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ABSTRACT

Write amplification is a central performance figure of solid-
state storage devices. As a result, significant effort has
been devoted in the storage systems community to analyz-
ing write amplification in useful scenarios. Analysis here
means that a parametrized model is chosen for the device
and its incident workload, such that the expected average
write amplification can be obtained mathematically. While
reaching this goal necessitates a detailed mathematical argu-
mentation, such analysis offers the great benefit of predicting
performance without need to deploy or simulate the device.
In this paper we develop an analysis framework to calculate
the write amplification for two novel and practically impor-
tant scenarios: workloads with time locality, and devices
with multi-write capabilities. The former captures a central
feature of real-world workloads, while the latter addresses
a promising feature likely to be added to next-generation
solid-state storage devices.

1. INTRODUCTION
Non-volatile storage devices have become central compo-

nents in almost every information system. It is likely that
the adoption of such devices will continue to grow fast,
thanks to the superior access performance they offer and
the impressive density scaling they sustain. In particular,
NAND-flash based storage devices are currently the cham-
pions of non-volatile storage in terms of performance and
density for unit cost. All their advantages notwithstanding,
there are two major issues that complicate the adoption of
NAND-flash storage devices in real systems. One is their
non-deterministic access performance due to address indi-
rection done at the flash translation layer (FTL). The other
issue is their limited endurance, which degrades their reli-
ability as they age in the system. Both of these issues are
significant, and thus must be addressed by the device ven-
dors during design, and monitored by the customers dur-
ing operation. Nevertheless, a major challenge is that both
performance variability and endurance issues are driven by
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complex hardware and software mechanisms in the device.
Consequently, the storage community has sought determin-
istic and clear characterizations of these issues, which will
allow evaluating and comparing different storage devices.
The principal such characterization adopted by the stor-
age industry is the write amplification (WA), which is de-
fined as the average number of physical writes performed
per user write. The write amplification emerged as a central
performance measure, because it captures both the access-
performance and endurance issues: writing more internally
in general implies worse read/write rates for the user, as well
as higher cell wear.

While not a perfect characterization of non-volatile stor-
age performance, the write amplification has fostered great
innovation as a tool to design better storage devices and to
understand their behaviors. The most immediate use of the
write amplification is to benchmark existing or newly pro-
posed device architectures against relevant workload traces.
In this usage, we run a workload trace through the architec-
ture in discrete-event simulation, count the total number of
physical writes performed by the device, and normalize by
the number of user writes in the trace to get the empirical
write amplification. To get a more comprehensive quantita-
tive evaluation of the device, we complement the workload
traces with synthetic workloads generated by some proba-
bilistic model, most commonly the uniform workload. The
advantage of synthetic workloads is that they are easier to
obtain than recorded traces, and thus can test devices for
longer, more realistic durations.

To make the device evaluation even more efficient, we
are interested in methods to derive the write amplification
analytically, obviating the need to run long and resource-
consuming simulations. Indeed, several works in the liter-
ature successfully provide analytical tools to estimate the
write amplification exhibited by a storage device given its
design, e.g. the garbage collection policy it employs, and
the workload that it serves. In the sequel we survey some of
these works. In the mean time we note that in general the
write-amplification analysis task becomes very difficult very
fast as we attempt to capture more realistic device architec-
tures and workload models.

1.1 Our Contributions
The study reported in this paper contributes several novel

write-amplification analysis tools for important workload
models and device architectures. Specifically, we list the
following items as our main contributions

1. Defining a new model for workloads with time locality.
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2. Deriving the write amplification for workloads with time
locality. The analysis yields the write amplification
value given the workload’s time-locality level, which is
specified as the parameter of the time-locality model
in item 1 above.

3. Deriving the write amplification of a multi-write archi-
tecture, which allows 2 writes to a physical page be-
fore its erasure. The analysis yields the 2-write write
amplification value given the workload’s time-locality
level.

4. Deriving the write amplification of the advanced multi-
write architectures we previously reported in [Odeh
2014]. The importance of this contribution is that
these advanced architectures were shown to give su-
perior write-amplification performance over the simple
architecture with multi-write across the entire storage
space.

5. The analysis solutions in items 2-4 above are shown to
give very accurate prediction of the write amplification
when compared to simulations of the same setups.

1.2 Problem Setup
The setup description starts with the standard definitions

of a storage device with T physical blocks, each comprising
Np physical pages. To the device are assigned in total U ·Np

logical pages, which are written and read by the user. The
parameter ρ is called the over-provisioning factor, and is
defined as (T −U)/U . The standard way to manage the de-
vice is by placing user-written pages sequentially on a block
called the frontier. When the frontier block becomes full,
a new clean block becomes the frontier. Blocks are cleaned
in a process called garbage collection (GC), and we assume
throughout the paper that the block chosen for cleaning in
GC is the one with the minimal number of valid pages on
it. This selection policy is called here min-valid, and is also
known in the literature as the greedy cleaning policy. A
more detailed background on this general setup can be ob-
tained from a number of previous works listed in the next
sub-section.

In the paper we specialize this setup in two ways. In the
first part consisting of Sections 3 and 4, the device follows
this standard operation, but while serving workloads with
time locality. Time locality is a common feature of real-
world workloads, by which a logical page written by a user
at a given time has a higher likelihood to be written again
in the near future. A simple model of time locality is given
in Section 3 using two parameters: p specifies the proba-
bility to select a page-write from a pool of recently written
logical page addresses, and h is the size of this recent-page
pool. The device write amplification under this time-locality
workload model is analyzed in Section 4. To the best of our
knowledge, this is the first time write-amplification analysis
is developed for time-locality workloads. The key novelty in
analysis with time locality is to analyze the state of blocks
in different time epochs throughout their life cycle. In the
second part consisting of Sections 5 and 6, we depart from
the standard device model and analyze a device with multi-
write capabilities, that is, a device whose physical pages can
be written two times before the block is cleaned. The im-
portance of addressing the multi-write feature stems from
recent work [Odeh 2014, Yadgar 2015] showing evidence of

the great promise that multi-writes can bring to storage de-
vices. The key novelty in analysis with multi-write capa-
bilities is moving from tracking page states as valid/invalid,
to also distinguish between valid pages that were already
written twice and valid pages that can still accept an in-
place update. In Section 5 the device supports multi-write
on all pages, while in Section 6 the multi-write capabilities
are offered on only part of the physical pages. This lat-
ter approach was shown to offer superior write-amplification
performance, hence the importance of its analysis.

In all the different setups our objective is the same: to de-
rive the write amplification of a storage device operated in
that setup. In every case the answer is given as a single value
of the variable WA calculated by a system of equations as a
function of constants describing the device (T, U,Np, ρ), and
the workload (p, h). (It turns out that only the p parameter
of the time-locality model affects the resulting write amplifi-
cation.) In the second part an additional constant r is given
as input, describing the expansion factor required to support
the multi-write capabilities. Because in most of the setups
exact analysis is impossible or very difficult, our derivations
include steps that are approximations. In all such cases we
properly justify the approximations. In addition, at the end
of each section we compare the analysis results (including
the approximations) to simulation plots in order to prove
their good accuracy. Solving for WA is done by defining
additional variables internal to the device operation, and
deriving sufficiently many equations to be able to solve for
all these variables. Then the desired WA is calculated from
these internal variables. Per our previous remark, it is un-
derstood that in some of these equations the equality is only
an approximation. The complexity of solving each setup is
primarily expressed by the number of equations required to
solve it. In that respect, the setups are ordered in increasing
complexity, where Section 4 uses 1 equation, Section 5 uses
3 equations, and the most complex Section 6 uses 5 equa-
tions. To avoid notation clutter, we use the same letters
for the variables and auxiliary variables across sections and
setups. So it is important to note that in each section the
same variables appear, but with different relations between
them, as induced by the particular setup. In contrast, all the
notations using the letter p with subscripts represent static
probability values that do not depend on the setup, only on
the external parameters.

1.3 Prior Work
The objective of this paper is to extend write-amplification

analysis to fundamental and practical setups including time
locality and multi-write capabilities. In that it is definitely
only one link in a fruitful line of work analyzing write am-
plification in a variety of real-life setups.

Relevant work started much earlier than the advent of
solid-state flash-based storage devices. Much of this earlier
work was motivated by the introduction of log-structured file
systems [Rosenblum 1992], whose operation has fundamen-
tal similarities to the standard FTL operation used in flash-
based storage devices. Probably the most important contri-
bution to this line of work is the analysis of uniform work-
loads under the min-valid (aka greedy) cleaning policy pur-
sued in [Robinson 1996, Desnoyers 2012]. [Desnoyers 2012]
also extends the analysis to non-uniform hot/cold workloads
defined in [Robinson 1996]. In this hot/cold analysis, it is
assumed that the hot/cold property of pages is static, and
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Figure 1: Analysis comparison to [Luojie 2012B].
New analysis improves accuracy considerably.

that the device knows enough on the workload to separate
between hot and cold pages. In contrast, in our time-locality
analysis all pages behave the same, and we do not assume
the device has any knowledge on the workload. The im-
portance of the works of [Robinson 1996, Desnoyers 2012]
stems from the very powerful techniques developed based
on Markov-chain steady-state analysis (a similar model also
appears in [Bux 2010]). In fact, all of our results in this pa-
per use these Markov-based techniques, appropriately (and
non trivially!) extended to address more complex scenar-
ios. [Hu 2009] also presents an analytical model for com-
puting the write-amplification for the uniformly distributed
workload under the windowed-greedy cleaning policy. The
mathematical toolbox for write-amplification analysis was
significantly enriched following a recent line of work by van-
Houdt using the mean-field model [Van 2013A, Van 2014,
Van 2013B]. Among the achievements of this work are an-
alyzing write-amplification for sub-optimal cleaning policies
(which are often more practical than the greedy policy), and
studying more refined hot/cold scenarios. A complementary
line of work [Agrwal 2010, Luojie 2012A] contributes a sim-
pler approximated technique for write-amplification analy-
sis, which allows reaching good estimates without invoking
a full-fledged Markov analysis. This approximated analy-
sis was also extended to architectures with all multi-write
access in [Luojie 2012B]. We compare our results for the
all multi-write analysis to this prior work, and conclude
that our Markov-based method gives significantly better es-
timates, see Figure 1. We conjecture that with multi-write
access there is limited validity to the approximation assump-
tions that the authors of [Luojie 2012B] extend from [Agrwal
2010]. It is also noted that this prior approach cannot ac-
commodate time locality into the analysis.

2. THE UNIFORM SINGLE-WRITE CASE
We start the analysis by considering standard no multi-

write device under the uniform workload, which was widely
studied in previous works. In this basic configuration, the
device uses the standard flash mapping architecture, with-
out multi-write coding, on a uniformly distributed workload.
To aid the analysis of the more advanced cases later in the
paper, we now review the Markov-chain analysis technique
from [Desnoyers 2012]. By that technique, we divide the
blocks in the device to states representing the numbers of
valid pages in the block, and then use the Markov state di-
agram to derive the mean number of pages copied in GC

� �

��

Figure 2: Markov-chain model for uniform workload
without multi-write.

under the min-valid GC policy. This Markov-chain model
is given in Figure 2. Let x denote the mean number of
valid pages copied back in GC events. A block at state
i ∈ [x+ 1, Np], where [a, b] stands for the set {a, a+1, ..., b},
has i valid pages. We assume that the state x+1 is the state
with the minimal number of valid pages that a block may
have, and ignore all states with fewer valid pages assuming
they occur with negligible probability.

We define a discrete time axis where each time unit is a
single-page user write. Internal writes due to GC are not
counted in the progression of time. New blocks arrive after
GC at the state Np, and exit from the state x+1 to a block
with x valid pages which is then garbage-collected. The rate
at which blocks transition from x + 1 back to Np by GC is

1

Np−x
, that is, every Np−x user writes the previous frontier

is replaced by a new one. We assume that after a sufficient
amount of time, the device reaches an equilibrium, where
the fraction of pages at a given state is constant. Then from
flow conservation the transition rates between every pair of
neighboring states is equal.

Let fi denote the fraction of blocks in state i. The tran-
sition rate from state i to state i− 1 is the probability that
a user write is addressed to a page in one of the Tfi blocks
in state i. Overall there are iTfi such valid pages, and from
the uniform workload this probability equals i·T ·fi

UNp
. Equat-

ing this probability to the GC rate gives

i · T · fi
UNp

=
1

Np − x
: i ∈ [x+ 1, Np] .

And now substituting the over-provisioning factor T
U

= 1+ρ
and reordering we get

i · fi =
1

1 + ρ
·

Np

Np − x
: i ∈ [x+ 1, Np] . (1)

Now to obtain an expression for x, we sum-up fi for all i,
and equate to 1, as this sum counts all the block fractions
that make up the entirety of the device’s blocks

1 =

Np
∑

x+1

fi =
1

(1 + ρ)
·

Np

Np − x
·

Np
∑

x+1

1

i

⋍

1

(1 + ρ)
·

Np

Np − x
· ln

(

2Np + 1

2x+ 1

)

. (2)

The last (approximate) equality follows from the approxi-
mation

Np
∑

x+1

1

i
⋍

ˆ Np+
1

2

x+ 1

2

1

i
di = ln

(

2Np + 1

2x+ 1

)

.
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Figure 3: Schematic description of the time-locality
model with the locality parameter p.

Now, by rearranging equation (2) we get the final equation

(1 + ρ) · (Np − x)

Np

= ln

(

2Np + 1

2x+ 1

)

. (3)

Using equation (3), we numerically calculate x. The write
amplification then equals

WA =
Np

Np − x
. (4)

In the sequel we extend this Markov analysis technique above
to workloads with time locality and with multi-write. To-
ward that we next formalize the notion of time locality.

3. TIME-LOCALITY MODELING
We now specify a model for workloads with time locality.

The same model that we use here for analysis was used in our
previous work [Odeh 2014] for experimental evaluation of
multi-write architectures with time-locality workloads. We
model time-locality workloads with two parameters describ-
ing the “locality level” of the workload. The first parameter
among the two is the probability for a write to address a
page taken from a pool of recently written pages, which is
called the recent-pool. We denote this probability by p, and
we refer to this type of write as a local write. The page
written in a local write is chosen uniformly from the recent-
pool. A non-local write, happening with probability 1−p, is
chosen uniformly from the entirety of the logical pages. See
Figure 3 for a pictorial description. Hence the probability
for a certain page to be written as a non-local write is

pc =
1− p

UNp

. (5)

We note that the probability in equation (5) is identical to
the uniformly distributed workload when setting p = 0. The
recent-pool size is the second parameter of the workload,
denoted by an integer h. The recent-pool acts as a queue,
i.e, written pages enter the tail of the queue, and leave at the
head of the queue when h more recent pages have entered
the queue. Hence the probability for a certain write to be a
particular page in the recent-pool is

ph =
p

h
. (6)

The probability that a write causes a page to exit the recent-
pool is equal to the probability that a new page enters it.
This probability is equal to the probability that the write is
non-local, and to a page not in the recent-pool. Since the
latter event’s probability is close to 1 (assuming h ≪ UNp),
we approximate this probability to

pexit ⋍ 1− p. (7)

� � � �

Figure 4: The recent-pool queue.

An important component in the analysis is the probability
that a recently user-written page exits the recent-pool queue
without being written again by the user. This probability
is denoted by pe, which turns out to equal pexit as shown
in the subsequent argument. To see that, we examine a
newly user-written page. As a result of the write, it enters
the tail of the recent-pool queue. Those pages that are not
re-written while in the queue advance through the states of
the queue, until they finally exit at the head of the queue
as a result of a non-local write. To calculate the probability
that this happens, we use the state diagram in Figure 4 .
The states in Figure 4, numbered 1 through h, represent
the pages in the queue, where state 1 corresponds to the
tail of the queue, i.e, where newly user-written pages enter,
and the state h corresponds to the head of the queue, i.e,
the last state that a page reaches before it exits the queue.
The edges in the figure represent the possible transitions
of pages between the states, each with the probability for
such transition in a given user-write. The transitions can be
categorized to the following scenarios given a fixed state i:

1. With probability pexit ⋍ 1−p a page not in the recent-
pool is written, in which case the new page enters at
the tail of the queue, i.e, at state 1. All of the pages
in the pool shift one state to the right and the head of
the queue, i.e, the page at state h, exits the pool.

2. With probability ph the page at state i is written, in
which case the page moves back to the tail of the queue,
i.e, to state 1, and the pages to its left move one state
to the right.

3. With probability (i− 1) ph a write is issued to a state
lower than i, leaving the page at its current state i.

4. With probability (h− i) ph a write is issued to a state
higher than i, transferring the written page to the tail
of the queue, and shifting the pages at states i and
lower one state to the right.

To calculate an expression for pe, we construct a system
of equations describing the above behavior of the queue for
each state. Let Pr (i) denote the probability for a page to
exit the head of the queue without experiencing any writes
given that it has reached the state i. For example, the prob-
ability to exit the head of the queue given that the page
already reached the state h, i.e, Pr (h), equals pexit plus the
probability to remain in the same state times Pr (h), see
equation (8) part (3). Now the probability for a page in the
initial state 1 to exit the head of the queue with no addi-
tional writes, i.e, Pr (1), equals the probability for the page
to move one state to the right, times Pr (2), see equation (8)
part (1). And the general case for Pr (i) is equal to the sum
of the probabilities of two scenarios:

1. The probability that the page has stayed in state i
times Pr (i), which is (i− 1) ph ·Pr (i) from transition
type 3 above.
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Figure 5: A block’s life cycle between two consecu-
tive garbage collections of the same block.

2. The probability that the page has moved one state to
the right times Pr (i+ 1), which is (1− i · ph)·Pr (i+ 1)
from transitions 1 and 4 above.

See equation (8) part (2) for the full equation of Pr (i).

(1)
(2)
(3)

pe = Pr (1) = (1− ph) · Pr (2)
Pr (i) = (i− 1) phPr (i) + (1− iph)Pr (i+ 1)

Pr (h) = (h− 1) ph · Pr (h) + (1− p)
(8)

After solving equation (8) we get:

pe = (1− p) . (9)

An interesting implication of equation (9) is that the prob-
ability that a page gets invalidated while in the recent-pool
does not depend on the recent-pool size h, only on p. As a
result, the parameter p will be the key determinant of the
write-amplification performance.

4. SINGLE-WRITE CASE WITH LOCAL-

ITY
In this section we derive an analytical formula for the

write amplification for workloads with time locality. We
will adapt the Markov-chain analysis of Section 2 to capture
the fact that recently written pages have higher likelihood
to be invalidated while in the recent-pool. We examine the
user-written pages added to the frontier block. Each of these
pages will experience one of two scenarios

1. The page does not get written again; in this case the
page remains valid and exits the recent-pool queue.
The probability for this scenario is denoted by pv (valid),
and is equal to pe, the probability for a page to exit
the recent-pool without being written again, defined
in equation (9).

2. The page gets re-written at least once, leaving the
physical page invalid. The probability for this scenario
is denoted pinv (invalid), and pinv = 1− pe.

A block’s life-cycle from frontier to GC consists of the fol-
lowing four epochs (see Figure 5 for a pictorial description)

1. The frontier epoch: After garbage-collecting a block,
its valid pages are written-back to the block along with
new user pages until there is no place left for new
writes.

2. The recent-page epoch: After the frontier epoch is
complete, some of the block’s pages are recent user-
writes, and are still in the recent-pool.

3. The non-local epoch: This epoch makes up the ma-
jority of the block’s life-cycle, and writes issued to the
block’s pages are all non-local writes.

4. GC epoch: The block is selected for garbage-collection
under the minimum-valid (min-valid) policy.

Let n̄ denote the mean number of free pages available in the
beginning of the frontier epoch. Then we have

n̄ = Np − x. (10)

Let Nm denote the mean number of valid pages in a block
at the beginning of the non-local epoch, which includes the
pages copied during GC and user-written pages that left the
recent-pool without re-write. Thus

Nm = x+ pv · n̄. (11)

In this case also we model the blocks using the same Markov
chain as in Figure 2 with one modification: we assume that
blocks enter the Markov chain with Nm valid pages instead
of Np in the all-uniform case. Then the Markov chain de-
scribes the state of the blocks in the non-local epoch. In the
non-local epoch, a block transitions from i valid pages to
i− 1 valid pages with the probability

pc · i.

As in Section 2, we assume that an equilibrium is reached
and that the flow is conserved throughout the chain, hence
the flow of block GC at a rate of 1

Np−x
is equal to the flow

of blocks out of any state. The flow of blocks out of state i
equals the rate of non-local writes times the probability for
such write to reside on a page belonging to such block, which
is equal to pc · i · T · fi. There are only two changes needed
to the analysis from Section 2 to adapt to this case. First,
the probability for a non-local write is 1−p; this means that
not every user-write will be issued to a block in the non-local
epoch. The second difference mentioned above, is that the
non-local blocks start at the state Nm instead of Np, thereby
saving the need to deal with local writes within the Markov
analysis (the local writes during the recent-page epoch are
taken into account through the value of Nm). Hence, the
flow equations are

1− p

UNp

· T · i · fi =
1

Np − x
: i ∈ [x+ 1, Nm] . (12)

Equality follows from substitution of pc from equation (5).
Repeating equation (1) with the necessary modifications we
get

i · fi =
1

(1 + ρ) · (1− p)
·

Np

Np − x
: i ∈ [x+ 1, Nm] . (13)

Similarly to section §2, we sum-up fi for all i ∈ [x+ 1, Nm]
to obtain an expression with x, and approximate the result
to get the following equation for x

(1 + ρ) · (1− p) · (Np − x)

Np

= ln

(

2 ·Nm + 1

2 · x+ 1

)

. (14)

Using equation (14) we numerically calculate x and then
WA by equation (4). We now compare the analysis WA re-
sults to the actual write-amplification values acquired from
the simulations. In Figure 6 we compare the results for
two over-provisioning factors ρ ∈ {0.1, 0.3} using a syn-
thetic workload with locality parameter in the range p ∈
[0, 0.5]. First we observe that the analysis delivers write-
amplification values that are very close to the true experi-
mental results. In particular, the analysis succeeds in pre-
dicting the device behavior of degrading performance with
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Figure 6: Analysis vs. simulation for the time-
locality single-write setup for ρ ∈ {0.1, 0.3} .

the increase in time locality. The degradation is more severe
when the over-provisioning is smaller, while performance
is more flat with larger over-provisioning. Note that it is
not clear a-priori that increased time locality should de-
grade write-amplification performance. On the one hand,
increased time locality lowers the invalidation rate of blocks
in the non-local epoch, which indeed contributes to increased
write amplification. But on the other hand, time locality
also has a favorable effect in that blocks enter the non-local
epoch with fewer valid pages in the first place, due to in-
validations from local writes. So the question that analysis
answers is which of the two conflicting effects prevails, which
turns out to be the former.

5. MULTI-WRITE CASE WITH LOCALITY
We now move to analyze the write amplification of a stor-

age device with multi-write capabilities, i.e., where 2 writes
are allowed in every physical page of the device before era-
sure. We restrict ourselves to the case of t = 2 writes because
we expect higher order multi-writes to exhibit diminishing
returns. It is possible to extend the analysis to larger t, but
some of the steps will require more complex arguments.

Supporting 2 writes through multi-write coding requires
storing logical pages in physical pages that are larger by a
multiplicative expansion factor r > 1. We assume that the
value of the expansion factor r is given to us as an outcome
of the lower-level controller design. With the 2-write ca-
pability, writes may be performed in-place without adding
a new page to the frontier, which lowers the WA. On the
other hand, the redundancy overhead of the code support-
ing 2 writes shrinks the over-provisioned storage available to
mitigate WA in the first place. Our objective now is to ana-
lyze the WA for the 2-write scenario in the presence of time
locality as modeled in Section 3. Since the analysis following
in the remainder of the section is somewhat more involved
than in previous sections, we offer the option to jump di-
rectly to the final solution in Section 5.4. This allows to
use the resulting analysis tool as a design aid, without re-
quiring to understand the details of how the equations were
obtained. That said, we believe that following the analy-
sis at full will provide valuable insight on the behavior of
storage devices with multi-write capabilities.

5.1 The Frontier
We start the analysis by considering the block’s life cycle

as in Section 4, but with significant adaptations necessary

to accommodate in-place re-writes. The first epoch of a
block is the frontier epoch, which is similar to Section 4; in
this case however, the block holds fewer pages, as each page
requires more space to accommodate the expansion of the
2-write code. The remaining epochs are similarly defined as
in Section 4, while adapting to in-place re-writes.

We now show the adaptations applied to the analysis of
Section 4 to handle this case. The mean number of free
pages in a block at the beginning of the frontier epoch, i.e,
n̄, is now smaller due to the expansion factor

n̄ =
Np

r
− x. (15)

In Section 4, each newly written user-write to the frontier
had one of two possibilities: either remaining valid until it
leaves the recent-pool, or being re-written resulting in the
physical page’s invalidation. Now a newly written page has
one of three possibilities before leaving the recent-pool:

1. It does not get written again; hence the physical page
still has one available in-place write before invalida-
tion. We refer to this case by v2. The probability of
this case satisfies pv2 = pe in a similar way to pv in
Section 4.

2. It gets re-written once; in this case the physical page
has a valid content with no extra writes permitted be-
fore erase. We refer to this case by v1. The probability
of this case is equal to the probability that the page
does get another local-write before leaving the pool,
i.e, probability (1− pe); and then exiting the recent-
pool without additional writes, i.e, with probability
pe. Assuming independence between the two events,
we get pv1 = (1− pe) · pe.

3. It gets re-written twice; in this case the physical page
becomes invalid. We refer to this case by inv, short
for invalid. The probability for this case is equal to
the probability for the page to twice get written while
traversing the pool from tail to head. Hence, the prob-
ability for this case equals: pinv = (1− pe)

2.

The probabilities of the 3 possible events above sum to 1.
Now the mean number of valid pages in a block at the be-
ginning of the non-local epoch equals

Nm = x+ (pv1 + pv2) · n̄. (16)

To evaluate the benefit of the 2-write setting, we next need
to find an expression for the probability that a user-write
results in an in-place update, which is a write addressed
to a physical page at state v2. The higher this probability
is, the better the savings are in the consumption of spare
storage for incoming writes.

There are two types of in-place writes each happening
with a different probability: a) A local write to a page at the
frontier or recent-page epochs; we denote this probability by
Pr (localinplace); b) A non-local write to a page at the non-
local epoch; we denote this probability by Pr (nonlocalinplace).
To calculate Pr (localinplace), we denote by Tx the ex-

pected time, measured in units of user writes, that a block
spends in the frontier epoch before moving to the recent-
page epoch. So every Tx user writes, n̄ user-written pages
enter the recent-page queue, and a (1− pv2) fraction of them
will endure an in-place write. Therefore, the rate of in-place



writes hitting pages in the frontier and recent-page epochs
is given by:

Pr (localinplace) =
n̄

Tx

(1− pv2) .

Now moving to calculate Pr (nonlocalinplace), we denote by
DV the mean total number of v2 pages in blocks at the non-
local epoch. To have an in-place update at the non-local
epoch, we first need to have a non-local write, whose prob-
ability is equal to 1− p. Then we also need the write to be
issued to a page that can accommodate an in-place write,
whose probability is equal to DV

U·Np
, and the denominator ne-

glects the relatively few pages in recent-page epoch blocks.
Altogether, the probability Pr (nonlocalinplace) is equal to

Pr (nonlocalinplace) = (1− p) ·
DV

U ·Np

.

If we sum together the in-place probabilities Pr (localinplace)
and Pr (nonlocalinplace) and take the complement, we get
the fraction of user writes that result in adding a page to
the frontier. We denote this value by a, where

a = 1− Pr (localinplace)− Pr (nonlocalinplace) .

We view a ≤ 1 as the slope of the function tracking the num-
ber of free pages in the frontier block at discrete times in-
dexed by user writes. In other words, starting at n̄ free pages
immediately after GC, each user write on average decreases
the number of free pages by a. In the analysis of Section 4
where no in-place writes are possible, the slope a equals 1.
Substituting Pr (localinplace) and Pr (nonlocalinplace) , we
get

a = 1−
n̄

Tx

(1− pv2)− (1− p) ·
DV

U ·Np

.

Now we can write a simple but important relation between
the slope a, the number of free pages in a new frontier block
n̄, and the number of user writes during the frontier epoch
Tx

aTx = n̄.

Using the last equation, we substitute a = n̄
Tx

in the previous
slope equation and get

Np

r
− x

Tx

=
1− (1− p) DV

UNp

2− pv2
. (17)

Each Tx logical user writes “cost” Tx + x physical writes: x
(defined in Section 2) for GC writes, and Tx in frontier and
in-place writes. Therefore, an expression for the WA as a
function of Tx and x is given by

WA =
Tx + x

Tx

. (18)

Next we derive another equation connecting the unknowns
Tx, DV and x.

5.2 Double-Valid Estimation
Let Ndv denote the mean number of v2 pages in a block

when it enters its non-local epoch. Note that there are two
different origins for these v2 pages: some were added as GC
write-back pages, and some were added by user writes. Since
GC written pages do not enter the recent-page queue, the
probability to re-write them during the short epochs prior

to the non-local epoch is very small. So we can assume
without significant loss of precision that all of the x GC
written pages are at state v2. For the user-written v2 pages
we use the notations of Section 5.1, by which n̄ user-written
pages are added to the frontier, and a pv2 fraction of them
remain at state v2 throughout the recent-page epoch. So
altogether we reach the following expression for Ndv

Ndv = x+ pv2 · n̄. (19)

To calculate DV (the mean total number of non-local epoch
v2 pages), we define the function ndv (t) for the number of
v2 pages in a block, t user writes from the time the block
entered the non-local epoch. We have the relation ndv (0) =
Ndv. Then DV is calculated as the sum over all T blocks

DV =

T−1
∑

i=0

ndv (iTx) ,

where we used the fact that every Tx user writes a new block
enters the non-local epoch. To obtain an analytic expression,
we define dt = Tx, and use a continuous-time approximation

DV =
1

Tx

T−1
∑

i=0

ndv (i · dt) dt ⋍
1

Tx

T ·Tx
ˆ

0

ndv (t) dt, (20)

where the right-hand side follows from substituting t = i ·dt.
Now at the continuous-time domain, we write the differential
equation governing Ndv (t) and its solution as

dndv (t)

dt
= −pc · ndv (t) ⇒ ndv (t) = Ndv · e−pc·t, (21)

where pc, defined in (5), is the probability to hit each non-
local epoch v2 page. Now substituting the right-hand side
of (21) in the integral of (20), we get

DV ⋍

Ndv

pc · Tx

·
[

1− e−pc·T ·Tx

]

. (22)

5.3 Minimum-Valid Estimation
The final, and most interesting step in the analysis is the

calculation of x, the expected number of valid pages in the
min-valid block. The task at hand is to extend the analysis
of Section4 to the case of t = 2 re-writable pages. The
challenge in this extension is that now the blocks’ Markov
process needs to track the number of pages in each of the
valid-page states v1 and v2. For that we define a new Markov
process where each state is defined by a pair of indices i, j.
A block is at state i, j in the Markov process if it has i valid
pages at state v1 (no re-write remaining), and j valid pages
at state v2 (one re-write remaining). The fraction of blocks
in state i, j is denoted fi,j , and

∑

i,j
fi,j = 1. The total

number of valid pages in a block at state i, j is i + j. As
always with a Markov analysis, we assume that the device
has reached a steady state, in particular, the fractions fi,j
remain constant in time.

The 2-dimensional Markov diagram for the case of t = 2
re-writable pages is given in Figure 7. The diagram describes
the dynamics of the blocks during the non-local epoch. There
are three types of transitions in the Markov diagram of Fig-
ure 7. The first type occurs with a non-local write on a v1
page, which invalidates it and decreases by one the num-
ber of v1 pages in the block, while leaving the number of v2
pages unchanged. The rate of this transition equals to

Rate (fi,j → fi−1,j) = pc · i. (23)



Figure 7: A 2D Markov chain describing t = 2 multi-
write.

The second type occurs with a non-local write on a v2 page
followed by at least one local write on the same page be-
fore its retirement from the recent-page queue. In such case
the number of v2 pages decreases by one, while leaving the
number of v1 pages unchanged. The rate of this transition
equals to

Rate (fi,j → fi,j−1) = pc · (1− pv2) · j. (24)

The third type occurs with a non-local write on a v2 page
followed by the retirement of the page from the recent-page
queue without experiencing a local write. In such case the
number of v2 pages decreases by one, while the number of
v1 pages increases by one. The rate of this transition equals
to

Rate (fi,j → fi+1,j−1) = pc · pv2 · j. (25)

We now look at diagonal cuts in the Markov diagram,
that is, edges between states with i+ j ≥ s and states with
i+ j < s, for s ∈ [x+ 1, Nm]. Recall from Section 4 that the
number of valid pages is assumed to be between an upper
limit of Nm at the start of the non-local epoch, and a lower
limit of x when chosen for GC. Each diagonal cut is crossed
by transition edges of the first (23) and second (24) types in
the direction of decreasing i+j. In the opposite direction we
have transitions of total rate 1/Tx due to GC, where recall
from Section 5.1 that every Tx user writes a new block is
cleaned and becomes the frontier. Summing over all the
state transitions in diagonal s, we get the following flow
conservation equation

∑

i+j=s

[(1− pv2) · j + i] · pc · fi,jT =
1

Tx

. (26)

To get the final equation we use the property
∑

i,j
fi,j = 1.

By rearranging the sum, substituting (26) and using the
logarithm approximation similar to Sections 2,4, we get the
following

∑

i,j

fi,j =
1

pcTxT
·

Nm
∑

s=x+1

1

s
+ pv2 ·

∑

i,j

j

i+ j
· fi,j . (27)

For the second sum we approximate the average of the indi-
vidual j to i + j ratios by the global double-valid to total-
valid ratio1.

≃
1

pcTxT
· ln

(

2 ·Nm + 1

2 · x+ 1

)

+ pv2 ·
DV

U ·Np

. (28)

Finally, by substituting 1 =
∑

i,j
fi,j we get the (approxi-

mate) equation

1The approximation works well because the ratios are
smaller than 1 and bounded away from 0.
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Figure 8: Analysis vs. simulation of the time-
locality with multi-write setup for ρ = {0.3, 0.4}.

1

pcTxT
· ln

(

2 ·Nm + 1

2 · x+ 1

)

= 1− pv2 ·
DV

U ·Np

. (29)

5.4 Final Solution for Multi-Write
Altogether, for the analysis of t = 2 multi-write architec-

ture we have the 3 unknown variables Tx, DV , x, for which
we use the 3 equations (17), (22), and (29). Once we nu-
merically solve this system of equations, we obtain the WA
as

WA =
Tx + x

Tx

,

as prescribed in equation (18).
To test the accuracy of our analysis we compare the WA

values from the solution of the 3 equations to the write am-
plification obtained through simulation of a storage device
whose pages support t = 2 multi-writes. We use the pa-
rameters ρ = {0.3, 0.4} and r = 1.261 (a capacity-achieving
multi-write code for t = 2 writes). We plot the resulting val-
ues for p ∈ [0, 0.5], shown in Figure 8. Now with multi-write
too we see that the analysis is quite accurate, and that write
amplification grows with the time locality. As before, time
locality has a mixed effect on page invalidation, and now
even more complex due to the effect of double-valid pages
on the consumption rate of pages at the frontier. Therefore,
it is necessary to solve the derived system of equations to
find the true balance between the internal variables, which
together determine the actual write amplification value.

6. ADVANCED MULTI-WRITE ARCHITEC-

TURES
It has been shown in [Luojie 2012B] that having multi-

write access for the entire storage space saves WA only when
the over-provisioning is very high. To address that, in a pre-
vious work [Odeh 2014] we proposed two mapping architec-
tures that use multi-write access more parsimoniously, and
as a result reduce WA significantly for low over-provisioning
as well. We thus wish to extend the multi-write time-locality
WA analysis to these more practical architectures. As it
turns out, for one of the architectures the analysis of Section
5 carries over with almost no change. Alas for the second
architecture, which was shown in [Odeh 2014] to offer the
best WA performance, we need substantial new ideas for the
analysis. These two architectures are discussed in the two
sub-sections now following.
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Figure 9: Analysis vs. simulation of the selective
architecture for ρ = {0.2, 0.3}.

6.1 The Selective Architecture
The architecture called selective in [Odeh 2014] allocates

pages with multi-write capability to all user writes, while GC
writes are allocated regular no multi-write pages. Both types
of pages reside in the same blocks. Consequently, pages
written by the user can be updated in-place once before their
erasure, while pages copied back in GC cannot be further
updated in place. The rationale behind this architecture is
that time locality in the workload renders user writes much
more likely for update than “older” copied-back pages.

Comparing to the architecture with all multi-write capa-
bility analyzed in Section 5, the selective architecture man-
ifests two minor changes. First, the number of free pages
available for user writes in the frontier is larger, because the
x copied-back pages do not consume the r > 1 expansion
factor. Therefore, we now have

n̄ =
Np − x

r

(compare to (15)). Second, the mean number of v2 pages
in the beginning of the non-local epoch does not have a
contribution from the x copied-back pages. Hence it changes
to

Ndv = n̄ · pv2 (30)

(compare to (19)). After applying those two simple changes,
the analysis proceeds identically to Section 5 with the same
equations. While simple conceptually, these changes induce
a vast change on the device write-amplification performance.
We present the analysis results versus the simulation results
for ρ = {0.2, 0.3}, r = 1.261, and p ∈ [0, 0.5]. See Figure 9,
and compare to the much worse results in Figure 8. Another
good feature revealed by the analysis is that the performance
of the selective architecture is much less sensitive to the
time-locality level.

6.2 The Double-Front Architecture
The architecture called double-front in [Odeh 2014] applies

a similar differentiation between user and GC writes as the
selective architecture. The difference is that in double-front
we send user-writes with multi-write, and GC writes without
multi-write to separate blocks. In effect, the double-front
architecture manages two write frontiers: one for user writes
and one for GC writes – hence its name. The advantage of
this architecture over the selective architecture is in reducing
the dependence between user-written and GC-written pages
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Figure 10: Double-front architecture: either a user
or an internal block is selected for GC, and written
to the internal-block frontier.

when choosing a block for cleaning, thus achieving lower
WA in general. The disadvantages are the more complex
management of two frontiers, and harder analysis. As in
Section 5, we offer the option to jump directly to the final
solution in Section 6.3, but recommend reading through to
get valuable insights.

Blocks storing user-writes with multi-write are called user-
blocks in the sequel, and the ones storing GC writes with-
out multi-write are called internal-blocks. Each user-block
in the user-frontier has space for Np/r user writes, while
each internal-block in the internal-frontier has space for Np

GC writes. Upon selection for cleaning, a physical block
may change its function between being a user-block and an
internal-block. For the sake of analysis, we model the collec-
tions of user-blocks and internal-blocks by separate Markov
chains labeled Musr and Mint, respectively. The Markov
chain Mint is similar to the one used in Section 4 for a no
multi-write architecture. The Markov chain Musr is similar
to the one used in Section 5 for an all multi-write architec-
ture. So the main challenge here is the joint analysis of these
two dependent Markov chains. In the notation of Section 4
we denote the fraction of blocks in state i of Mint by f int

i . In
the notation of Section 5 we denote the fraction of blocks in
state i, j of Musr by fusr

i,j . Because Mint and Musr partition
the entirety of blocks, we have

∑

i

f int
i +

∑

i,j

fusr
i,j = 1. (31)

As we defined Tx in Section 5.1, we now define Tusr and Tint

for Musr and Mint, respectively: a new block becomes the
frontier user-block every Tusr user writes, and a new block
becomes the frontier internal-block every Tint user writes.
Clearly Tusr and Tint are dependent through the single GC
selection policy looking for the min-valid block among both
user-blocks and internal-blocks. The relation between the
two Markov chains is better understood with the illustra-
tion of Figure 10. But for now we can re-write the flow
equations from Sections (4),(5) replacing Tx by Tint and
Tusr , respectively

i · pc · f
int
i · T =

1

Tint

, (32)

∑

i+j=s

[(1− pv2) · j + i] · pc · f
usr
i,j T =

1

Tusr

. (33)

Note that the values of pc, pv2 are unchanged from their
earlier uses. We define |Musr| =

∑

i,j
fusr
i,j as the fraction of

blocks functioning as user-blocks in the device. Then using
(32) and the same logarithmic approximation from (2) we



get the following equation

ln
(

2·Np+1

2·x+1

)

pcTintT
= 1− |Musr|. (34)

By using the same decomposition from (27) on (33), and
skipping some technical details2, we get

1

pcTusrT
· ln

(

2 ·Nm + 1

2 · x+ 1

)

= |Musr| − pv2 ·
DV

U ·Np

, (35)

where Nm is adapted to reflect that in the user-block frontier
there are only user writes

Nm = (pv1 + pv2) · n̄, n̄ =
Np

r
. (36)

Another required adaptation is for DV to reflect that there
are only T |Musr| blocks with double-valid pages, and that
these blocks are used only for user-writes

DV =
Ndv

pc · Tusr

·
[

1− e−pc·T |Musr|·Tusr

]

, Ndv = pv2 · n̄

(37)
(compare to (22) and (19)). The next equation is obtained
by carrying over (17) from Section 5.1, which gives

Np

r

Tusr

=
1− (1− p) DV

UNp

2− pv2
. (38)

Finally, the most interesting equation is the one tying to-
gether the two frontiers

x

[

1

Tusr

+
1

Tint

]

=
Np

Tint

, (39)

where the left-hand side is the rate of internal GC writes
cleaning both user and internal blocks, and the right-hand
side is the rate of pages becoming available for GC writes at
the internal-block frontier.

6.3 Final Solution for Double-Front
Altogether, for the analysis of the double-front architec-

ture we have the 5 unknown variables Tusr, Tint, |Musr|,
DV , x, for which we use the 5 equations (34), (35), (37),
(38), and (39). Once we numerically solve this system of
equations, we obtain the WA as

WA =
Np + Tint

Tint

,

since every Tint user writes a full Np-page internal-block is
consumed for non-user GC writes.

To test the accuracy of our analysis we compare the WA
values from the solution of the 5 equations to the write am-
plification obtained through simulation of the double-front
architecture. We use the parameters ρ = {0.2, 0.3} and
r = 1.261. We plot the resulting values for p ∈ [0, 0.5],
shown in Figure 11. The first thing to observe is that the
analysis still nicely tracks the behavior of the device, but
with more visible inaccuracies. This fact is justified by the

2The only new assumption we add to get the following is
that |Musr| is also the fraction of valid logical pages in user-
blocks, which is reasonable because the joint GC balances
the valid-page counts.
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Figure 11: Analysis vs. simulation of the double-
front architecture for ρ = {0.2, 0.3}.

complexity of the analysis in this case, which required some
“heavier duty” approximations. The results show that the
double-front architecture outperforms all previous architec-
tures. Another advantage is that if we fix all the parameters
of the setup, we may often see an improvement in the perfor-
mance when increasing the time locality. This means that
the double-front is an especially attractive architecture for
workloads with inherent time-locality features.

7. CONCLUSION
We have developed write-amplification analysis for natu-

ral and novel setups with time locality and multi-write ac-
cess. The main contributions are formally derived systems
of equations that can be efficiently solved by storage devel-
opers and operators to predict the device performance in
real systems. In addition, the analytical derivation has also
provided insights on the inner workings of device architec-
tures in the presence of time locality and multi-writes. For
future work we identify the following interesting directions

1. Analyzing multi-write with more than two writes.
2. The analysis for sub-optimal garbage collection poli-

cies to lower the computational complexity of the garbage-
collection algorithm.

3. Combining spatial-locality and hot/cold separation
with time locality, to capture the most realistic workloads.
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