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Igal Sason

Abstract

New upper bounds on the relative entropy are derived as a function of the total variation distance.
One bound refines an inequality by Verdú for general probability measures. A second bound improves
the tightness of an inequality by Csiszár and Talata for arbitrary probability measures that are defined on
a common finite set. The latter result is further extended, for probability measures on a finite set, leading
to an upper bound on the Rényi divergence of an arbitrary non-negative order (including ∞) as a function
of the total variation distance. Another lower bound by Verdú on the total variation distance, expressed in
terms of the distribution of the relative information, is tightened and it is attained under some conditions.
The effect of these improvements is exemplified.

Keywords: Pinsker’s inequality, relative entropy, relative information, Rényi divergence, total
variation distance, typical sequences.

I. INTRODUCTION

Consider two probability measures P and Q defined on a common measurable space (A,F).
The Csiszár-Kemperman-Kullback-Pinsker inequality states that

D(P∥Q) ≥ log e

2
· |P −Q|2 (1)

where
D(P∥Q) = EP

[
log

dP
dQ

]
=

∫
A

dP log
dP
dQ

(2)

designates the relative entropy from P to Q (a.k.a. the Kullback-Leibler divergence), and

|P −Q| = 2 sup
A∈F

∣∣P (A)−Q(A)
∣∣ (3)

designates the total variation distance (or L1 distance) between P and Q. One of the implications
of inequality (1) is that convergence in relative entropy implies convergence in total variation
distance. The total variation distance is bounded |P −Q| ≤ 2, in contrast to the relative entropy.

Inequality (1) is a.k.a. Pinsker’s inequality, although the analysis made by Pinsker [15] leads
to a significantly looser bound where log e

2 on the RHS of (1) is replaced by log e
408 (see [25,

Eq. (51)]). Improved and generalized versions of Pinsker’s inequality have been studied in [7],
[8], [9], [14], [18], [24].

For any ε > 0, there exists a pair of probability measures P and Q such that |P−Q| ≤ ε while
D(P∥Q) = ∞. Consequently, a reverse Pinsker inequality which provides an upper bound on
the relative entropy in terms of the total variation distance does not exist in general. Nevertheless,
under some conditions, such inequalities hold [4], [25], [26] (to be addressed later in this section).

If P ≪ Q, the relative information in a ∈ A according to (P,Q) is defined to be

iP∥Q(a) , log
dP
dQ

(a). (4)
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From (2), the relative entropy can be expressed in terms of the relative information as follows:

D(P∥Q) = E
[
iP∥Q(X)

]
= E

[
iP∥Q(Y ) exp

(
iP∥Q(Y )

)]
(5)

where X ∼ P and Y ∼ Q (i.e., X and Y are distributed according to P and Q, respectively).
The total variation distance is also expressible in terms of the relative information [25]. If Q ≪ P

|P −Q| = E
[∣∣1− exp

(
iP∥Q(Y )

)∣∣] (6)

and if, in addition, P ≪ Q, then

|P −Q| = E
[∣∣1− exp

(
−iP∥Q(X)

)∣∣]. (7)

Let
β−1
1 , sup

a∈A

dP
dQ

(a) (8)

with the convention, implied by continuity, that β1 = 0 if iP∥Q is unbounded from above. With
β1 ≤ 1, as it is defined in (8), the following inequality holds (see [25, Theorem 7]):

1

2
|P −Q| ≥

(
1− β1

log 1
β1

)
D(P∥Q). (9)

From (9), if the relative information is bounded from above, a reverse Pinsker inequality holds.
This inequality has been recently used in the context of the optimal quantization of probability
measures when the distortion is either characterized by the total variation distance or the relative
entropy between the approximating and the original probability measures [2, Proposition 4].

Inequality (9) is refined in this work, and the improvement that is obtained by this refinement
is exemplified (see Section II).

In the special case where P and Q are defined on a common discrete set (i.e., a finite or
countable set) A, the relative entropy and total variation distance are simplified to

D(P∥Q) =
∑
a∈A

P (a) log
P (a)

Q(a)
,

|P −Q| =
∑
a∈A

∣∣P (a)−Q(a)
∣∣ , |P −Q|1.

A restriction to probability measures on a finite set A has led in [4, p. 1012 and Lemma 6.3]
to the following upper bound on the relative entropy in terms of the total variation distance:

D(P∥Q) ≤
(
log e

Qmin

)
· |P −Q|2, (10)

where Qmin , mina∈AQ(a), suggesting a kind of a reverse Pinsker inequality for probability
measures on a finite set. A recent application of this bound has been exemplified in [13,
Appendix D] and [23, Lemma 7] for the analysis of the third-order asymptotics of the discrete
memoryless channel with or without cost constraints.

The present paper also considers generalized reverse Pinsker inequalities for Rényi diver-
gences. In the discrete setting, the Rényi divergence of order α from P to Q is defined as

Dα(P ||Q) , 1

α− 1
log

(∑
a∈A

Pα(a)Q1−α(a)

)
, ∀α ∈ (0, 1) ∪ (1,∞). (11)



3

Recall that D1(P∥Q) , D(P∥Q) is defined to be the analytic extension of Dα(P ||Q) at α = 1
(if D(P ||Q) < ∞, it can be verified with L’Hôpital’s rule that D(P ||Q) = limα→1− Dα(P ||Q)).
The extreme cases of α = 0,∞ are defined as follows:

• If α = 0 then D0(P ||Q) = − logQ(Support(P )) where Support(P ) = {x ∈ X : P (x) > 0}
denotes the support of P ,

• If α = +∞ then D∞(P ||Q) = log
(

ess sup P
Q

)
where ess sup f denotes the essential

supremum of a function f .
Pinsker’s inequality has been generalized by Gilardoni [9] for Rényi divergences of order

α ∈ (0, 1] (see also [6, Theorem 30]), and it gets the form

Dα(P∥Q) ≥ α log e

2
· |P −Q|2.

An improved bound, providing the best lower bound on the Rényi divergence of order α > 0
in terms of the total variation distance, has been recently introduced in [20, Section 2].

Motivated by these findings, the analysis in this paper suggests an improvement over the upper
bound on the relative entropy in (10) for probability measures defined on a common finite set.
The improved version of the bound in (10) is further generalized to provide an upper bound on
the Rényi divergence of orders α ∈ [0,∞] in terms of the total variation distance.

Note that the issue addressed in this paper of deriving, under suitable conditions, upper bounds
on the relative entropy as a function of the total variation distance has some similarity to the
issue of deriving upper bounds on the difference between entropies as a function of the total
variation distance. Note also that in the special case where Q is a Gaussian distribution and P is
a probability distribution with the same covariance matrix, then D(P∥Q) = h(Q)−h(P ) where
h(·) denotes the differential entropy of a specified distribution (see [3, Eq. (8.76)]). Bounds on
the entropy difference in terms of the total variation distance have been studied, e.g., in [3,
Theorem 17.3.3], [11], [16], [17], [19], [26, Section 1.7], [27].

This paper is structured as follows: Section II refers to [25], deriving a refined version of
inequality (9) for general probability measures, and improving another lower bound on the total
variation distance which is expressed in terms of the distribution of the relative information.
Section III derives a reverse Pinsker inequality for probability measures on a finite set, improving
inequality (10) that follows from [4, Lemma 6.3]. Section IV extends the analysis to Rényi
divergences of arbitrary non-negative orders. Section V exemplifies the utility of a reverse Pinsker
inequality in the context of typical sequences.

II. A REFINED REVERSE PINSKER INEQUALITY FOR GENERAL PROBABILITY MEASURES

The present section derives a reverse Pinsker inequality for general probability measures,
suggesting a refined version of [25, Theorem 7]. The utility of this new inequality is exemplified.
This section also provides a lower bound on the total variation distance which is based on the
distribution of the relative information; the latter inequality is based on a modification of the
proof of [25, Theorem 8], and it has the advantage of being tight for a double-parameter family
of probability measures which are defined on an arbitrary set of 2 elements.

A. Main Result and Proof

Inequality (9) provides an upper bound on the relative entropy D(P∥Q) as a function of the
total variation distance when P ≪ Q, and the relative information iP∥Q is bounded from above
(this implies that β1 in (8) is positive). The following theorem tightens this upper bound.
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Theorem 1: Let P and Q be probability measures on a measurable space (A,F), P ≪ Q,
and let β1, β2 ∈ [0, 1] be given by

β−1
1 , sup

a∈A

dP
dQ

(a), β2 , inf
a∈A

dP
dQ

(a). (12)

Then, the following inequality holds:

D(P∥Q) ≤ 1

2

(
log 1

β1

1− β1
− β2 log e

)
|P −Q|. (13)

Proof: Let X ∼ P , Y ∼ Q, and

B ,
{
a ∈ A : iP∥Q(a) > 0

}
. (14)

From (5), the relative entropy is equal to

D(P∥Q) =

∫
A

dQ exp
(
iP∥Q

)
iP∥Q

=

∫
B

dQ exp
(
iP∥Q

)
iP∥Q +

∫
A\B

dQ exp
(
iP∥Q

)
iP∥Q. (15)

In the following, the two integrals on the RHS of (15) are upper bounded. The upper bound on
the first integral on the RHS of (15) is based on the proof of [25, Theorem 7]; it is provided
in the following for completeness, and with more details in order to clarify the way that this
bound is refined here. Let z(a) , exp(iP∥Q(a)) for a ∈ A. By assumption 1 < z(a) ≤ 1

β1
for

all a ∈ B. The function f(z) = z log(z)
z−1 is monotonic increasing over the interval (1,∞) since

we have (z − 1)2f ′(z) = (z − 1) log e− log z > 0 for z > 1. Consequently, we have

z(a) log z(a)

z(a)− 1
≤

log 1
β1

1− β1
, ∀ a ∈ B (16)

and ∫
B

dQ exp
(
iP∥Q

)
iP∥Q

(a)
≤

log 1
β1

1− β1

∫
B

dQ
(
exp(iP∥Q)− 1

)
(b)
=

log 1
β1

1− β1

∫
A

dQ(a)
(
1− exp(iP∥Q(a))

)−
(c)
=

(
log 1

β1

1− β1

)
E
[(
1− exp(iP∥Q(Y ))

)−]
(d)
=

(
log 1

β1

2(1− β1)

)
|P −Q| (17)

where inequality (a) follows from (16), equality (b) is due to (14) and the definition (a)− ,
−a 1{a < 0}, equality (c) holds since Y ∼ Q, and equality (d) follows from [25, Eq. (14)].
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At this point, we deviate from the analysis in [25] where the second integral on the RHS of
(15) has been upper bounded by zero (since iP∥Q(a) ≤ 0 for all a ∈ A \ B). If β2 > 0, we
provide in the following a strictly negative upper bound on this integral. Since P ≪ Q, we have∫

A\B
dQ exp

(
iP∥Q

)
iP∥Q

(a)
=

∫
{a∈A : iP∥Q(a)<0}

dQ(a)
dP
dQ

(a) iP∥Q(a)

(b)
≤ β2

∫
{a∈A : iP∥Q(a)<0}

dQ(a) iP∥Q(a)

(c)
≤ β2 log e

∫
{a∈A : iP∥Q(a)<0}

dQ(a)
(
exp
(
iP∥Q(a)

)
− 1
)

(d)
= −β2 log e

∫
A\B

dQ(a)
(
1− exp

(
iP∥Q(a)

))
(e)
= −β2 log e

∫
A

dQ(a)
(
1− exp

(
iP∥Q(a)

))+
(f)
= −β2 log e · E

[(
1− exp(iP∥Q(Y ))

)+]
(g)
= −β2 log e

2
· |P −Q| (18)

where equality (a) holds due to (4), (14) and since the integrand is zero if iP∥Q = 0, inequality (b)
follows from the definition of β2 in (12) and since iP∥Q is negative over the domain of integration,
inequality (c) holds since the inequality x ≤ log e

(
exp(x) − 1

)
is satisfied for all x ∈ R,

equalities (d) and (e) follow from the definition of the set B in (14), equality (f) holds since
Y ∼ Q, and equality (g) follows from [25, Eq. (15)].

Inequality (13) finally follows by combining (15), (17) and (18).

B. Example for the Refined Inequality in Theorem 1
We exemplify in the following the improvement obtained by (13), in comparison to (9), due

to the introduction of the additional parameter β2 in (12). Note that when β2 is replaced by
zero (i.e., no information on the infimum of dP

dQ is available or β2 = 0), inequalities (9) and (13)
coincide.

Let P and Q be two probability measures, defined on a set A, where P ≪ Q and assume
that

1− η ≤ dP
dQ

(a) ≤ 1 + η, ∀ a ∈ A (19)

for a fixed constant η ∈ (0, 1).
In (13), one can replace β1 and β2 with lower bounds on these constants. From (12), we have

β1 ≥ 1
1+η and β2 ≥ 1− η, and it follows from (13) that

D(P∥Q) ≤ 1

2

(
(1 + η) log(1 + η)

η
− (1− η) log e

)
|P −Q|

≤ 1

2

(
(1 + η) log e− (1− η) log e

)
|P −Q|

=
(
η log e

)
|P −Q|. (20)
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From (19) ∣∣exp(iP∥Q(a)
)
− 1
∣∣ ≤ η, ∀ a ∈ A

so, from (6), the total variation distance satisfies (recall that Y ∼ Q)

|P −Q| = E
[∣∣exp(iP∥Q(Y )

)
− 1
∣∣] ≤ η.

Combining the last inequality with (20) gives that

D(P∥Q) ≤ η2 log e, ∀ η ∈ (0, 1). (21)

For comparison, it follows from (9) (see [25, Theorem 7]) that

D(P∥Q) ≤
log 1

β1

2(1− β1)
· |P −Q|

≤ (1 + η) log(1 + η)

2η
· |P −Q|

≤ 1

2
(1 + η) log(1 + η)

≤
(
log e

2

)
η(1 + η). (22)

Let η ≈ 0. The upper bound on the relative entropy in (22) scales like η whereas the tightened
bound in (21) scales like η2. The scaling in (21) is correct, as it follows from Pinsker’s inequality.
For example, consider the probability measures defined on a two-element set A = {a, b} with

P (a) = Q(b) =
1

2
− η

4
, P (b) = Q(a) =

1

2
+

η

4
.

Condition (19) is satisfied for η ≈ 0, and Pinsker’s inequality yields that

D(P∥Q) ≥
(
log e

2

)
η2 (23)

so the ratio of the upper and lower bounds in (21) and (23) is 2, and both provide the true
quadratic scaling in η whereas the weaker upper bound in (22) scales linearly in η for η ≈ 0.

C. Another Lower Bound on the Total Variation Distance

The following lower bound on the total variation distance is based on the distribution of the
relative information, and it improves the lower bounds in [15, Eq. (2.3.18)], [22, Lemma 7] and
[25, Theorem 8] by modifying the proof of the latter theorem in [25]. Besides of improving the
tightness of the bound, the motivation for the derivation of the following lower bound is that it
is achieved under some conditions.

Theorem 2: If P and Q are mutually absolutely continuous probability measures, then

|P −Q| ≥ sup
η>0

{(
1− exp(−η)

) (
P
[
iP∥Q(X) ≥ η

]
+ exp(η) P

[
iP∥Q(X) ≤ −η

])}
(24)

where X ∼ P . This lower bound is attained if P and Q are probability measures on a 2-element
set A = {a, b} where, for an arbitrary η > 0,

P (a) =
exp(η)− 1

2 sinh(η)
, Q(a) =

1− exp(−η)

2 sinh(η)
. (25)
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Proof: Since P ≪≫ Q, we have

|P −Q| = E
[∣∣1− exp

(
−iP∥Q(X)

)∣∣]
≥ E

[∣∣1− exp
(
−iP∥Q(X)

)∣∣ 1{∣∣iP∥Q(X)
∣∣ ≥ η

}]
, ∀ η > 0

where 1{·} is the indicator function of the specified event (it is equal to 1 if the event occurs,
and it is zero otherwise). At this point we deviate from the proof of [25, Theorem 8], and write

|P −Q| ≥ E
[∣∣1− exp

(
−iP∥Q(X)

)∣∣ 1{iP∥Q(X) ≥ η
}]

+ E
[∣∣1− exp

(
−iP∥Q(X)

)∣∣ 1{iP∥Q(X) ≤ −η
}]

(a)
≥
(
1− exp(−η)

)
E
[
1
{
iP∥Q(X) ≥ η

}]
+
(
exp(η)− 1

)
E
[
1
{
iP∥Q(X) ≤ −η

}]
=
(
1− exp(−η)

) (
P
[
iP∥Q(X) ≥ η

]
+ exp(η) P

[
iP∥Q(X) ≤ −η

])
(26)

where step (a) follows from the inequality
∣∣1 − exp(−z)

∣∣ ≥ 1 − exp(−η) if z ≥ η, and∣∣1 − exp(−z)
∣∣ ≥ exp(η) − 1 if z ≤ −η. Taking the supremum on the right-hand side of (26),

w.r.t. the free parameter η > 0, gives the lower bound on |P −Q| in (24).
The condition (25) for the tightness of the lower bound in (24) follows from the fact that,

for an arbitrary η > 0, we have log
(
P (a)
Q(a)

)
= η and log

(
1−P (a)
1−Q(a)

)
= −η. This yields that the

inequalities in the derivation of the lower bound (24) turn to be satisfied with equalities.
Remark 1: One can further tighten the lower bound in (24) by writing, for arbitrary η1, η2 > 0,

|P −Q| ≥ E
[∣∣1− exp

(
−iP∥Q(X)

)∣∣ 1{iP∥Q(X) ≥ η1
}]

+ E
[∣∣1− exp

(
−iP∥Q(X)

)∣∣ 1{iP∥Q(X) ≤ −η2
}]

and proceeding similarly to (26) to get the following lower bound on the total variation distance:

|P −Q| ≥ sup
η1,η2>0

{(
1− exp(−η1)

) (
P
[
iP∥Q(X) ≥ η1

]
+

(
exp(η2)− 1

1− exp(−η1)

)
P
[
iP∥Q(X) ≤ −η2

])}
.

This lower bound is achieved if P and Q are probability measures on a 2-element set A = {a, b}
where, for an arbitrary η1, η2 > 0,

P (a) =
exp(η1)− exp(η1 − η2)

exp(η1)− exp(−η2)
, Q(a) =

1− exp(−η2)

exp(η1)− exp(−η2)
(27)

which implies that log
(
P (a)
Q(a)

)
= η1 and log

(
1−P (a)
1−Q(a)

)
= −η2. Condition (27) is specialized to

the condition in (25) when η1 = η2 = η > 0.

III. A REVERSE PINSKER INEQUALITY FOR PROBABILITY MEASURES ON A FINITE SET

The present section introduces a strengthened version of inequality (10) (see Theorem 3) as
a reverse Pinsker inequality for probability measures on a finite set, followed by a discussion
and an example.
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A. Main Result and Proof

Theorem 3: Let P and Q be probability measures defined on a common finite set A, and
assume that Q is strictly positive on A. Then, the following inequality holds:

D(P∥Q) ≤ log

(
1 +

|P −Q|2

2Qmin

)
− β2 log e

2
· |P −Q|2 (28)

where

Qmin , min
a∈A

Q(a) > 0, β2 , min
a∈A

P (a)

Q(a)
∈ [0, 1]. (29)

Remark 2: The upper bound on the relative entropy in Theorem 3 improves the bound in
(10). The improvement in (28) is demonstrated as follows: let V , |P − Q|, then the RHS of
(28) satisfies

log

(
1 +

V 2

2Qmin

)
− β2 log e

2
· V 2 ≤ log

(
1 +

V 2

2Qmin

)
≤ V 2 log e

2Qmin
≤ V 2 log e

Qmin
.

Hence, the upper bound on D(P∥Q) in Theorem 3 can be loosened to (10).
Proof: Theorem 3 is proved by obtaining upper and lower bounds on the χ2-divergence

from P to Q

χ2(P,Q) ,
∑
a∈A

(P (a)−Q(a))2

Q(a)
=
∑
a∈A

P (a)2

Q(a)
− 1. (30)

A lower bound follows by invoking Jensen’s inequality:

χ2(P,Q) =
∑
a∈A

P (a)2

Q(a)
− 1

=
∑
a∈A

P (a) exp

(
log

P (a)

Q(a)

)
− 1

≥ exp

(∑
a∈A

P (a) log
P (a)

Q(a)

)
− 1

= exp
(
D(P∥Q)

)
− 1. (31)

A refined version of (31) is derived in the following. The starting point of its derivation relies on
a refined version of Jensen’s inequality from [5, Theorem 1], which enables to get the inequality

min
a∈A

P (a)

Q(a)
·D(Q||P ) ≤ log

(
1 + χ2(P,Q)

)
−D(P ||Q) ≤ max

a∈A

P (a)

Q(a)
·D(Q||P ). (32)

Inequality (32) is proved in the appendix. From the LHS of (32) and the definition of β2 in
(29), we have

χ2(P,Q) ≥ exp
(
D(P∥Q) + β2D(Q∥P )

)
− 1

≥ exp

(
D(P∥Q) +

β2 log e

2
· |P −Q|2

)
− 1 (33)

where the last inequality relies on Pinsker’s lower bound on D(Q∥P ). Inequality (33) refines
the lower bound in (31) since β2 ∈ [0, 1], and it coincides with (31) in the worst case where
β2 = 0.



9

An upper bound on χ2(P,Q) is derived as follows:

χ2(P,Q) =
∑
a∈A

(P (a)−Q(a))2

Q(a)

≤
∑

a∈A
(
P (a)−Q(a)

)2
mina∈AQ(a)

≤
maxa∈A |P (a)−Q(a)|

∑
a∈A

∣∣P (a)−Q(a)
∣∣

mina∈AQ(a)

=
|P −Q| maxa∈A |P (a)−Q(a)|

Qmin
(34)

and, from (3),

|P −Q| ≥ 2max
a∈A

|P (a)−Q(a)| (35)

since, for every a ∈ A, the 1-element set {a} is included in the σ-algebra F . Combining (34)
and (35) gives that

χ2(P,Q) ≤ |P −Q|2

2Qmin
. (36)

Inequality (28) finally follows from the bounds on the χ2-divergence in (33) and (36).
Corollary 1: Under the same setting as in Theorem 3, we have

D(P∥Q) ≤ log

(
1 +

|P −Q|2

2Qmin

)
. (37)

Proof: This inequality follows from (28) and since β2 ≥ 0.

B. Discussion

In the following, we discuss Theorem 3 and its proof, and link it to some related results.

Remark 3: The combination of (31) with the second line of (34), without further loosening
the upper bound on the χ2-divergence as is done in the third line of (34) and inequality (35),
gives the following tighter upper bound on the relative entropy in terms of the Euclidean norm
|P −Q|2:

D(P∥Q) ≤ log

(
1 +

|P −Q|22
Qmin

)
. (38)

This improves the upper bound on the relative entropy in the proofs of Property 4 of [23,
Lemma 7] and [13, Appendix D]:

D(P∥Q) ≤ |P −Q|22 log e

Qmin
.

Furthermore, avoiding the use of Jensen’s inequality in (31), gives the equality (see [6, Eq. (6)])

χ2(P,Q) = exp
(
D2(P∥Q)

)
− 1 (39)

whose combination with the second line of (34) gives

D2(P∥Q) ≤ log

(
1 +

|P −Q|22
Qmin

)
. (40)
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Inequality (40) improves the tightness of inequality (38). Note that (40) is satisfied with equality
when Q is an equiprobable distribution over a finite set.

Remark 4: Inequality (31) improves the lower bound on the χ2-divergence in [4, Lemma 6.3]
which states that χ2(P,Q) ≥ D(P∥Q); this improvement also follows from [6, Eqs. (6), (7)].

Remark 5: The upper bound on the relative entropy in (28) involves the parameter β2 ∈ [0, 1]
as defined in (29). A non-trivial lower bound on β2 can be used in conjunction with (28) for
improving the upper bound in Corollary 1. We derive in the following a lower bound on β2 for
a given probability measure Q and a given total variation distance |P −Q|, which can be used
in conjunction with (28), to get an upper bound on the relative entropy D(P∥Q). We have

β2 = min
a∈A

P (a)

Q(a)
≥ Pmin

Qmax

where
Pmin , min

a∈A
P (a), Qmax , max

a∈A
Q(a).

Note that, if |P −Q| < Qmin then Pmin ≥ Qmin − |P −Q| > 0. Let (x)+ , max
{
x, 0
}

, then

β2 ≥
(
Qmin − |P −Q|

)+
Qmax

. (41)

Remark 6: In an attempt to extend the concept of proof of Theorem 3 to general probability
measures, we have

χ2(P,Q) =

∫
A

(
dP
dQ

− 1

)2

dQ

= E
[(
exp
(
iP∥Q(Y )

)
− 1
)2]

(Y ∼ Q)

≤ sup
a∈A

∣∣exp(iP∥Q(a)
)
− 1
∣∣ · E[∣∣exp(iP∥Q(Y )

)
− 1
∣∣]

(a)
= sup

a∈A

∣∣exp(iP∥Q(a)
)
− 1
∣∣ · |P −Q|

= sup
a∈A

∣∣∣dP
dQ

(a)− 1
∣∣∣ · |P −Q| (42)

where equality (a) holds due to (6). Let β1, β2 ∈ [0, 1] be defined as in Theorem 1 (see (12)).
Since we have β2 ≤ dP

dQ (a) ≤ β−1
1 for all a ∈ A then

sup
a∈A

∣∣∣dP
dQ

(a)− 1
∣∣∣ ≤ max

{
β−1
1 − 1, 1− β2

}
. (43)

A combination of (42) and (43) leads to the following upper bound on the χ2-divergence:

χ2(P,Q) ≤ max
{
β−1
1 − 1, 1− β2

}
· |P −Q|. (44)

A combination of (39) (see [6, Eq. (6)]) and (44) gives

D2(P∥Q) ≤ log
(
1 + max

{
β−1
1 − 1, 1− β2

}
· |P −Q|

)
(45)

and since the Rényi divergence is monotonic non-decreasing in its order (see, e.g., [6, Theo-
rem 3]) and D(P∥Q) = D1(P∥Q), it follows that

D(P∥Q) ≤ log
(
1 + max

{
β−1
1 − 1, 1− β2

}
· |P −Q|

)
. (46)
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A comparison of the upper bound on the relative entropy in (46) and the bound of Theorem 1
in (13) yields that the latter bound is superior. Hence, the extension of the concept of proof of
Theorem 3 to general probability measures does not improve the bound in Theorem 1.

Remark 7: The second inequality in (33) relies on Pinsker’s inequality as a lower bound on
D(Q∥P ). This lower bound can be slightly improved by invoking higher-order Pinsker’s-type
inequalities (see [9, Section 5] and references therein). In [9, Section 6], Gilardoni derived a lower
bound on the relative entropy which is tight for both large and small total variation distances.
Hence, the second inequality in (33) can instead rely on the inequality (see [9, Eq. (2)]):

D(Q∥P ) ≥ − log

(
1− |P −Q|

2

)
−
(
1− |P −Q|

2

)
log

(
1 +

|P −Q|
2

)
.

Note that although the latter lower bound on the relative entropy is tight for both large and small
total variation distances, it is not uniformly tighter than Pinsker’s inequality. For this reason and
for the simplicity of the bound, we rely on Pinsker’s inequality in the second inequality of
(33). An exact parametrization of the minimum of the relative entropy in terms of the total
variation distance was introduced in [7, Theorem 1], expressed in terms of hyperbolic functions;
the bound, however, is not expressed in closed form in terms of the total variation distance.

Remark 8: A related problem to Theorem 3 has been recently studied in [1]. Consider an
arbitrary probability measure Q, and an arbitrary ε ∈ [0, 2]. The problem studied in [1] is the
characterization of D∗(ε,Q), defined to be the infimum of D(P ||Q) over all probability measures
P that are at least ε-far away from Q in total variation, i.e.,

D∗(ε,Q) = inf
P : |P−Q|≥ε

D(P∥Q), ε ∈ [0, 2].

Note that D(P∥Q) < ∞ yields that Supp(P ) ⊆ Supp(Q). From Sanov’s theorem (see [3,
Theorem 11.4.1]), D∗(ε,Q) is equal to the asymptotic exponential decay of the probability that
the total variation distance between the empirical distribution of a sequence of i.i.d. random
variables and the true distribution (Q) is more than a specified value ε. Upper and lower bounds
on D∗(ε,Q) have been introduced in [1, Theorem 1], in terms of the balance coefficient β ≥ 1

2
that is defined as

β , inf

{
x ∈

{
Q(A) : A ∈ F

}
: x ≥ 1

2

}
.

It has been demonstrated in [1, Theorem 1] that

D∗(ε,Q) = Cε2 +O(ε3) (47)

where
1

4(2β − 1)
log

(
β

1− β

)
≤ C ≤ log e

8β(1− β)
.

If the support of Q is a finite set A, Theorem 3 and (41) yield that

D∗(ε,Q) ≤ log

(
1 +

ε2

2Qmin

)
− log e

2
· 1

Qmax
·
(
Qmin − ε

)+
.

Hence, it follows that D∗(ε,Q) ≤ C1ε
2 +O(ε3) where

C1 =
log e

2

(
1

Qmin
− Qmin

Qmax

)
.

Similarly to (47), the same quadratic scaling of D∗(ε,Q) holds for small values of ε, but with
different coefficients.
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C. Example: Total Variation Distance From the Equiprobable Distribution

Let A be a finite set, and let U be the equiprobable probability measure on A (i.e., U(a) = 1
|A|

for every a ∈ A). The relative entropy of an arbitrary distribution P on A with respect to the
equiprobable distribution satisfies

D(P∥U) = log |A| −H(P ). (48)

From Pinsker’s inequality (1), the following upper bound on the total variation distance holds:

|P − U | ≤
√

2

log e
·
(
log |A| −H(P )

)
. (49)

From [26, Theorem 2.51], for all probability measures P and Q,

|P −Q| ≤ 2
√

1− exp
(
−D(P∥Q)

)
which gives the second upper bound

|P − U | ≤ 2

√
1− 1

|A|
· exp

(
H(P )

)
. (50)

From Theorem 3 and (41), we have

D(P∥U) ≤ log

(
1 +

|A|
2

· |P − U |2
)
−
(
|A| log e

2

)
·
(

1

|A|
− |P − U |

)+

· |P − U |2.

A loosening of the latter bound by removing its second non-negative term on the RHS of this
inequality, in conjunction with (48), leads to the following closed-form expression for the lower
bound on the total variation distance:

|P − U | ≥

√
2

(
exp
(
−H(P )

)
− 1

|A|

)
. (51)

Let H(P ) = β log |A|, so β ∈ [0, 1]. From (49), (50) and (51), it follows that√√√√2

[(
1

|A|

)β

− 1

|A|

]
≤ |P − U | ≤ min

{√
2(1− β) ln |A|, 2

√
1− |A|β−1

}
. (52)

As expected, if β = 1, both upper and lower bounds are equal to zero (since D(P∥U) = 0).
The lower bound on the LHS of (52) improves the lower bound on the total variation distance
which follows from (10):

|P − U | ≥

√
(1− β) ln |A|

|A|
(53)

For example, for a set of size |A| = 1024 and β = 0.5, the improvement in the new lower
bound on the total variation distance is from 0.0582 to 0.2461.

Note that if β → 0 (i.e., P is far in relative entropy from the equiprobable distribution), and
the set A stays fixed, the ratio between the upper and lower bounds in (52) tends to

√
2. On the

other hand, in this case, the ratio between the upper and the looser lower bound in (53) tends to

2

√
|A| − 1

ln |A|
,

which can be made arbitrarily large for a sufficiently large set A.
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IV. EXTENSION OF THEOREM 3 TO RÉNYI DIVERGENCES

The present section extends Theorem 3 to Rényi divergences of an arbitrary order α ∈ [0,∞]
(i.e., it relies on Theorem 3 to provide a generalization of the special case where α = 1), and
the use of this generalized inequality is exemplified.

A. Main Result and Proof

The following theorem provides a kind of a generalized reverse Pinsker inequality where the
Rényi divergence of an arbitrary order α ∈ [0,∞] is upper bounded in terms of the total variation
distance for probability measures defined on a common finite set.

Theorem 4: Let P and Q be probability measures on a common finite set A, and assume that
P,Q are strictly positive. Let ε , |P −Q| (recall that ε ∈ [0, 2]), ε′ , min{1, ε}, and

Pmin , min
a∈A

P (a), Qmin , min
a∈A

Q(a).

Then, the Rényi divergence of order α ∈ [0,∞] satisfies

Dα(P∥Q) ≤



log
(
1 + ε

2Qmin

)
, if α ∈ (2,∞]

log
(
1 + ε ε′

2Qmin

)
, if α ∈ [1, 2]

min {f1, f2} , if α ∈
(
1
2 , 1
)

min
{
−2 log

(
1− ε

2

)
, f1, f2

}
, if α ∈

[
0, 12
]

(54)

where, for α ∈ [0, 1),

f1 ≡ f1(α, Pmin, Qmin, ε) ,
(

α

1− α

)[
log

(
1 +

ε2

2Pmin

)
−
(
Qmin log e

2

)
ε2
]
, (55)

f2 ≡ f2(Pmin, Qmin, ε, ε
′) , log

(
1 +

ε ε′

2Qmin

)
−
(
Pmin log e

2

)
ε2. (56)

Proof: The Rényi divergence of order ∞ satisfies (see, e.g., [6, Theorem 6])

D∞(P ||Q) = log

(
ess sup

P

Q

)
.

Since, by assumption, the probability measures P and Q are defined on a common finite set A

D∞(P ||Q) = log

(
max
a∈A

P (a)

Q(a)

)
= log

(
1 + max

a∈A

P (a)−Q(a)

Q(a)

)
≤ log

(
1 +

maxa∈A |P (a)−Q(a)|
mina∈AQ(a)

)
≤ log

(
1 +

|P −Q|
2Qmin

)
(57)
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where the last inequality follows from (35). Since the Rényi divergence of order α ∈ [0,∞] is
monotonic non-decreasing in α (see, e.g., [6, Theorem 3]), it follows from (57) that

Dα(P∥Q) ≤ D∞(P∥Q) ≤ log

(
1 +

ε

2Qmin

)
, ∀α ∈ [0,∞] (58)

which proves the first line in (54) when the validity of the bound is restricted to α ∈ (2,∞].
For proving the second line in (54), it is shown that the bound in (37) can be sharpened by

replacing D(P∥Q) on the LHS of (37) with the quadratic Rényi divergence D2(P∥Q) (note
that D2(P∥Q) ≥ D(P∥Q)), leading to

D2(P∥Q) ≤ log

(
1 +

|P −Q|2

2Qmin

)
. (59)

The strengthened inequality in (59), in comparison to (37), follows by replacing inequality (31)
with the equality in (39). Combining (36) and (39) gives inequality (59), and

Dα(P∥Q) ≤ D2(P∥Q) ≤ log

(
1 +

ε2

2Qmin

)
, ∀α ∈ [0, 2]. (60)

The combination of (58) with (60) gives the second line in (54) (note that εε′ = min{ε, ε2})
while the validity of the bound is restricted to α ∈ [1, 2].

For α ∈ (0, 1), Dα(P∥Q) satisfies the skew-symmetry property Dα(P∥Q) = α
1−α ·D1−α(Q∥P )

(see, e.g., [6, Proposition 2]). Consequently, we have

Dα(P∥Q) =

(
α

1− α

)
D1−α(Q∥P )

≤
(

α

1− α

)
D(Q∥P )

≤
(

α

1− α

)[
log

(
1 +

ε2

2Pmin

)
−
(
Qmin log e

2

)
ε2
]
, ∀α ∈ (0, 1) (61)

where the first inequality holds since the Rényi divergence is monotonic non-decreasing in its
order, and the second inequality follows from Theorem 3 which implies that

D(Q∥P ) ≤ log

(
1 +

ε2

2Pmin

)
− log e

2
·min
a∈A

Q(a)

P (a)
· ε2

≤ log

(
1 +

ε2

2Pmin

)
−
(
Qmin log e

2

)
ε2.

The third line in (54) follows from (58), (60) and (61) while restricting the validity of the bound
to α ∈

(
1
2 , 1
)
.

For proving the fourth line in (54), note that from (11) D1/2(P∥Q) = −2 logZ(P,Q) where
Z(P,Q) ,

∑
a∈A

√
P (a)Q(a) is the Bhattacharyya coefficient between P and Q [12]. The

Bhattacharyya distance is defined as minus the logarithm of the Bhattacharyya coefficient, which
is non-negative in general and it is zero if and only if P = Q (since 0 ≤ Z(P,Q) ≤ 1, and
Z(P,Q) = 1 if and only if P = Q). Hence, the Rényi divergence of order 1

2 is twice the
Bhattacharyya distance. Based on the inequality Z(P,Q) ≥ 1− |P−Q|

2 , which follows from [10,
Example 6.2] (see also [21, Proposition 1]), we have

Dα(P∥Q) ≤ D1/2(P∥Q) ≤ −2 log
(
1− ε

2

)
, ∀α ∈

[
0,

1

2

]
(62)

where ε , |P −Q| ∈ [0, 2]. Finally, the last case in (54) follows from (58), (60), (61) and (62).
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B. Example: Rényi Divergence for Multinomial Distributions

Let X1, X2, . . . be independent Bernoulli random variables with Xi ∼ Bernoulli(pi), and let
Y1, Y2, . . . be independent Bernoulli random variables with Yi ∼ Bernoulli(qi) (assume w.l.o.g.
that qi ≤ 1

2 ). Let Un and Vn be the partial sums Un =
∑n

i=1Xi and Vn =
∑n

i=1 Yi, and let
PUn

, PVn
denote their multinomial distributions. For all α ∈ [0, 2] and n ∈ N, we have

Dα(PUn
∥PVn

)

(a)
≤ Dα(PX1,...,Xn

∥PY1,...,Yn
)

(b)
=

n∑
i=1

Dα(PXi
∥PYi

)

(c)
≤ log

(
1 +

|PXi
− PYi

|2

2
(
PYi

)
min

)
(d)
=

n∑
i=1

log

(
1 + 2qi

(
pi
qi

− 1

)2
)

(63)

where inequality (a) follows from the data processing inequality for the Rényi divergence (see
[6, Theorem 9]), equality (b) follows from the additivity property of the Rényi divergence under
the independence assumption for {Xi} and for {Yi} (see [6, Theorem 28]), inequality (c) follows
from Theorem 4, and equality (d) holds since |PXi

− PYi
| = 2|pi − qi| for Bernoulli random

variables, and (PYi
)min = min{qi, 1− qi} = qi (qi ≤ 1

2). Similarly, for all α > 2 and n ∈ N,

Dα(PUn
∥PVn

) ≤
n∑

i=1

log

(
1 + 2

∣∣∣∣piqi − 1

∣∣∣∣) . (64)

The only difference in the derivation of (64) is in inequality (c) of (63) where the bound in the
first line of (54) is used this time.

Let {εn}∞n=1 be a non-negative sequence such that

(1− εn)qn ≤ pn ≤ (1 + εn)qn, ∀n ∈ N
and ∞∑

n=1

ε2n < ∞.

Then, from (63), it follows that Dα(PUn
∥PVn

) ≤ K1 for all α ∈ [0, 2] and n ∈ N where

K1 ,
∞∑
n=1

log
(
1 + ε2n

)
< ∞.

Furthermore, if
∑∞

n=1 εn < ∞, it follows from (64) that Dα(PUn
∥PVn

) ≤ K2 for all α > 2
and n ∈ N where

K2 ,
∞∑
n=1

log (1 + 2εn) < ∞.

Note that although Dα(PXi
∥PYi

) in equality (b) of (63) is equal to the binary Rényi divergence

dα(pi∥qi) ,


(

1
α−1

)
log
(
pαi q

1−α
i + (1− pi)

α(1− qi)
1−α
)
, if α ∈ (0, 1) ∪ (1,∞)

pi log
(
pi

qi

)
+ (1− pi) log

(
1−pi

1−qi

)
, if α = 1

the reason for the use of the upper bounds in step (c) of (63) and (64) is to state sufficient
conditions, in terms of {εn}∞n=1, for the boundedness of the Rényi divergence Dα(PUn

∥PVn
).
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V. THE EXPONENTIAL DECAY OF THE PROBABILITY FOR A NON-TYPICAL SEQUENCE

Let UN = (U1, . . . , UN ) be a sequence of i.i.d. symbols that are emitted by a memoryless
and stationary source with distribution Q and a finite alphabet A. Let |A| = r < ∞ denote
the cardinality of the source alphabet, and assume that all symbols are emitted with positive
probability (i.e., Qmin , mina∈AQ(a) > 0). The empirical probability distribution of the emitted
sequence P̂UN is given by

P̂UN (a) , 1

N

N∑
k=1

1{Uk = a}, ∀ a ∈ A.

For an arbitrary δ > 0, let the δ-typical set be defined as

TQ(δ) ,
{
uN ∈ AN :

∣∣P̂uN (a)−Q(a)
∣∣ < δQ(a), ∀ a ∈ A

}
, (65)

i.e., the empirical distribution of every symbol in an N -length δ-typical sequence deviates from
the true distribution of this symbol by a fraction of less than δ. Consequently, the complementary
of (65) is given by

TQ(δ)
c =

{
uN ∈ AN : ∃ a ∈ A,

∣∣P̂uN (a)−Q(a)
∣∣ ≥ δ Q(a)

}
.

From Sanov’s theorem (see [3, Theorem 11.4.1]), the asymptotic exponential decay of the
probability that a sequence UN is not δ-typical, for a specified δ > 0, is given by

lim
N→∞

− 1

N
logQN

(
TQ(δ)

c) = min
P∈PQ

D(P∥Q) (66)

where

PQ ,
{
P is a probability measure on (A,F) : ∃ a ∈ A, |P (a)−Q(a)| ≥ δ Q(a)

}
. (67)

We obtain in the following explicit upper and lower bounds on the exponential decay rate on
the RHS of (66). The emphasis is on the upper bound, which is based on Theorem 3, and we
first introduce the lower bound for completeness. The derivation of the lower bound is similar to
the analysis in [14, Section 4]; note, however, that there is a difference between the δ-typicality
in [14, Eq. (19)] and the way it is defined in (65). The probability-dependent refinement of
Pinsker’s inequality (see [14, Theorem 2.1]) states that

D(P∥Q) ≥ φ(πQ) |P −Q|2 (68)

where

πQ , max
A∈F

min
{
Q(A), 1−Q(A)

}
≤ 1

2
(69)

and

φ(p) =

 1
4(1−2p) log

(
1−p
p

)
, if p ∈

[
0, 12
)
,

log e
2 , if p = 1

2

(70)
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is a monotonic decreasing and continuous function. Hence, φ(πQ) ≥ log e
2 , and (68) forms a

probability-dependent refinement of Pinsker’s inequality [14]. From (67) and (68), we have

min
P∈PQ

D(P∥Q)

≥ φ(πQ) min
P∈PQ

|P −Q|2

= φ(πQ)

(
min
a∈A

δ Q(a)

)2

= φ(πQ)Q
2
min δ

2 , EL (71)

≥
(
Q2

min log e

2

)
δ2 (72)

where the transition from (71) to (72) follows from the global lower bound on φ(πQ).
We derive in the following an upper bound on the asymptotic exponential decay rate in (66):

min
P∈PQ

D(P∥Q)

(a)
≤ min

P∈PQ

{
log

(
1 +

|P −Q|2

2Qmin

)}

= log

(
1 +

(
minP∈PQ

|P −Q|
)2

2Qmin

)

(b)
= log

(
1 +

(
mina∈A (δ Q(a)

)2
2Qmin

)

= log

(
1 +

Qmin δ
2

2

)
, EU (73)

where inequality (a) follows from (37), and equality (b) follows from (67).
The ratio between the upper and lower bounds on the asymptotic exponent in (66), as given

in (71) and (73) respectively, satisfies

1 ≤ EU

EL

=
1

Qmin
· log e

2φ(πQ)
·
log
(
1 + Qmin δ2

2

)
log e · Qmin δ2

2

(74)

≤ 1

Qmin

where inequality (74) follows from the fact that the second and third multiplicands in (74) are
both less than or equal to 1. Note that both bounds in (71) and (73) scale like δ2 for δ ≈ 0.

APPENDIX: A PROOF OF INEQUALITY (32)

This appendix proves inequality (32), which provides upper and lower bounds on the difference
log
(
1 + χ2(P,Q)

)
−D(P∥Q) in terms of the dual relative entropy D(Q∥P ). To this end, we

first prove a new inequality relating f -divergences [21], and the bounds in (32) then follow as
a special case.
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Recall the following definition of an f -divergence:
Definition 1: Let f : (0,∞) → R be a convex function with f(1) = 0, and let P and Q be

two probability measures defined on a common finite set A. The f -divergence from P to Q is
defined by

Df (P ||Q) ,
∑
a∈A

Q(a) f

(
P (a)

Q(a)

)
(75)

with the convention that

0f
(0
0

)
= 0, f(0) = lim

t→0+
f(t),

0f
( b
0

)
= lim

t→0+
tf
(b
t

)
= b lim

u→∞

f(u)

u
, ∀ b > 0. (76)

Proposition 1: Let f : (0,∞) → R be a convex function with f(1) = 0 and assume that the
function g : (0,∞) → R, defined by g(t) = −tf(t) for every t > 0, is also convex. Let P and Q
be two probability measures that are defined on a finite set A, and assume that P,Q are strictly
positive. Then, the following inequality holds:

min
a∈A

P (a)

Q(a)
·Df (P ||Q) ≤ −Dg(P ||Q)− f

(
1 + χ2(P,Q)

)
≤ max

a∈A

P (a)

Q(a)
·Df (P ||Q). (77)

Proof: Let A =
{
a1, . . . , an

}
, and u = (u1, . . . , un) ∈ Rn

+ be an arbitrary n-tuple with
positive entries. Define

Jn(f, u, P ) ,
n∑

i=1

P (ai) f(ui)− f

(
n∑

i=1

P (ai)ui

)
,

Jn(f, u,Q) ,
n∑

i=1

Q(ai) f(ui)− f

(
n∑

i=1

Q(ai)ui

)
.

(78)

The following refinement of Jensen’s inequality has been introduced in [5, Theorem 1] for a
convex function f : (0,∞) → R:

min
i∈{1,...,n}

P (ai)

Q(ai)
· Jn(f, u,Q) ≤ Jn(f, u, P ) ≤ max

i∈{1,...,n}

P (ai)

Q(ai)
· Jn(f, u,Q). (79)

Let ui , P (ai)
Q(ai)

for i ∈ {1, . . . , n}. Calculation of (78) gives that

Jn(f, u,Q) =

n∑
i=1

Q(ai) f

(
P (ai)

Q(ai)

)
− f

(
n∑

i=1

Q(ai) ·
P (ai)

Q(ai)

)

=
∑
a∈A

Q(a) f

(
P (a)

Q(a)

)
− f(1)

= Df (P ||Q), (80)

Jn(f, u, P ) =

n∑
i=1

P (ai) f

(
P (ai)

Q(ai)

)
− f

(
n∑

i=1

P (ai)
2

Q(ai)

)
(a)
= −

n∑
i=1

Q(ai) g

(
P (ai)

Q(ai)

)
− f

(
n∑

i=1

P (ai)
2

Q(ai)

)
(b)
= −Dg(P ||Q)− f

(
1 + χ2(P,Q)

)
(81)
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where equality (a) holds by the definition of g, and equality (b) follows from equalities (30) and
(75). The substitution of (80) and (81) into (79) gives inequality (77).

As a consequence of Proposition 1, we prove inequality (32). Let f(t) = − log(t) for t > 0.
The function f : (0,∞) → R is convex with f(1) = 0, and g(t) = −tf(t) = t log(t) for
t > 0 is also convex with g(1) = 0. Inequality (32) follows by substituting f, g into (77) where
Df (P ||Q) = D(Q||P ) and Dg(P ||Q) = D(P ||Q). Inequality (32) also holds in the case where
P is not strictly positive on A with the convention in (76) where 0 log 0 = limt→0+ g(t) = 0.
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[1] D. Berend, P. Harremoës and A. Kontorovich, “Minimum KL-divergence on complements of L1 balls,” IEEE
Trans. on Information Theory, vol. 60, no. 6, pp. 3172–3177, June 2014.
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[7] A. A. Fedotov, P. Harremoës and F. Topsøe, “Refinements of Pinsker’s inequality,” IEEE Trans. on Information

Theory, vol. 49, no. 6, pp. 1491–1498, June 2003.
[8] G. L. Gilardoni, “On the minimum f -divergence for given total variation,” Comptes Rendus Mathematique,

vol. 343, no. 11–12, pp. 763–766, 2006.
[9] G. L. Gilardoni, “On Pinsker’s and Vajda’s type inequalities for Csiszár’s f -divergences,” IEEE Trans. on

Information Theory, vol. 56, no. 11, pp. 5377–5386, November 2010.
[10] A. Guntuboyina, S. Saha and G. Schiebinger, “Sharp inequalities for f -divergences,” IEEE Trans. on Information

Theory, vol. 60, no. 1, pp. 104–121, January 2014.
[11] S. W. Ho and R. W. Yeung, “The interplay between entropy and variational distance,” IEEE Trans. on Information

Theory, vol. 56, no. 12, pp. 5906–5929, December 2010.
[12] T. Kailath, “The divergence and Bhattacharyya distance measures in signal selection,” IEEE Trans. on

Communication Technology, vol. 15, no. 1, pp. 52–60, February 1967.
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