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Abstract. We consider a simplified version of a solvable model by Mandal and

Jarzynski, which constructively demonstrates the interplay between work extraction

and the increase of the Shannon entropy of an information reservoir which is in contact

with a physical system. We extend Mandal and Jarzynski’s main findings in several

directions: First, we allow sequences of correlated bits rather than just independent

bits. Secondly, at least for the case of binary information, we show that, in fact,

the Shannon entropy is only one measure of complexity of the information that must

increase in order for work to be extracted. The extracted work can also be upper

bounded in terms of the increase in other quantities that measure complexity, like

the predictability of future bits from past ones. Third, we point out to a partial

extension to the case of non–binary information (i.e., a larger alphabet), and finally,

we extend the scope to the case where the incoming bits (before the interaction) form

an individual sequence, rather than a random one. In this case, the entropy before

the interaction can be replaced by the Lempel–Ziv (LZ) complexity of the incoming

sequence, a fact that gives rise to an entropic meaning of the LZ complexity, not only

in information theory, but also in physics.
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1. Introduction

Information processing and the role that it plays in thermodynamics is a very well–

known concept that dates back to the second half of the nineteenth century, namely,

to James Clerk Maxwell and his famous gedanken experiment, known as Maxwell’s

demon [13]. The Maxwell demon experiment shows that an intelligent agent, with

access to measurements of velocities and positions of particles in a gas, is able to separate

speedy particles from the slower ones, thereby creating a temperature difference without

injecting energy into the system, which is seemingly in conflict with the second law of

thermodynamics. Several decades later, Leo Szilard [18] continued this line of thought,

and demonstrated the conversion of heat into work, using a model of a box that contains

a single particle. He showed that by measurement and control, one may be able to

extract work in a closed cycle of the system, which is again, in apparent contradiction

with to the second law.

This suspected violation of the second law has triggered a long–lasting controversy

and many other thought–provoking gedanken experiments that have eventually

furnished the basis for a rather large of volume of theoretical work concerning the role

and the implications of information processing in thermodynamics. A non–exhaustive

list of recent works on the modern approach of incorporating informational ingredients

in physical systems includes [1], [2], [3], [5], [6], [8], [9], [10], [11], [14], [15], [17], [19], [20],

and [21]. In some of these works, the informational resources are available by means of

measurement and feedback control (like in the Maxwell’s demon and Szilard’s engine)

and other works are about physical systems that include, in addition to the traditional

heat reservoir, also an information reservoir, which interacts with the system, but

without any energy exchange. The main common motive in these works is in extended

versions of the second law, where the expression of the entropy increase includes an extra

entropic term that is associated with the information exchange. These extended versions

of the second law are, of course, intimately related to Landauer’s erasure principle [12].

Unlike earlier proposed thought experiments, that were mostly described in generic

terms and were not fully specified, Mandal and Jarzynski [14] were the first to propose

an explicit solvable model of a concrete system that behaves in the spirit of the Maxwell

demon. Specifically, they described and analyzed a relatively simple autonomous system

(based on a six–state Markov jump process), that when works as an engine, it converts

thermal fluctuations (heat) into mechanical work, while writing digital information onto

a running tape (in the role of an information reservoir), thereby increasing its Shannon

entropy. It may also act as an eraser, which implements the opposite process of losing

energy while erasing information, that is, decreasing the entropy. Several variations on

this model, based on similar ideas, were offered in some subsequent works, e.g., [1], [2],

[3], and [15].

In this paper, we consider a simplified version‡ of Mandal and Jarzynski’s model

[14] and we focus on extensions of their findings in several directions.

‡ Instead of the six–state Markov process of [14], we use a two–state process, which is easier to analyze.
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(i) Allowing sequences of correlated bits rather than just independent bits.

(ii) At least for the case of binary information, it is shown that, in fact, the Shannon

entropy is only one measure of complexity of the information that must increase in

order for work to be extracted. The extracted work can also be upper bounded

in terms of the increase in other quantities that measure complexity, like the

predictability of future bits from past ones.

(iii) A partial extension is offered for the case of non–binary information (i.e., digital

information with a larger alphabet).

(iv) Extension of the scope to the case where the incoming bits (before the interaction)

form an individual sequence, namely, a deterministic sequence rather than a random

one.

In the last item above, instead of the term of information entropy before the interaction,

we have the Lempel–Ziv (LZ) complexity [22] of the incoming sequence, a fact that gives

rise to an entropic meaning of the LZ complexity, not only in information theory, but

also in physics.

We believe that similar extensions can be offered also for the other variations of

this model, that appear in [1], [2], [3], and [15], as mentioned.

2. Notation Conventions

Throughout the paper, random variables will be denoted by capital letters, specific

values they may take will be denoted by the corresponding lower case letters, and their

alphabets will be denoted by calligraphic letters. Random vectors, their realizations

and their alphabets will be denoted, respectively, by capital letters, the corresponding

lower case letters, and the corresponding calligraphic letters, all superscripted by their

dimension. For example, the random vector Xn = (X1, . . . , Xn), (n – positive integer)

may take a specific vector value xn = (x1, . . . , xn) in X n, which is the n–th order

Cartesian power of X , the alphabet of each component of this vector. The probability

of an event E will be denoted by P [E ]. The indicator function of an event E will be

denoted by I[E ].

The Shannon entropy of a discrete random variable X will be denoted§ by H(X),

that is,

H(X) = −
∑

x∈X

P (x) lnP (x), (1)

where {P (x), x ∈ X} is the probability distribution of X. When we wish to emphasize

the dependence of the entropy on the underlying distribution P , we denote it by H(P ).

The binary entropy function will be defined as

h(p) = −p ln p − (1 − p) ln(1 − p), 0 ≤ p ≤ 1. (2)

§ Following the customary notation conventions in information theory, H(X) should not be understood

as a function H of the random outcome of X , but as a functional of the probability distribution of X .
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Similarly, for a discrete random vector Xn = (X1, . . . , Xn), the joint entropy is denoted

by H(Xn) (or by H(X1, . . . , Xn)), and defined as

H(Xn) = −
∑

xn∈Xn

P (xn) ln P (xn). (3)

The conditional entropy of a generic random variable U over a discrete alphabet U ,

given another generic random variable V ∈ V, is defined as

H(U |V ) = −
∑

u∈U

∑

v∈V

P (u, v) lnP (u|v), (4)

which should not be confused with the conditional entropy given a specific realization

of V , i.e.,

H(U |V = v) = −
∑

u∈U

P (u|v) lnP (u|v). (5)

The mutual information between U and V is

I(U ; V ) = H(U) − H(U |V )

= H(V ) − H(V |U)

= H(U) + H(V ) − H(U, V ), (6)

where it should be kept in mind that in all three definitions, U and V can themselves

be random vectors. The Kullback–Leibler divergence (a.k.a. relative entropy or cross-

entropy) between two distributions P and Q on the same alphabet X , is defined as

D(P‖Q) =
∑

x∈X

P (x) ln
P (x)

Q(x)
. (7)

3. Setup Description, Preliminaries and Objectives

Consider the system depicted in the Fig. 1, which is a simplified version of the one in

[14].

10

0 0 0 01 1 1 1 10 0 0

half cycle CW

half cycle CCW

m

Figure 1. A system that interacts with a sequence of bits recorded on a running tape.

A device that consists of a wheel that is loaded (via a another wheel with

transmission) by a mass m, interacts with a running tape that bears digital information

in the form of a series of incoming bits, denoted x1, x2, . . ., xi ∈ {0, 1}, i = 1, 2, . . ..
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The device also interacts thermally with a heat bath at temperature T (not shown in

Fig. 1) in the form of heat exchange, but there is no energy exchange with the tape.

During each time interval of τ seconds, iτ ≤ t < (i + 1)τ (i – positive integer), the

device interacts with the i–th bit, xi, in the following manner: If xi = 0, then the initial

state of the composite system (device plus bit) is ‘0’ and then, due to random thermal

fluctuations, the wheel may spontaneously rotate, say, half a cycle counter–clockwise

(CCW) at a random time, thereby changing the state of the system to ‘1’ and thus

causing the mass to be lifted by ∆ (which is half the circumference of the bigger wheel

in Fig. 1). Then, at a later random time, it may rotate clockwise (CW), changing the

state back to ‘0’, and causing the mass to descend back by ∆, etc. The net change in

the height of the mass, during this interval, depends, of course, only on the parity of

the number of state transitions during this interval. At the end of this time interval,

namely, at time t = (i+1)τ−0, the current state is recorded on the tape as the outgoing

bit, denoted by yi. Note that if xi = 0 and yi = 1, then the net work done by the device,

during this time interval, is ∆Wi = mg∆; otherwise ∆Wi = 0. Similarly, if the incoming

bit is xi = 1, then the initial state is ‘1‘ and then the first state transition (if any) is

associated with a CW rotation. By the same reasoning as before, at the end of the

time interval, if yi = 0, then the net work done by the device, during this interval, is

∆Wi = −mg∆, otherwise, it is ∆Wi = 0. Thus, in general, the work done during the

i–th interval is ∆Wi = mg∆ · (yi − xi). Next, a new interval begins and it becomes

the turn of bit xi+1 to interact with the device for τ seconds, and so on. It should be

emphasized that this transition from the former outgoing bit yi to a new incoming bit

xi+1 is not accompanied by any energy exchange between the tape and the system (the

wheel does not move in response to this transition). This new bit just determines which

direction of rotation is enabled in which one is disabled.

The above described mechanism of back and forth transitions (with their associated

rotations) within each interval is modelled as a two–state Markov jump process with

transition rates λ0→1 and λ1→0, related by

λ0→1 = λ1→0e
−mg∆/kT , (8)

giving rise to an equilibrium (Boltzmann) distribution

Peq[0] =
1

1 + e−mg∆/kT
; Peq[1] =

e−mg∆/kT

1 + e−mg∆/kT
, (9)

which manifests the fact that state ‘1’ is more energetic than state ‘0’, the energy

difference being ∆E = mg∆. At each interval, the temporal evolution of the probability

of state ‘1’ is according to the master equation:

dPt[1]

dt
= λ0→1 − λPt[1] (10)

where λ
△
= λ0→1 +λ1→0. This simple first order differential equation is readily solved by

Pt[1] =
λ0→1

λ
+

(

P0[1] −
λ0→1

λ

)

· e−λt

= Peq[1] + (P0[1] − Peq[1]) · e−λt, (11)
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and, of course, Pt[0] complements to unity. It is therefore readily seen that the

mechanism that transforms the sequence of incoming bits, x1, x2, . . ., into a sequence of

outgoing bits, y1, y2, . . ., is simply a binary–input, binary–output discrete memoryless

channel‖ (DMC) Q = [Qx→y, x, y ∈ {0, 1}], whose transition probabilities are given by

Q0→0 = 1 − Q0→1 = Peq[0] + Peq[1] · e−λτ (12)

Q1→1 = 1 − Q1→0 = Peq[1] + Peq[0] · e−λτ (13)

The expected work done by the device after n cycles is given by

〈Wn〉 = mg∆ ·

〈

n
∑

i=1

[Yi − Xi]

〉

= mg∆ ·
n
∑

i=1

(P [Yi = 1] − P [Xi = 1])

= kTf ·
n
∑

i=1

(P [Yi = 1] − P [Xi = 1]), (14)

where f ≡ mg∆/kT . Now, from the above derived time evolution of the state

distribution within an interval of duration τ , one easily finds that

P [Yi = 1] = Peq[1] + (P [Xi = 1] − Peq[1]) · e−λτ , (15)

which means a monotonic change, starting from P [Xi = 1] and ending at Peq[1]. In

other words, P [Yi = 1] is always between P (Xi = 1) and Peq[1].

We next focus on the informational (Shannon) entropy production, namely, the

difference between the entropy of the outgoing bit–stream {Yi} and the entropy of the

incoming bit–stream {Xi}. By the concavity of binary entropy function, h(·), it is easily

seen that for every s, t ∈ [0, 1]:

h(s) ≤ h(t) + (s − t) · h′(t) ≡ h(t) + (s − t) ln
1 − t

t
. (16)

Thus, setting s = P [Xi = 1] and t = P [Yi = 1], we get

H(Xi) ≡ h(P [Xi = 1])

≤ h(P [Yi = 1]) + (P [Xi = 1] − P [Yi = 1]) ln
1 − P [Yi = 1]

P [Yi = 1]
. (17)

or equivalently,

(P [Yi = 1] − P [Xi = 1]) ln
1 − P [Yi = 1]

P [Yi = 1]
≤ H(Yi) − H(Xi). (18)

Now, if P [Yi = 1] ≥ P [Xi = 1], then Peq[1] ≥ P [Yi = 1] ≥ P [Xi = 1], and then

(P [Yi = 1] − P [Xi = 1]) · f = (P [Yi = 1] − P [Xi = 1]) ln
1 − Peq[1]

Peq[1]

≤ (P [Yi = 1] − P [Xi = 1]) ln
1 − P [Yi = 1]

P [Yi = 1]

≤ H(Yi) − H(Xi). (19)

‖ A memoryless channel is characterized by the assumption that the conditional probability of yn given

xn is given by the product of conditional probabilities of yi given xi, i = 1, 2, . . . , n.
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Similarly, if P [Yi = 1] ≤ P [Xi = 1], then Peq[1] ≤ P [Yi = 1] ≤ P [Xi = 1], and then

again,

(P [Yi = 1] − P [Xi = 1]) · f ≤ H(Yi) − H(Xi) (20)

since the terms f and ln{(1−P [Yi = 1])/P [Yi = 1]} are multiplied by (P [Yi = 1]−P [Xi =

1]), which is now non–positive. Thus, in both cases, the last inequality holds, and so,

as is actually shown in [14]

〈∆Wi〉 = kTf · (P [Yi = 1] − P [Xi = 1]) ≤ kT [H(Yi) − H(Xi)]. (21)

Summing from i = 1 to n, the left–hand side of (21) gives

〈Wn〉 = kTf ·
n
∑

i=1

(P [Yi = 1] − P [Xi = 1]) ≤ kT
n
∑

i=1

[H(Yi) − H(Xi)], (22)

where left–hand–side (l.h.s.) is the total average total work after n cycles. The exact

total average work is given by

〈Wn〉 = kTf · (1 − e−λτ )

(

nPeq[1] −
n
∑

i=1

P [Xi = 1]

)

= kTf · (1 − e−λτ )

(

n
∑

i=1

P [Xi = 0] − nPeq[0]

)

, (23)

which is obviously positive if and only if 1

n

∑n
i=1 P [Xi = 0] > Peq[0]. If {Xi} are i.i.d.

(Bernoulli), as assumed in [14] (as well as in subsequent follow–up papers mentioned

earlier), then so are {Yi}, and the right–hand side (r.h.s.) of (22) agrees with the total

informational entropy production, kT∆H
△
= kT [H(Y n) − H(Xn)].

As discussed in [14], the inequality is saturated (in the sense that the ratio

f · (P [Yi = 1]−P [Xi = 1])/[H(Yi)−H(Xi)] tends to unity) when P [Yi = 1] is very close

to P [Xi = 1] (which happens if either λτ ≪ 1 or if P [Xi = 1] is very close to Peq[1],

to begin with), but then the amount of work accumulated is very small. To approach

the entropy difference limit when this difference is appreciably large, one may iterate

in small steps, namely, work with λτ ≪ 1 and feed {Yi} as an incoming bit–stream to

another (identical, but independent) copy of the same device to generate, yet another

bit–stream {Zi} with a further increased entropy, etc. Alternatively, one may feed {Yi}

back to the same system. This way, with many repetitions of this process, the total

work would be very close to kT times the overall growth of the Shannon entropy. This

idea is in the spirit of quasi–static reversible processes in thermodynamics and statistical

mechanics.

As explained in the Introduction, we extend these results in several directions:

(i) Allowing the incoming bits, X1, X2. . . . , Xn, to be correlated rather than just

independent, identically distributed (i.i.d.) bits. In this case, the sum of entropy

differences,
∑

i[H(Yi)−H(Xi)], at the r.h.s. of (22) is different, in general, from the

correct expression of the increase in the total Shannon entropy, H(Y n) − H(Xn),

which in turn takes the correlations among the bits into account. It will be shown,

nevertheless, that the correct expression associated with the entropy increase,
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kT [H(Y n) − H(Xn)], is still an upper bound on the average work. This holds

true for an arbitrary joint distribution of (X1, X2, . . . , Xn).

(ii) At least for the case of binary information, it will be shown that an inequality like

(21) (even in its vector form) may hold even if the Shannon entropies on the r.h.s.

are replaced by generalized entropies, which may serve as alternative measures of

information complexity, such as the average probability of error in predicting the

next bit Xi+1 from the bits seen thus far X1, X2, . . . , Xi, i = 1, 2, . . . , n.

(iii) We provide a partial extension of the above to the case of non–binary information,

i.e., {Xi} and {Yi} take on values in a general finite alphabet, whose size may be

larger than 2. The word “partial” here is due to the fact that we will not show that

this holds true for an arbitrary value of τ , but only for τ ≫ 1/λ. Under the general

alphabet size setting, however, item (ii) above is no longer claimed.

(iv) We extend the scope to the case where the incoming bits x1, x2, . . . , xn form an

individual sequence, namely, a deterministic sequence rather than a random one.

In this case, in the r.h.s. of (22), the analogue of the probabilistic input entropy

H(Xn) will be (for large n) the Lempel–Ziv (LZ) complexity of the given sequence

x1, x2, . . . , xn. As for the output entropy (Y n is still a random vector), we will

provide computable bounds.

4. Correlated Input Bits

Consider the case where the binary random vector (X1, . . . , Xn), of the first n input bits,

has a general joint distribution, As said, in this case, the r.h.s. of eq. (22) is no longer

associated with the correct overall change in the Shannon entropy, H(Y n) − H(Xn).

Nonetheless, our purpose, in this section, is to show that the latter expression (times

kT ) continues to be an upper bound on the expected work.

We proceed as follows. Using the fact that channel Q connecting Xn and Y n is a

DMC:

H(Y n) − H(Xn) =
n
∑

i=1

[H(Yi|Y
i−1) − H(Xi|X

i−1)]

≥
n
∑

i=1

[H(Yi|X
i−1, Y i−1) − H(Xi|X

i−1)]

=
n
∑

i=1

[H(Yi|X
i−1) − H(Xi|X

i−1)]

=
n
∑

i=1

∑

xi−1

P (xi−1)[H(Yi|X
i−1 = xi−1) −

H(Xi|X
i−1 = xi−1)]

=
n
∑

i=1

∑

xi−1

P (xi−1){h(P [Yi = 1|X i−1 = xi−1]) −

h(P [Xi = 1|X i−1 = xi−1])}
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≥ f ·
n
∑

i=1

∑

xi−1

P (xi−1)(P [Yi = 1|X i−1 = xi−1] −

P [Xi = 1|X i−1 = xi−1])

= f ·
n
∑

i=1

(P [Yi = 1] − P [Xi = 1])

=
〈Wn〉

kT
, (24)

where the third line is due to the fact that Yi is statistically independent of Y i−1 given

X i−1, and the second inequality is again due to the concavity of h(·).

Discussion. We have two upper bounds on the total work, kT
∑n

i=1[H(Yi) − H(Xi)]

and kT [H(Y n) − H(Xn)]. As an upper bound, the former is always tighter, in other

words, we argue (see Appendix A for the proof) that

H(Y n) − H(Xn) ≥
n
∑

i=1

[H(Yi) − H(Xi)], (25)

and so for the purpose of bounding the expected work, there is no point in looking

at higher order entropies of the incoming and outgoing processes. However, from the

physical point of view, the inequality 〈Wn〉 ≤ kT [H(Y n)−H(Xn)] remains meaningful

since the difference k[H(Y n) − H(Xn)] − 〈Wn〉 /T has the natural meaning of the

total entropy production (of the combined system and its environment) for the more

general case considered, i.e., where {Xi} may be correlated. The non–negativity of

this difference is then a version of the (generalized) second law of thermodynamics for

systems that include information reservoirs. It follows from this discussion that if one

has any control on the incoming bit sequence, then introducing correlations among them

is counter–productive in the sense that it only enlarges the entropy production without

enlarging the extracted work (for a given marginal probability assignment). In other

words, among all input vectors with a given average marginal, P̄ [x] = 1

n

∑n
i=1 P [Xi = x],

the best one is an i.i.d. process (i.e., a Bernoulli process) with a single–bit marginal given

by P [Xi = x] = P̄ [x] for all i. In any other case, there is an extra entropy production

due to input correlations.

Note that if Xn is a codeword from a rate–R channel block code (with equiprobable

messages) for reliable communication across the channel Q, namely, H(Xn) = nR and

H(Xn|Y n) is small by Fano’s inequality [4, Section 2.10]), then

H(Y n) − H(Xn) ≈ H(Y n|Xn)

=
n
∑

i=1

H(Yi|Xi) = n[P̄ [0]h(Q0→0) + P̄ [1]h(Q1→1)]. (26)

In this case, as H(Y n) ≈ n[R + P̄ [0]h(Q0→0) + P̄ [1]h(Q1→1)], one can reliably recover

from Y n both the incoming process Xn and the entire history of of (net) movements of

the wheel across the various intervals, so no information is lost.
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5. Other Measures of Sequence Complexity

Note that the only properties of the entropy function that were used in Section 3 were:

(i) concavity, and (ii) h′(Peq[1]) = f . The second property does not pose any serious

limitation because any concave function can either be scaled or added with a linear

term (both without harming the concavity property), so that (ii) would hold. It follows

then that the Shannon entropy is not the only measure that describes the increased

complexity of information that must accompany the extracted work. In other words,

there are additional measures for the amount extra randomness or the “amount of

information” that must be written in order to make the system convert heat to work.

We describe a generalized entropy function that is based on a function Lx(s), which

is an arbitrary function of x ∈ {0, 1} and a variable s ∈ S, that can be thought of as

a ‘loss’ associated with the choice of s when the observation is x. We then define a

generalized entropy function as the minimum achievable average loss associated with a

binary random variable X, with P [X = 1] = 1 − P [X = 0] = p, that is

h(p) = min
s∈S

[(1 − p) · L0(s) + p · L1(s)]. (27)

Indeed, the binary Shannon entropy h(p) is obtained as a special case for L0(s) =

− ln(1 − s) and L1(s) = − ln s, S = [0, 1], as the minimum is attained for s∗ = p.

Since h(p) is the minimum of affine functions of p, it is clearly concave. Two additional

examples of entropy–like functions are the following:

(i) Let Lx(s) = I[s 6= x], S = {0, 1}, measure the loss in (possibly erroneous) ‘guessing’

of x by s. In this case, h(p) = min{p, 1 − p}.

(ii) The squared–error loss function, Lx(s) = (x−s)2, S = [0, 1], yields h(p) = p(1−p).

The extension of (21) now asserts that the average work extraction 〈∆Wi〉, within a

single cycle, cannot exceed

mg∆

h
′(Peq[1])

· ∆h =
kTf

h
′(Peq[1])

· ∆h, (28)

where ∆h = h(P [Yi = 1])−h(P [Xi = 1]) is the increase in the (generalized) ‘complexity’

in Yi relative to Xi, and where we have assumed that h(·) is differentiable at p = Peq[1].

We will comment on the non–differentiable case shortly.

Denoting H(Xi) = h(P [Xi = 1]) and H(Yi) = h(P [Yi = 1]), we can generalize

the above discussion (including (24), provided that the first equality is considered a

definition) to correlated sequences of bits, by introducing the definition

H(Xi|X
i−1) =

∑

xi−1

P (xi−1)h(P [Xi = 1|X i−1 = xi−1]) (29)

and similar definitions for the other generalized conditional entropies. Considering the

first example above, H(Xi|X
i−1) designates the predictability [7] of Xi given X i−1, i.e.,

the minimum achievable probability of error in guessing Xi from X i−1, which is certainly

a reasonable measure of complexity. As for the second example above, H(Xi|X
i−1) has

the meaning of the minimum mean squared error in estimating Xi based on X i−1. Here,
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h
′(Peq[1])) = tanh(f/2). Thus, the factor kTf/h′(Peq[1])) = kTf/ tanh(f/2), which is

about kTf = mg∆ at very low temperatures, and about 2kT at very high temperatures.

On a technical note, observe that in general h(·) may not be differentiable at

Peq[1], but due to the concavity, there are always one–sided derivatives h
′
+(Peq[1]) =

limδ↓0[h(Peq[1] + δ) − h(Peq[1])]/δ and h
′
−(Peq[1]) = limδ↑0[h(Peq[1] + δ) − h(Peq[1])]/δ,

with h
′
−(Peq[1]) ≥ h

′
+(Peq[1]). We can always use either one. In case of a strict

inequality, we can choose the one that gives the tighter inequality, namely, h
′
−(Peq[1]) if

∑

i P [Yi = 1] ≥
∑

i P [Xi = 1] and h
′
+(Peq[1]) otherwise.

Another class of generalized entropies obey the form H(X) = 〈S[1/P (X)]〉, where

S is am arbitrary concave function (e.g., S[u] = ln u gives the Shannon entropy), which is

easily seen to be concave functional of P . In the binary case considered here, this would

amount to h(p) = pS[1/p] + (1 − p)S[1/(1 − p)]. The concavity property guarantees

that our earlier arguments hold for this kind of generalized entropy as well. Similar

comments apply to yet another class of generalized entropies, H(X) =
∑

x S[P (x)],

where S is again concave (e.g., S[u] = −u ln u gives the Shannon entropy).

This discussion sets the stage for a richer family of bounds on the extracted

work, which depend on various notions of sequence complexity. Provided that h(·) is

differentiable at Peq[1], these bounds are asymptotically met in the limit of infinitesimally

small differences between P [Yi = 1] and P [Xi = 1], as discussed above in the context of

the ordinary entropy. Nonetheless, among all generalized entropies we have discussed,

only the Shannon entropy is known to be invariant under permutations, e.g., for

n = 2, H(X1) + H(X2|X1) = H(X2) + H(X1|X2), but in general, it not true that

H(X1) + H(X2|X1) = H(X2) + H(X1|X2). Also, it is not clear if and how any of the

other entropy–like functionals continue to serve in bounding the average work when the

the setup is extended to larger alphabets (see Section 6 below). These two points give

rise to the special stature of the ordinary Shannon entropy, which prevails in a deeper

sense and in more general situations.

6. Non–Binary Sequences

One trivial extension to the non–binary case is associated with grouping non–overlapping

chunks of ℓ bits and considering them as random variables with an alphabet of size 2ℓ.

Here each input symbol, say xi, is a vector of ℓ (possibly correlated) bits (xi1, . . . , xiℓ)

and we imagine ℓ identical, independent copies of the above system, where the various

bit-streams {xij , i = 1, 2, . . .} are fed into the corresponding copies of the system,

j = 1, 2 . . . , ℓ, and {yij, i = 1, 2, . . .} are the corresponding outgoing bit–streams. The

ℓ copies operate independently during each interval. Letting X
n and Y

n denote the

the collection of n input and output binary ℓ–vectors, we can now show, exactly like in

(24), that kT [H(Y n)−H(Xn)] is an upper bound on the total work carried over the ℓ

systems together, after n rounds. This is done exactly like in (24), except that now the

summation is two–dimensional over n · ℓ terms, exploiting both temporal and spatial

correlations.
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Another, somewhat more interesting extension to a general finite alphabet X of

size K, concerns a Markov jump process with K states. For each state x ∈ X , there

is a corresponding height increment, ∆(x) (which may be positive or negative), relative

to some reference state, say x0, with ∆(x0) ≡ 0. Accordingly, each state x is associated

with energy, E(x) = mg∆(x), and the transition rates of the underlying Markov process

obey detailed balance accordingly. Here we assume that τ is very large compared to all

time constants so that the final distribution at each interval is nearly in equilibrium.¶

The following inequality is clearly equivalent to the inequality D(P0‖Peq) ≥ 0:

∑

x∈X

(Peq[x] − P0[x]) ln
1

Peq[x]
≤ H(Peq) −H(P0). (30)

Here P0 represents the probability distribution of the incoming symbol Xi, which is

also the initial distribution at each interval, and Peq is the distribution of the outgoing

symbol Yi, which is the equilibrium distribution for large τ . Since

ln
1

Peq[x]
= ln Z +

mg∆(x)

kT
, (31)

Z =
∑

x exp{−mg∆(x)/kT} being the partition function, the l.h.s. of (30) gives the

average work per cycle (in units of kT ), and the r.h.s. is, of course, the entropy difference.

This discussion easily extends to the case of correlated input symbols, as in Section

4, since for large τ , the outgoing process is still i.i.d., where each symbol is distributed

according to Peq.

7. Individual Sequences and the LZ Complexity

Finally, we extend the scope to the case where x1, x2, . . . is an individual sequence,

namely, an arbitrary deterministic sequence, with no assumptions concerning the

mechanism that has generated it. The outgoing sequence is, of course, still random

due to the randomness of the state transitions. In this setting, the LZ complexity of

the incoming sequence will play a pivotal role, and therefore, before moving on to the

derivation for the individual–sequence setting, we pause to provide a brief background

concerning the LZ complexity, which can be thought of as an individual–sequence

counterpart of entropy.

In 1978, Ziv and Lempel [22] invented their famous universal algorithm for

data compression, which has been considered a major breakthrough, both from the

theoretical aspects and the practical aspects of data compression. For an given

(individual) infinite sequence, x1, x2, . . ., the LZ algorithm achieves a compression

ratio, which is asymptotically as good as that of the best data compression algorithm

that is implementable by a finite–state machine. To the first order, the compression

¶ Here, unlike the case of a two–state Markov process, we cannot rely, in general, on the property

that the state distribution at any intermediate time t, is always a convex combination of the initial

distribution and the equilibrium distribution.
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ratio achieved by the LZ algorithm, upon compressing the first n symbols, xn =

(x1, x2, . . . , xn), i.e., the LZ complexity of xn, is about

ρ(xn) =
c(xn) log c(xn)

n
, (32)

where c(xn) is the number of distinct phrases of xn obtained upon applying the so

called incremental parsing procedure. The incremental parsing procedure works as

follows. The sequence x1, x2, . . . , xn is parsed sequentially (from left to right), where

each parsed phrase is the shortest string that has not been encountered before as a

parsed phrase, except perhaps the last phrase, which might be incomplete. For example,

the sequence x17 = 10001101110100010 is parsed as 1, 0, 00, 11, 01, 110, 10, 001, 0. The

first two phrases are obviously ‘1 and ‘0 as there is no ‘history’ yet. The next ‘0’ has

already been seen as a phrase, but the string ‘00’ has not yet been seen, so the next

phrase is ‘00’. Proceeding to the next bit, ‘1’ has already appeared as a phrase, but ‘11’

has not, and so on. In this example then, c(x17) = 9. The idea of the LZ algorithm

is to sequentially compress the sequence phrase–by–phrase, where each phrase, say,

of length r, is represented by a pointer to the location of the appearance of the first

r − 1 symbols as a previous phrase (already decoded by the de-compressor), plus an

uncompressed representation of the r-th symbol of that phrase. It is shown in [22] that

if the LZ algorithm is applied to a random vector Xn, that is sampled from a stationary

and ergodic process, then ρ(Xn) converges with probability one to the entropy rate of

the process, H̄ = limn→∞ H(Xn|X
n−1). In that sense, ρ(xn) can be thought of as an

analogue of entropy in the individual–sequence setting.

The general idea, in this section, is that, in the context of the entropic upper bound

on the extracted work, the role of the input entropy, H(Xn), of the probabilistic case,

will now be played by ρ(xn), whereas H(Y n) will be upper bounded in terms of ρ(xn).

Thus, the concept of LZ complexity is not only analogous to information–theoretic

entropy, but in a way, it also plays an entropic role in the physical sense.

Equipped with this background, we now move on to the derivation. For simplicity,

we consider the binary case, but everything can be extended to the non–binary case at

least for large τ , following the considerations of Section 6. Consider then an individual

binary sequence (x1, x2, . . . , xn) of incoming bits. Let ℓ be a divisor of n and chop

the sequence into n/ℓ non-overlapping blocks of length ℓ, xi = (xiℓ+1, xiℓ+2, . . . , xiℓ+ℓ),

i = 0, 1, . . . , n/ℓ − 1. Consider now the empirical distribution of ℓ–blocks

P̂ (xℓ) =
ℓ

n

n/ℓ−1
∑

i=0

I[xi = xℓ], xℓ ∈ {0, 1}ℓ (33)

Now, define

P̂ [Xi = 1] =
∑

P̂ (xℓ), i = 1, 2, . . . , ℓ (34)

where the summation is over all binary ℓ–vectors {xℓ} whose i–th coordinate is 1. The

average work for a given (x1, x2, . . . , xn) is given by

〈Wn〉 = kTf ·
n
∑

t=1

(〈Yt〉 − xt)
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= kTf ·
n

ℓ
·

ℓ
∑

i=1

(P [Yi = 1] − P̂ [Xi = 1])

≤
kTfn

ℓ
· [H̃(Y ℓ) − Ĥ(Xℓ)] (35)

where P [Yi = 1] = P̂ [Xi = 1]Q1→1 + P̂ [Xi = 0]Q0→1, Ĥ(Xℓ) is the empirical entropy

of ℓ–blocks associated with xn = (x1, x2, . . . , xn) and H̃(Y ℓ) is the output entropy of

ℓ–vectors that is induced by the input assignment {P̂ (xℓ)} and ℓ uses of the memoryless

channel Q. The last inequality is simply an application of the results of Section 4 to

the case where the joint distribution of Xn is P̂ (·). This already gives some meaning to

the notion of entropy production in this case, where the incoming bits are deterministic.

However, the choice of the parameter ℓ (among the divisors of n) appears to be somewhat

arbitrary. In the following, we further obtain another bound, which is asymptotically,

independent of ℓ. In this bound, Ĥ(Xℓ) will be replaced by ρ(xn). From [16, eq. (21)],

we have the following lower bound on Ĥ(Xℓ) in terms of its LZ complexity (setting the

alphabet size α = 2 and passing logarithms to base e):

Ĥ(Xℓ)

ℓ
≥ ρ(xn) −

8ℓ ln 2

(1 − ǫn) log n
−

2ℓ4ℓ ln 2

n
−

ln 2

ℓ

≡ ρ(xn) − δ(n, ℓ), (36)

where ǫn → 0. This inequality is a result of comparing the compression ratio of a certain

block code to a lower bound on the compression performance of a general finite–state

machine, which is essentially ρ(xn). Of course, limℓ→∞ limn→∞ δ(n, ℓ) = 0. Let δn denote

the minimum of δ(n, ℓ) over all {ℓ} that are divisors of n.

It remains to deal with the entropy of Y n. First, observe that the case of very large

τ is obvious, because in this case, H(Y n) = nH(Peq) as {Yi} is i.i.d. with marginal Peq,

regardless of xn. Therefore, neglecting the term δn, the upper bound on the extracted

work becomes

〈Wn〉 ≤ kTn[H(Peq) − ρ(xn)]. (37)

Also, in this case, the second part of Section 6 is valid, and so, this derivation readily

extends to the non–binary alphabet case.

For a general τ , we will remain in the binary case. Given the binary–input, binary–

output DMC Q : X → Y , define the single–letter function

U(s) = max{H(Y ) : H(X) ≥ s}. (38)

The function U(s) is concave and monotonically decreasing. The monotonicity is

obvious. As for the concavity, indeed, let P0 and P1 be the achievers of U(s0) and

U(s1), respectively. Then, for 0 ≤ λ ≤ 1, the entropy of Pλ = (1 − λ)P0 + λP1 is never

less than (1 − λ)s0 + λs1, and so,

U [(1 − λ)s0 + λs1] ≥ H(Yλ) Yλ being induced by Pλ and Q

≥ (1 − λ)H(Y0) + λH(Y1)

= (1 − λ)U(s0) + λU(s1). (39)
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Note that if H(Xℓ) ≥ ℓs, then a–fortiori,
∑ℓ

i=1 H(Xi) ≥ ℓs, and so, for the given DMC,

H(Y ℓ) ≤
ℓ
∑

i=1

H(Yi)

≤
ℓ
∑

i=1

U [H(Xi)]

≤ ℓ · U

[

1

ℓ

ℓ
∑

i=1

H(Xi)

]

≤ ℓ · U(s). (40)

Applying this to the input distribution {P̂ (xℓ)} and the channel Q, we have, by (36):

H̃(Y ℓ) ≤ ℓ · U [ρ(xn) − δn] , (41)

and so, defining the function

V (s)
△
= U(s) − s, (42)

which is concave and decreasing as well, we get the following upper bound on 〈Wn〉 in

terms of the LZ complexity of xn:

〈Wn〉 ≤ kTfn · V [ρ(xn) − δn] . (43)

It tells us, among other things, that the more xn is LZ–compressible, the more work

extraction one can hope for.

This upper bound is tight in the sense that no other bound that depends on xn

only via its LZ compressibility ρ(xn) can be tighter, because for a given value ρ (in the

range where the constraint in the maximization defining U(ρ) is attained with equality)

of the LZ compressibility, ρ(xn), there exist sequences with LZ compressibility ρ for

which the bound kTfnV (ρ) is essentially attained. This is the case, for example, for

most typical sequences of the memoryless source P ∗ that achieves U(ρ). Tighter bounds

can be obtained, of course, if more detailed information is given about the empirical

statistics of xn.

The important point about the function U (and, of course, V ) is that, in the

jargon of information theorists, it is a single–letter function, that is, its calculation

requires merely optimization in the level of marginal distributions of a single symbol,

and not distributions associated with ℓ–vectors. In Appendix B, we provide an explicit

expression of U(s).
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The proof is by induction: For n = 1, this is trivially true. Assume that it is true for

a given n. Then, by the memorylessness of the channel Q, Y n → Xn → Xn+1 → Yn+1

is a Markov chain, and so, by the data processing theorem [4, Section 2.8]

H(Xn) + H(Xn+1) − H(Xn+1) = I(Xn+1; X
n)

≥ I(Yn+1; Y
n)

= H(Y n) + H(Yn+1) − H(Y n+1), (44)

which is equivalent to

H(Y n+1) − H(Xn+1) ≥ [H(Y n) − H(Xn)] + [H(Yn+1) − H(Xn+1)], (45)

and so,

H(Y n) − H(Xn) ≥
n
∑

i=1

[H(Yi) − H(Xi)] (46)

implies

H(Y n+1) − H(Xn+1) ≥
n+1
∑

i=1

[H(Yi) − H(Xi)], (47)

completing the proof.

Appendix B

Deriving an Explicit Expression for U(s).

For the case of the binary–input, binary–output channel at hand, let us denote

ǫ0 = Q0→0 and ǫ1 = Q1→0, and assume that ǫ0 ≥ ǫ1 (otherwise, switch the roles of

the inputs). If the input assignment is (p, 1 − p), then the output entropy is clearly

h(pǫ0 + p̄ǫ1) (p̄ being 1 − p). The constraint h(p) ≥ s is equivalent to the constraint

h−1(s) ≤ p ≤ 1 − h−1(s), where h−1(s) is the smaller of the two solutions {u} to the

equation h(u) = s. Denoting

αs = ǫ0h
−1(s) + ǫ1[1 − h−1(s)] (48)

βs = ǫ0[1 − h−1(s)] + ǫ1h
−1(s) (49)

then ǫ0 ≥ ǫ1 implies βs ≥ αs, and then

U(s) = max{h(q) : αs ≤ q ≤ βs}

=















h(βs) βs ≤
1

2

ln 2 αs ≤
1

2
≤ βs

h(αs) αs ≥
1

2

(50)

The condition βs ≤ 1/2 is satisfied always if ǫ0 ≤ 1/2. For ǫ0 > 1/2 ≥ ǫ1, this condition

is equivalent to

s ≥ h

(

ǫ0 − 1/2

ǫ0 − ǫ1

)

△
= s∗ (51)
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Similarly, the condition αs ≥ 1/2 is satisfied always if ǫ1 ≥ 1/2. For ǫ1 < 1/2 ≤ ǫ0, this

condition is equivalent to

s ≥ h

(

1/2 − ǫ1

ǫ0 − ǫ1

)

= s∗ (52)

Thus, to summarize, U(s) behaves as follows:

(i) For ǫ1 ≥ 1/2, U(s) = h(αs) for all s ∈ [0, 1].

(ii) For ǫ0 ≤ 1/2, U(s) = h(βs) for all s ∈ [0, 1].

(iii) For ǫ1 ≤ 1/2 ≤ ǫ0 and ǫ0 + ǫ1 > 1

U(s) =

{

ln 2 0 ≤ s ≤ s∗

h(αs) s∗ < s ≤ 1

(iv) For ǫ1 ≤ 1/2 ≤ ǫ0 and ǫ0 + ǫ1 < 1

U(s) =

{

ln 2 0 ≤ s ≤ s∗

h(βs) s∗ < s ≤ 1

Note that for the binary symmetric channel (ǫ0 + ǫ1 = 1), trivially U(s) ≡ ln 2 for all

s ∈ [0, 1]. Also, in all cases U(1) = h[(ǫ0 + ǫ1)/2].
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