we note that by symmetry (recall that {V1 (i)}L1

i=1, {V2 (i)}L2

i=1, and {V3 (i)}L2

i=1 are i.i.d.),

each term in the outer summation is equal, and by splitting the inner summation according to which of

the (i, j) indexes coincide with (i′, j′), we obtain

Pr

∪
i,j

{
N∪
l=1

{(V1 (i) , V2 (j)) ∈ Al,1, (V1 (i) , V3 (j)) ∈ Al,2}

}
≥ L1L2 Pr

{
N∪
l=1

{(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2}

}2

(L1 − 1)(L2 − 1)Pr

{
N∪
l=1

{(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2}

}2

+(L2 − 1)Pr

{
N∪
l=1

{(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2} ∩
N∪
l=1

{(
V1, V

′
2

)
∈ Al,1,

(
V1, V

′
3

)
∈ Al,2

}}

+(L1 − 1)Pr

{
N∪
l=1

{(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2} ∩
N∪
l=1

{(
V ′
1 , V2

)
∈ Al,1,

(
V ′
1 , V3

)
∈ Al,2

}}

+Pr

{
N∪
l=1

{(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2}

})−1

(A.7)

≥ L1L2 Pr

{
N∪
l=1

{(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2}

}2

4max

L1L2 Pr

{
N∪
l=1

{(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2}

}2

,

L2 Pr

{
N∪
l=1

{(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2} ∩
N∪
l=1

{(
V1, V

′
2

)
∈ Al,1,

(
V1, V

′
3

)
∈ Al,2

}}
,
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L1 Pr

{
N∪
l=1

{(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2} ∩
N∪
l=1

{(
V ′
1 , V2

)
∈ Al,1,

(
V ′
1 , V3

)
∈ Al,2

}}
,

Pr

{
N∪
l=1

{(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2}

}}]−1

(A.8)

which concludes the proof.

Next, we prove the following result, which is a simpler version of Lemma 1.

Lemma 5 Let {V1 (i)}L1

i=1, {V2 (i)}L2

i=1, and {V3 (i)}L2

i=1 be independent sequences of independently and

identically distributed (i.i.d.) random variables on the alphabets V1×V2×V3, respectively, with V1 (i) ∼

PV1
, V2 (i) ∼ PV2

, and V3 (i) ∼ PV3
. Fix a sequence of sets {Ai,1}Ni=1 and {Ai,2}Ni=1, where Ai,1 ⊆ V1×V2

and Ai,2 ⊆ V1 × V3 for all 1 ≤ i ≤ N , and define

Bl,1, {v1 : (v1, v2) ∈ Al,1, (v1, v3) ∈ Al,2 for some v2, v3} , (A.9)

and

Bl,2, {(v2, v3) : (v1, v2) ∈ Al,1, (v1, v3) ∈ Al,2, for some v1} , (A.10)

for l = 1, 2, . . . , N . Then,

1) A general upper bound is given by

Pr

∪
i,j

{
N∪
l=1

{(V1 (i) , V2 (j)) ∈ Al,1, (V1 (i) , V3 (j)) ∈ Al,2}

}
≤ min

{
1, L1 Pr

{
N∪
l=1

{V1 ∈ Bl,1}

}
, L2 Pr

{
N∪
l=1

{(V2, V3) ∈ Bl,2}

}
,

L1L2 Pr

{
N∪
l=1

{(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2}

}}
(A.11)

with (V1, V2, V3) ∼ PV1
× PV2

× PV3
.

2) If {V1 (i)}L1

i=1 are pairwise independent, {V2 (i)}L2

i=1 are pairwise independent, {V3 (i)}L2

i=1 are

pairwise independent, and

Pr

{
N∪
l=1

{(v1, V2) ∈ Al,1, (v1, V3) ∈ Al,2}

}
(A.12)

is the same for all v1 ∈ B1,1, and for all v1 ∈ B2,1, and so on till v1 ∈ BN,1, but may be different

for different Bl,1, and

Pr

{
N∪
l=1

{(V1, v2) ∈ Al,1, (V1, v3) ∈ Al,2}

}
(A.13)
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is the same for all (v2, v3) ∈ B1,2, and so on till (v2, v3) ∈ BN,2, but may be different for different

Bl,2, then

Pr

∪
i,j

{
N∪
l=1

{(V1 (i) , V2 (j)) ∈ Al,1, (V1 (i) , V3 (j)) ∈ Al,2}

}
≥ 1

4
min

{
1, L1 Pr

{
N∪
l=1

{V1 ∈ Bl,1}

}
, L2 Pr

{
N∪
l=1

{(V2, V3) ∈ Bl,2}

}
,

L1L2 Pr

{
N∪
l=1

{(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2}

}}
. (A.14)

Proof of Lemma 5: We start with the first item. To obtain (A.11) we weaken (A.1) as follows. The

second term in (A.11) follows from the following fact

L1min

{
1, L2 Pr

{
N∪
l=1

{(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2}

∣∣∣∣∣V1

}}

= I

{
N∪
l=1

{V1 ∈ Bl,1}

}
L1min

{
1, L2 Pr

{
N∪
l=1

{(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2}

∣∣∣∣∣V1

}}

+ I

{
N∩
l=1

{V1 /∈ Bl,1}

}
L1min

{
1, L2 Pr

{
N∪
l=1

{(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2}

∣∣∣∣∣V1

}}

= I

{
N∪
l=1

{V1 ∈ Bl,1}

}
L1min

{
1, L2 Pr

{
N∪
l=1

{(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2}

∣∣∣∣∣V1

}}

≤ L1I

{
N∪
l=1

{V1 ∈ Bl,1}

}
(A.15)

where the second equality follows from the fact that the inner term in the expectation vanishes over∩N
l=1 {V1 /∈ Bl,1}, and the third inequality follows from the fact that min {1, x} ≤ 1. The third term in

(A.11) follows in a similar fashion, and the forth term follows from the fact that min {1, x} ≤ x, and

thus

L1E

[
min

{
1, L2 Pr

{
N∪
l=1

{(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2}

∣∣∣∣∣V1

}}]

≤ L1L2 Pr

{
N∪
l=1

{(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2}

}
. (A.16)

This concludes the proof of the first part. The second part of Lemma 5 follows from (A.2), and the

following observation. Let us consider, for example, the second term at the r.h.s. of (A.14). First, note
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that

Pr
{∪N

l=1 {(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2}
}2

Pr
{∪N

l=1 {(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2} ∩
∪N

l=1 {(V1, V ′
2) ∈ Al,1, (V1, V ′

3) ∈ Al,2}
}

=
Pr [F ] Pr

{∪N
l=1 {(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2}

∣∣∣F}2

Pr
{∪N

l=1 {(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2} ∩
∪N

l=1 {(V1, V ′
2) ∈ Al,1, (V1, V ′

3) ∈ Al,2}
∣∣∣F} . (A.17)

where F ,
∪N

l=1 {V1 ∈ Bl,1}. Now, by the additional assumptions in the second part of Lemma 5, we

have

Pr

{
N∪
l=1

{(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2}

∣∣∣∣∣F
}

=



Pr
{∪N

l=1 {(v1, V2) ∈ Al,1, (v1, V3) ∈ Al,2}
}
, v1 ∈ B1,1

Pr
{∪N

l=1 {(v1, V2) ∈ Al,1, (v1, V3) ∈ Al,2}
}
, v1 ∈ B2,1

......

Pr
{∪N

l=1 {(v1, V2) ∈ Al,1, (v1, V3) ∈ Al,2}
}
, v1 ∈ BN,1

. (A.18)

Similarly,

Pr

{
N∪
l=1

{(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2} ∩
N∪
l=1

{(
V1, V

′
2

)
∈ Al,1,

(
V1, V

′
3

)
∈ Al,2

}∣∣∣∣∣F
}

=



Pr
{∪N

l=1 {(v1, V2) ∈ Al,1, (v1, V3) ∈ Al,2}
}2

, v1 ∈ B1,1

Pr
{∪N

l=1 {(v1, V2) ∈ Al,1, (v1, V3) ∈ Al,2}
}2

, v1 ∈ B2,1

......

Pr
{∪N

l=1 {(v1, V2) ∈ Al,1, (v1, V3) ∈ Al,2}
}2

, v1 ∈ BN,1

. (A.19)

Thus, on substituting (A.18) and (A.19) in (A.17), we obtain

Pr
{∪N

l=1 {(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2}
}2

Pr
{∪N

l=1 {(V1, V2) ∈ Al,1, (V1, V3) ∈ Al,2} ∩
∪N

l=1 {(V1, V ′
2) ∈ Al,1, (V1, V ′

3) ∈ Al,2}
}

= Pr

[
N∪
l=1

{V1 ∈ Bl,1}

]
. (A.20)

Finally, the third term at the r.h.s. of (A.14) follows in a similar fashion.
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Remark 2 Note that in the above results, the number of events, N , can be arbitrarily large, and in

particular, exponential, without affecting the tightness of the lower and upper bounds.

Finally, note that Lemma 5 remains true for any number of sequences {V1 (i)}L1

i=1, {V2 (i)}L2

i=1,...,

{VK (i)}L2

i=1, and we can easily obtain a similar (exponentially tight) upper and lower bounds. Specifically,

we prove the following lemma which exactly fits the structure of the probability in (66). The following

result will be used in the proof of Lemma 1.

Lemma 6 Let {V1 (i)}L1

i=1 , {V2 (i)}L2

i=1 , . . . , {VK (i)}L2

i=1 be independent sequences of independently

and identically distributed (i.i.d.) random variables on the alphabets V1 × V2 × . . . × VK , re-

spectively, with V1 (i) ∼ PV1
, V2 (i) ∼ PV2

, . . . , VK (i) ∼ PVK
. Fix a sequence of sets

{Ai,1}Ni=1 , {Ai,2}Ni=1 , . . . , {Ai,K−1}Ni=1, where Ai,j ⊆ V1 × Vj+1, for 1 ≤ j ≤ K − 1 and for all

1 ≤ i ≤ N . Also, fix a set {Ai,0}Ni=1 where Ai,0 ⊆ V1 for all 1 ≤ i ≤ N , and another sequence of sets

{Gi,2}Ni=1 , {Gi,3}Ni=1 , . . . , {Gi,K}Ni=1, where Gi,j ⊆ Vj , for 2 ≤ j ≤ K and for all 1 ≤ i ≤ N . We have

Pr

∪
i,j

{
N∪
l=1

{
V1(i) ∈ Al,0,

K−1∩
k=1

(V1(i), Vk+1(j)) ∈ Al,k,

K∩
k=2

Vk(j) ∈ Gl,k

}}
≤ min

{
1, L1E

[
min

{
1, L2 Pr

{
N∪
l=1

{
V1 ∈ Al,0,

K−1∩
k=1

(V1, Vk+1) ∈ Al,k,

K∩
k=2

Vk ∈ Gl,k

}∣∣∣∣∣V1

}}]
,

L2E

[
min

{
1, L2 Pr

{
N∪
l=1

{
V1 ∈ Al,0,

K−1∩
k=1

(V1, Vk+1) ∈ Al,k,

K∩
k=2

Vk ∈ Gl,k

}∣∣∣∣∣ {Vk}Kk=2

}}]}
(A.21)

with (V1, . . . , VK) ∼ PV1
· · ·×PVK

. Also, If {V1 (i)}L1

i=1 , {V2 (i)}L2

i=1 , . . . , {VK (i)}L2

i=1 are each pairwise

independent, then

Pr

∪
i,j

{
N∪
l=1

{
V1(i) ∈ Al,0,

K−1∩
k=1

(V1(i), Vk+1(j)) ∈ Al,k,

K∩
k=2

Vk(j) ∈ Gl,k

}}
≥ 1

4
min

1, L1

Pr
{∪N

l=1

{
V1 ∈ Al,0,

∩K−1
k=1 (V1, Vk+1) ∈ Al,k,

∩K
k=2 Vk ∈ Gl,k

}}2

Pr {U1}
,

L2

Pr
{∪N

l=1

{
V1 ∈ Al,0,

∩K−1
k=1 (V1, Vk+1) ∈ Al,k,

∩K
k=2 Vk ∈ Gl,k

}}2

Pr {U2}
,

L1L2 Pr

{
N∪
l=1

{
V1 ∈ Al,0,

K−1∩
k=1

(V1, Vk+1) ∈ Al,k,

K∩
k=2

Vk ∈ Gl,k

}} (A.22)
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where

U1 ,
N∪
l=1

{
V1 ∈ Al,0,

K−1∩
k=1

(V1, Vk+1) ∈ Al,k,

K∩
k=2

Vk ∈ Gl,k

}

∩
N∪
l=1

{
V1 ∈ Al,0,

K−1∩
k=1

(
V1, V

′
k+1

)
∈ Al,k,

K∩
k=2

V ′
k ∈ Gl,k

}
, (A.23)

and

U2 ,
N∪
l=1

{
V1 ∈ Al,0,

K−1∩
k=1

(V1, Vk+1) ∈ Al,k,

K∩
k=2

Vk ∈ Gl,k

}

∩
N∪
l=1

{
V ′
1 ∈ Al,0,

K−1∩
k=1

(
V ′
1 , Vk+1

)
∈ Al,k,

K∩
k=2

Vk ∈ Gl,k

}
(A.24)

with (V1, V
′
1 , . . . , VK , V ′

K) ∼ PV1
(v1)× PV1

(v′1)× . . .× PVK
(vk)× PVK

(v′k).

Proof of Lemma 6: The proof is exactly the same as the proof of Lemma 4. In the following, we

derive, for example, the upper bound. The second term in (A.21) follows by first applying the union

bound over i

Pr

∪
i,j

{
N∪
l=1

{
V1(i) ∈ Al,0,

K−1∩
k=1

(V1(i), Vk+1(j)) ∈ Al,k,

K∩
k=2

Vk(j) ∈ Gl,k

}}
≤ L1 Pr

∪
j

{
N∪
l=1

{
V1 ∈ Al,0,

K−1∩
k=1

(V1, Vk+1(j)) ∈ Al,k,

K∩
k=2

Vk(j) ∈ Gl,k

}} (A.25)

≤ L1E

Pr

∪
j

{
N∪
l=1

{
V1 ∈ Al,0,

K−1∩
k=1

(V1, Vk+1(j)) ∈ Al,k,

K∩
k=2

Vk(j) ∈ Gl,k

}}∣∣∣∣∣∣V1


 . (A.26)

Now, we apply the truncated union bound to the union over j, and obtain

Pr

∪
i,j

{
N∪
l=1

{
V1(i) ∈ Al,0,

K−1∩
k=1

(V1(i), Vk+1(j)) ∈ Al,k,

K∩
k=2

Vk(j) ∈ Gl,k

}}
≤ L1E

[
min

{
1, L2 Pr

{
N∪
l=1

{
V1 ∈ Al,0,

K−1∩
k=1

(V1, Vk+1) ∈ Al,k,

K∩
k=2

Vk ∈ Gl,k

}}∣∣∣∣∣V1

}]
. (A.27)

The third term is obtained similarly by applying the union bounds in the opposite order, and the upper

bound of 1 is trivial. The lower bound follows from de Caen’s bound, as in the proof of Lemma 4 (see,

(A.6)-(A.8)).

We are now in a position to prove Lemma 1.
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Proof of Lemma 1: We start with the first item. To obtain (69) we weaken (A.21) as follows. Let

F ,
∪N

l=1 {V1 ∈ Bl,1}. The second term in (69) follows from the following fact

min

{
1, L2 Pr

{
N∪
l=1

{
V1 ∈ Al,0,

K−1∩
k=1

(V1, Vk+1) ∈ Al,k,

K∩
k=2

Vk ∈ Gl,k

}∣∣∣∣∣V1

}}

= I {F}min

{
1, L2 Pr

{
N∪
l=1

{
V1 ∈ Al,0,

K−1∩
k=1

(V1, Vk+1) ∈ Al,k,

K∩
k=2

Vk ∈ Gl,k

}∣∣∣∣∣V1

}}

+ I {Fc}min

{
1, L2 Pr

{
N∪
l=1

{
V1 ∈ Al,0,

K−1∩
k=1

(V1, Vk+1) ∈ Al,k,

K∩
k=2

Vk ∈ Gl,k

}∣∣∣∣∣V1

}}

= I {F}min

{
1, L2 Pr

{
N∪
l=1

{
V1 ∈ Al,0,

K−1∩
k=1

(V1, Vk+1) ∈ Al,k,

K∩
k=2

Vk ∈ Gl,k

}∣∣∣∣∣V1

}}

≤ I {F} (A.28)

where the second equality follows from the fact that the inner term in the expectation vanishes over∩N
l=1 {V1 /∈ Bl,1}, and the third inequality follows from the fact that min {1, x} ≤ 1. The third term in

(A.11) follows in a similar fashion, and the forth term follows from the fact that min {1, x} ≤ x, and

thus

L1E

[
min

{
1, L2 Pr

{
N∪
l=1

{
V1 ∈ Al,0,

K−1∩
k=1

(V1, Vk+1) ∈ Al,k,

K∩
k=2

Vk ∈ Gl,k

}∣∣∣∣∣V1

}}]

≤ L1L2 Pr

{
N∪
l=1

{
V1 ∈ Al,0,

K−1∩
k=1

(V1, Vk+1) ∈ Al,k,

K∩
k=2

Vk ∈ Gl,k

}}
. (A.29)

This concludes the proof of the first part. The second part of Lemma 5 follows from (A.2), and the

following observation. Let us consider, for example, the second term at the r.h.s. of (A.14). First, note

that

Pr
{∪N

l=1

{
V1 ∈ Al,0,

∩K−1
k=1 (V1, Vk+1) ∈ Al,k,

∩K
k=2 Vk ∈ Gl,k

}}2

Pr {U1}

=
Pr [F ] Pr

{∪N
l=1

{
V1 ∈ Al,0,

∩K−1
k=1 (V1, Vk+1) ∈ Al,k,

∩K
k=2 Vk ∈ Gl,k

}∣∣∣F}2

Pr {U1|F}
. (A.30)

where U1 is defined in (A.23). Now, by the additional assumptions in the second part of Lemma 5, we

have

Pr

{
N∪
l=1

{
V1 ∈ Al,0,

K−1∩
k=1

(V1, Vk+1) ∈ Al,k,

K∩
k=2

Vk ∈ Gl,k

}∣∣∣∣∣F
}
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=



Pr
{∪N

l=1

{
v1 ∈ Al,0,

∩K−1
k=1 (v1, Vk+1) ∈ Al,k,

∩K
k=2 Vk ∈ Gl,k

}}
, v1 ∈ B1,1

Pr
{∪N

l=1

{
v1 ∈ Al,0,

∩K−1
k=1 (v1, Vk+1) ∈ Al,k,

∩K
k=2 Vk ∈ Gl,k

}}
, v1 ∈ B2,1

......

Pr
{∪N

l=1

{
v1 ∈ Al,0,

∩K−1
k=1 (v1, Vk+1) ∈ Al,k,

∩K
k=2 Vk ∈ Gl,k

}}
, v1 ∈ BN,1

. (A.31)

Similarly,

Pr {U1|F}

=



Pr
{∪N

l=1

{
v1 ∈ Al,0,

∩K−1
k=1 (v1, Vk+1) ∈ Al,k,

∩K
k=2 Vk ∈ Gl,k

}}2
, v1 ∈ B1,1

Pr
{∪N

l=1

{
v1 ∈ Al,0,

∩K−1
k=1 (v1, Vk+1) ∈ Al,k,

∩K
k=2 Vk ∈ Gl,k

}}2
, v1 ∈ B2,1

......

Pr
{∪N

l=1

{
v1 ∈ Al,0,

∩K−1
k=1 (v1, Vk+1) ∈ Al,k,

∩K
k=2 Vk ∈ Gl,k

}}2
, v1 ∈ BN,1

. (A.32)

Thus, on substituting (A.31) and (A.32) in (A.30), we obtain

Pr
{∪N

l=1

{
V1 ∈ Al,0,

∩K−1
k=1 (V1, Vk+1) ∈ Al,k,

∩K
k=2 Vk ∈ Gl,k

}}2

Pr {U1}

= Pr

[
N∪
l=1

{V1 ∈ Bl,1}

]
. (A.33)

Finally, the third term at the r.h.s. of (A.14) follows in a similar fashion.
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