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Abstract

We consider a Shannon cipher system for memoryless sources, in which distortion is allowed at the legitimate

decoder. The source is compressed using a rate distortion code secured by a shared key, which satisfies a constraint

on the compression rate, as well as a constraint on the exponential rate of the excess-distortion probability at

the legitimate decoder. Secrecy is measured by the exponential rate of the exiguous-distortion probability at the

eavesdropper, rather than by the traditional measure of equivocation. We define the perfect secrecy exponent as the

maximal exiguous-distortion exponent achievable when the key rate is unlimited. Under limited key rate, we prove

that the maximal achievable exiguous-distortion exponent is equal to the minimum between the average key rate

and the perfect secrecy exponent, for a fairly general class of variable key rate codes.

Index Terms

Information-theoretic secrecy, Shannon cipher system, secret key, cryptography, lossy compression, rate-distortion

theory, error exponent, large-deviations, covering lemmas.

I. INTRODUCTION

In his seminal paper [1], Shannon has introduced a mathematical framework for secret communication. The

cipher system is considered perfectly secure if the cryptogram and the message are statistically independent, and

so, an eavesdropper does not gain any information when he observes the cryptogram. To achieve secrecy, the sender

and the legitimate recipient share a secret key, which is used to encipher and decipher the message. It is rather

apparent from ordinary compression [2] that a necessary and sufficient condition for perfect secrecy is that the

available key rate is larger than the information rate required to compress the source (the entropy or rate-distortion

function of the source in case of lossless or lossy compression, respectively). Usually, the supply of key bits is a
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limited resource, as they need to be transferred to the intended recipient via a completely secure channel. When

the key rate is less than the information rate, secrecy is traditionally measured in terms of equivocation, that is,

the conditional entropy of the message given the cryptogram. The use of equivocation as a secrecy measure was

advocated by other models of secrecy systems, which do not assume a shared key. Instead, secrecy is achieved by

the fact that the message intercepted by the eavesdropper is of lower quality than the one received by the legitimate

receiver. For example, in the ubiquitous wire-tap model [3], [4], the channel of the wiretapper is degraded (or more

noisy) with respect to (w.r.t.) the channel of the legitimate receiver. In the model of [5], [6], [7] the legitimate

recipient has better quality of side information than the eavesdropper.

The equivocation is indeed an unambiguous measure for statistical dependence when it is equal to either its

minimal value of zero (the random variables are deterministic functions of each other), or its maximal value of the

unconditional entropy (the two random variables are independent). Nonetheless, for partial secrecy, i.e., when the

equivocation takes values strictly between these two extremes, its operational meaning is disputable. Thus, in [8],

it was proposed to measure partial secrecy by the expected number of spurious messages that explain the given

cryptogram (which is somewhat equivalent to the probability of correctly decrypting the message). Later, in [9],

it was proposed to measure partial secrecy by the minimum average distortion that an eavesdropper can attain

(this was also considered previously, to some extent, in [10]). In addition, in [9] the possibility that the legitimate

recipient can tolerate a certain distortion level was also incorporated into the system model. In [9, Theorems 2 and

3], inner and outer bounds were obtained on the achievable trade-off between the coding rate, the key rate, and

distortion levels at the legitimate recipient and eavesdropper. However, in [11], it was revealed that this trade-off

is, in fact, degenerated. It was demonstrated there that in some cases, a negligible key rate can cause maximum

distortion at the eavesdropper. The following simple example (from [12, Section I.A]) demonstrates this: Consider

an memoryless source X = (X1, . . . , Xn) ∈ {0, 1}n where P(Xi = 1) = 1
2 for i = 1, . . . n, and a single key bit U ,

shared by the two legitimate parties, where P(U = 1) = 1
2 . Suppose that the distortion measure at the eavesdropper

side is the Hamming distortion measure. Then, if the encrypted message is Y = (Y1, . . . , Yn), where Yi = Xi⊕U ,

then the distortion at the eavesdropper attains its maximal possible value of 1
2 , regardless of the estimate of the

eavesdropper. Nonetheless, such a secrecy is severely insecure. If the eavesdropper becomes aware of just a single

bit of the source, then it can decrypt the entire message. It was therefore proposed to consider models which are

more robust to assumptions concerning the eavesdropper. These models indeed lead to a non-degenerated trade-

off, that requires a positive key rate. In [12], [13] it was assumed that the eavesdropper’s estimation is performed

sequentially, and at the time it estimates the i-th symbol, it has noiseless/noisy estimates of all the previous message

symbols and the previous reproduced symbols (at the legitimate recipient), in addition to the public cryptogram. This

model was termed causal disclosure. It was justified by the scenario in which the sender and legitimate recipient

attempt to coordinate actions in a distributed system in order to maximize a certain payoff, and the eavesdropper

acts in order to minimize the payoff. In a different line of work [14], the eavesdropper produces a fixed-size list

(of exponential cardinality in the block-length), and the distortion is measured w.r.t. the reproduction word in the
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list which attains the minimal distortion.

However, the fact that the trade-off in [9] is degenerated can be attributed to the way that the distortion is

measured, rather than to the weakness of the eavesdropper. For a given strategy of the eavesdropper, the average

distortion, as assumed in [9], [12], [14], may be large due to message and key-bit combinations that lead to a very

large distortion, albeit with small probability. A more refined figure of merit would include the probability that the

distortion is less than some level, rather than the average distortion. Such a performance criterion is customary in

ordinary rate-distortion theory (e.g. the ǫ-fidelity criterion in [15, Chapter 7]). Indeed, in the above single key-bit

example, the eavesdropper can estimate the message exactly with probability 1
2 , irrespective of its length. Thus, for

any positive distortion level, the probability of an exiguous-distortion event is 1
2 , which is clearly unacceptable for

most applications.

For most source models, good estimation of the message at the eavesdropper should be a rare event, and finding

its exact probability is difficult. Instead, an asymptotic analysis can be carried in order to find the exponential

decrease rate (i.e. the exponent) of the correct decryption probability. The results of [10] can be considered as

a special case of this line of thought, for the restricted class of instantaneous encoders. In [10], the exponent of

decrypting the message by the eavesdropper was found as a function of the exponent of exiguous-distortion of the

estimation by the eavesdropper. For the same model, the exponent of the minimal probability of correct decryption

by the eavesdropper was found in [16]. Later, in [17] secrecy was defined in a large-deviations sense: A system

is considered secure if the exponent of the probability of the eavesdropper correctly decrypting the message is the

same with and without the cryptogram. This, in turn, required the analysis of the correct decryption probability. In

[10], [16], [17], it was assumed that the legitimate recipient must reproduce the message exactly (i.e., with zero

distortion).

In this paper, we adopt a similar large-deviations approach to measuring secrecy, using a distortion measure,

and generalize the results of [17]. For a memoryless source, we allow an imperfect reproduction at the legitimate

recipient, and measure distortion both at the legitimate recipient and at the eavesdropper using a large-deviations

measure. Specifically, we will define two exponents. First, for a given distortion level DL, the excess-distortion

exponent is defined in the usual way [15, Chapter 9], as the exponent of the probability that the distortion between

the legitimate recipient reproduction and the source sequence is larger than DL. Second, for a given distortion

level DE, we define the exiguous-distortion exponent as the exponent of the probability that the distortion between

the eavesdropper estimate and the source sequence is less than DE. We will derive the perfect secrecy exponent

function E∗
e (DE), which is the exiguous-distortion exponent of the eavesdropper when it estimates the message

blindly, without the cryptogram (alternatively, for codes with unlimited key rate). It will be assumed that the

secrecy system has a limited coding rate RL, and that for a given distortion level DL, the excess-distortion exponent

must be larger than EL. Our main result is that under mild conditions on the compression constraints (RL,DL,EL),

the maximal achievable exiguous-distortion exponent is equal to the minimum between the key rate R, and E∗
e (DE),

calculated at distortion level required by the eavesdropper DE. Since this maximal exiguous-distortion exponent
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Figure 1. Two cases of ambiguity for the eavesdropper, for a single key bit code. Left side: Assume for simplicity that the source is

distributed uniformly over the dots encapsulated by the outermost circle. The two small solid line circles represent two reproduction cells,

which are mapped to the same cryptogram by the two possible values of the key bit u. The dashed larger circle represents all the source

block for which the distortion between the source block and the best estimate of the eavesdropper is less than DE. As can be seen, there

is a large exiguous-distortion probability. Right side: Under the same assumptions, in this case the two reproduction cells are far apart. The

best estimate of the eavesdropper can ‘cover’ at most one of the reproduction cells, and the exiguous-distortion probability is 1

2
.

does not depend on (RL,DL,EL) (in the interesting domain of these parameters), such a result implies that as far as

performance trade-offs are concerned, the compression and secrecy problems are essentially decoupled: The fact

that the message is required to be kept secret does not affect the compression performance. It should be stressed,

however, that this result does not imply a separation theorem from the operational point of view. The rate-distortion

code should be designed in a certain manner in order to provide secrecy, in contrast to, e.g., [9], [7], [18]. A

concatenation of an arbitrary good rate-distortion code, followed by encryption using the available key bits, does

not necessarily achieve a good exiguous-distortion exponent. For intuition, consider an ordinary rate-distortion code,

assume that one key bit is available, and that the distortion measures of the legitimate decoder and eavesdropper

are the same. The eavesdropper, in this case, knows that the reproduction of the legitimate decoder is one of two

possible reproductions (of equal probability). If these two reproductions are close, then it can approximate them

using a single reproduction, and achieve a distortion which may be only slightly larger than the distortion of the

legitimate decoder. If, however, the rate-distortion code is designed in such a way that these two reproductions

are sufficiently far apart, then the eavesdropper will have a poor compromise between them, and will achieve

high distortion. This is illustrated in Figure 1. More generally, unlike ordinary rate-distortion codes, in which the

performance is determined only by the reproduction cells, and the way in which the reproduction cells are mapped

to transmitted bits is immaterial, here, the latter will be crucial for the security performance.

To show this result, we will prove both achievability (lower bound on the exiguous-distortion exponent) and a

matching converse (upper bound). In the achievability part, we will demonstrate the existence of a secrecy system
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in which the compression constraints are satisfied, and it has a fixed key rate R. For this secrecy system, the best

strategy of the eavesdropper will be either to (1) guess the secret key and reproduce the message as a legitimate

recipient (using the cryptogram), or (2) blindly estimate the message. The secrecy system constructed will also be

universal in the following two senses. First, it does not require the knowledge of the source statistics, as long it

is a memoryless source. Second, it is not designed for a specific value of DE, yet the exiguous-distortion exponent

min{R, E∗
e (DE)} will be achieved for any value of DE, by the same sequence of codes, as long as DE ≥ DL. As a

converse, we will show that even if variable key rate is allowed, yet with average key rate less than R, then the

exiguous-distortion exponent cannot be larger than min{R, E∗
e (DE)}. The results of [17] are essentially recovered

from our results, as a special case with DL = DE = 0. We also remark that in our model, the distortion measures

of the legitimate recipient and the eavesdropper can be different, as long as they satisfy a certain relationship.

Finally, we briefly mention a related work in which large-deviations aspects were also incorporated. In [19],

the guessing model of [20], [21] was relaxed to allow, after a maximum of possible guesses has passed, a small

probability of large distortion for the eavesdropper. To analyze the asymptotic limits of the system, the excess-

distortion exponent of the eavesdropper was restricted, and the maximal normalized logarithm of the number of

guesses was found1. However, in our model, no testing mechanism is assumed to be available to the eavesdropper,

which allows it to validate its estimate.

The outline of the rest of the paper is as follows. In Section II, we establish notation conventions, and in Section

III, we formulate the problem. In Section IV, we present our main theorem, and discuss its implications. In Section

V, we provide the outline and the main ideas of the proof. The proof of the main theorem appears in Section VI.

II. NOTATION CONVENTIONS

Throughout the paper, random variables will be denoted by capital letters, specific values they may take will

be denoted by the corresponding lower case letters, and their alphabets will be denoted by calligraphic letters.

Random vectors and their realizations will be denoted, respectively, by capital letters and the corresponding lower

case letters, both in the bold face font. Their alphabets will be superscripted by their dimensions. For example, the

random vector X = (X1, . . . , Xn) (n positive integer), may take a specific vector value x = (x1, . . . , xn) in X n,

the nth order Cartesian power of X , which is the alphabet of each component of this vector. For any given vector

x, we will also denote x
j
i = (xi, . . . , xj) for 1 ≤ i ≤ j ≤ n, and use the shorthand x

j
1 = x

j .

We will follow the standard notation conventions for probability distributions, e.g., PX(x) will denote the

probability of the letter x ∈ X under the distribution PX . The arguments will be omitted when we address

the entire distribution, e.g., PX . Similarly, generic distributions will be denoted by Q, Q∗, and in other forms,

subscripted by the relevant random variables/vectors/conditionings, e.g. QXZ , QX|Z . Whenever clear from context,

1Reference [19] is a one page abstract, and contains only a description of the problem. The results were not published, but a detailed

version of [19] can be found in [22]. However, we believe that the achievability results provided in [22] are not actually proven. Specifically,

in the achievability proof, no system is actually constructed, and the claims about the expected number of guesses of the eavesdropper are

made on any given secrecy system. Obviously, there are, particularly bad, secrecy systems, in which a single guess suffices to find the

message exactly.
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these subscripts will be omitted. An exceptional case will be the ‘hat’ notation. For this notation, Q̂x will denote

the empirical distribution of a vector x ∈ X n, i.e., the vector of relative frequencies Q̂x(x) of each symbol x ∈ X

in x. The type class of x ∈ X n, which will be denoted by Tn(Q̂x), is the set of all vectors x
′ with Q̂x′ = Q̂x. The

set of all type classes of vectors of length n over X will be denoted by Pn(X ), and the set of all possible types

over X will be denoted by P(X ) ,
⋃∞

n=1 Pn(X ). Similar notation for type classes will also be used for generic

types QX ∈ P(X ), i.e., Tn(QX) will denote the set of all vectors x with Q̂x = QX . In the same manner, the

empirical distribution of a pair of vectors (x, z) will be denoted by Q̂xz and the joint type class will be denoted

by Tn(Q̂xz). The joint type classes over the Cartesian product alphabet X × Z will be denoted by Pn(X × Z),

and P(X ×Z) ,
⋃∞

n=1 Pn(X ×Y). For a joint type QXZ ∈ P(X ×Z), Tn(QXZ) will denote the set of all pairs

of vectors (x, z) with Q̂xz = QXZ . The conditional type class, namely, the set {x′ : Q̂x′z = Q̂xz}, will be denoted

by Tn(Q̂x|z, z), or more generally Tn(QX|Z , z) for a generic empirical conditional probability distribution QX|Z .

The probability simplex for X will be denoted by Q(X ), and the simplex for the alphabet X ×Z will be denoted

by Q(X × Z). Similar notations will be used for triplets of random variables.

For two distributions PX , QX over the same finite alphabet X , we will denote the variational distance (L1 norm)

by

||PX −QX ||,
∑

x∈X

|PX(x)−QX(x)|. (1)

When optimizing a function of a distribution QX over the entire probability simplex Q(X ), the explicit display of the

constraint will be omitted. For example, for a function f(Q), we will write minQ f(Q) instead of minQ∈Q(X ) f(Q).

The same will hold for optimization of a function of a distribution QXZ over the probability simplex Q(X × Z),

and for similar optimizations.

The expectation operator w.r.t. a given distribution, e.g., QXZ , will be denoted by EQ[·] where, the subscript

QXZ will be omitted if the underlying probability distribution is clear from the context. In general, information-

theoretic quantities will be denoted by the standard notation [23], with subscript indicating the distribution of the

relevant random variables, e.g. HQ(X|Z), IQ(X;Z), IQ(X;Z|W ), under Q = QXZW . For notational convenience,

the entropy of X under Q will be denoted both by HQ(X) and H(QX), depending on the context. The binary

entropy function will be denoted by hB(q) for 0 ≤ q ≤ 1. The information divergence between two distributions,

e.g. PX and QX , will be denoted by D(PX ||QX). In all information measures above, the distribution may also be

an empirical distribution, for example, H(Q̂x), D(Q̂x||PX) and so on.

We will denote the Hamming distance between two vectors, x ∈ X n and z ∈ X n, by dH(x, z). The length of

a string b will be denoted by |b|, the concatenation of strings b1, b2, . . . will be denoted by (b1, b2, . . .), and the

empty string will be denoted by φ. We will denote the complement of a set A by Ac, and its interior by int(A).

For a finite set A, we will denote its cardinality by |A|. The probability of the event A will be denoted by P(A),

and I(A) will denote its indicator function.

For two positive sequences, {an} and {bn} the notation an
.
= bn, will mean asymptotic equivalence in the
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exponential scale, that is, limn→∞
1
n log(an

bn
) = 0. Similarly, an

·
≤ bn will mean lim supn→∞

1
n log(an

bn
) ≤ 0, and

so on. The ceiling function will be denoted by ⌈·⌉. The notation [t]+ will stand for max{t, 0}. For two integers,

a, b, we denote by a mod b the modulo of a w.r.t. b. Logarithms and exponents will be understood to be taken to

the binary base.

Throughout, we will ignore integer code length constraints for the sake of simplicity, as they do not have

any effect on the results. For example, instead of ⌈nR⌉ bits we will write nR bits. For a given finite ordered

set, A = {a1, . . . ,a|A|}, we will denote by B[a; log|A|] the binary representation of the index of a in A, i.e.

B[a; log|A|] = i if a = ai, for i = 1, . . . |A|.

In general, the subscript ‘L’ will be used for quantities related to the legitimate decoder, and the subscript ‘E’

will be used for eavesdropper-related quantities.

III. PROBLEM STATEMENT

Let the source vector X = (X1, . . . , Xn) be formed by n independent copies of a random variable X ∈ X ,

where X is a finite alphabet, and Xi is distributed according to PX(x) = P(X = x). Let W and Z be finite

reproduction alphabets. In addition, let {Ui}
∞
i=1 be a sequence of purely random bits (i.e. a Bernoulli process with

P(Ui = 1) = 1
2 ), independent of the source X.

A secure rate-distortion code Sn = (fn, ϕn) of block-length n is defined by a key-length function kn : X n → Z+,

which assigns a key length kn(x) to every x ∈ X n, an encoder fn : X n × {0, 1}∗ → Yn, which generates

a cryptogram, y = fn(x,u), where u = (u1, . . . , ukn(x)), and where Yn is a finite alphabet2, and a legitimate

decoder ϕn : Yn ×{0, 1}∗ → Wn, which generates a reproduction w = ϕn(y,u)
3. A sequence of codes {Sn}n≥1,

indexed by the block-length n, is denoted by S . The performance of the legitimate decoder is evaluated by a

distortion measure dL : X × W → R+, where without loss of generality (w.l.o.g.), it is assumed that for every

x ∈ X , there exists w ∈ W such that dL(x,w) = 0. Also, with a slight abuse of notation, the distortion between x

and w is defined as the average,

dL(x,w) ,
1

n

n
∑

i=1

dL(xi, wi). (2)

We say that S satisfies a compression constraint (RL,DL,EL), if the coding rate satisfies4

lim sup
n→∞

1

n
log|Yn|≤ RL, (3)

and for any given {Ui}
∞
i=1 = {ui}

∞
i=1 the excess-distortion exponent, at distortion level DL, is larger than EL for

2This alphabet need not be the nth order Cartesian power of some alphabet Y .
3It is implicit in the definition of the encoder and decoder that both are aware of the key-length kn(x). Specifically, one can define an

inverse-key length function ln : Yn × {0, 1}∗ → Z+, which reproduces the key-length at the decoder side, i.e. kn(x) = ln(y, {ui}
∞
i=1).

4This constraint can be weakened to a constraint on the normalized entropy of the cryptogram. See discussion in Section IV.
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the legitimate decoder, i.e.5

lim inf
n→∞

−
1

n
P [dL(X, ϕn(fn(X,u),u)) ≥ DL] ≥ EL. (4)

Note that for a zero excess-distortion exponent EL = 0+, this requirement implies that an average-distortion

constraint6
E [dL(X,W)] ≤ DL is also satisfied. An eavesdropper decoder is a function σn : Yn → Zn, where

z = σn(y) is the estimate of the eavesdropper. It is assumed that the eavesdropper has full knowledge of all system

properties: The source statistics, the encoder (fn, kn), and the legitimate decoder ϕn. The set of all eavesdropper

decoders for a block-length n is denoted by Σn. In what follows, we also consider genie-aided eavesdropper

decoders, which are aware of the type class of the source block, i.e., σ̃n : Yn × Pn → X n, and in this case, the

estimate of the decoder is z = σ̃n(y, Q̂x). The set of all genie-aided eavesdropper decoders of block-length n is

denoted by Σ̃n.

The performance of the eavesdropper is evaluated by a distortion measure dE : X ×Z → R+, where again, it is

assumed that for every x ∈ X , there exists z ∈ Z such that dE(x, z) = 0. As before, the distortion between x and

z is defined as

dE(x, z) ,
1

n

n
∑

i=1

dE(xi, zi). (5)

For a given DE ≥ 0, the exiguous-distortion probability, for a given code Sn, is denoted by

pd(Sn,DE) , max
σn∈Σn

P [dE(X,Z) ≤ DE] . (6)

The limit inferior exiguous-distortion exponent, achieved for a sequence of codes S , is defined as

E−
d (S,DE) , lim inf

n→∞
−
1

n
log pd(Sn,DE), (7)

and the limit superior exiguous-distortion exponent achieved, E+
d (S,DE), is defined analogously, with limit superior

replacing the limit inferior. While, E−
d (S,DE) ≤ E+

d (S,DE), it is guaranteed that pd(sn,DE)≥̇ exp
[

−nE−
d (S,DE)

]

for all sufficiently large block-lengths, while pd(sn,DE)
.
= exp

[

−nE+
d (S,DE)

]

may hold only for some sub-

sequence of block-lengths. Thus, E−
d (S,DE) is less sensitive to the choice of the block-length. For a given QX ∈

P(X ), let nl = n0l, l = 1, 2, . . ., be the sub-sequence of block-lengths such that Tn(QX) is non-empty, where

n0 is the minimal such block-length. We define, with a slight abuse of notation, the conditional limit inferior

5This constraint can be weakened to be only satisfied for an excess-distortion probability averaged over {Ui}
∞

i=1
. See discussion in Section

IV.
6Indeed, suppose that P (dL(X, ϕn(fn(X,u),u)) ≥ DL) decays to zero for all {ui}

∞
i=1 , but only sub-exponentially. Assuming dL ,

minw∈W maxx∈X dL(x,w) < ∞, for any δ > 0 and all n sufficiently large

E [dL(X,W)] ≤ DL · P [dL(X, ϕn(fn(X,u),u)) ≤ DL] + dL · P [dL(X, ϕn(fn(X,u),u)) ≤ DL]

≤ DL + dL · P [dL(X, ϕn(fn(X,u),u)) ≤ DL]

≤ DL + δ.
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exiguous-distortion exponent as

E−
d (S,DE, QX) , lim inf

l→∞
−

1

nl
log max

σnl
∈Σnl

P [dE(X,Z) ≤ DE|X ∈ Tnl
(QX)] , (8)

and E+
d (S,DE, QX) is defined analogously.

The key rate of x ∈ X n is defined as rn(x) , 1
n |kn(x)|. A code is termed a fixed key rate code of rate R0

if rn(x) = R0 for all x ∈ X n, otherwise, it is called a variable key rate code, and it has an average key rate

E[rn(X)]. We define the conditional key rate of QX ∈ P(X ) as

R(S, QX) , lim
l→∞

E[rnl
(X)|X ∈ Tnl

(QX)] (9)

whenever the limit exist.

The rate-distortion function of a memoryless source QX , under the distortion measure dL(·, ·) is denoted by

RL(QX ,DL) , min
QW |X :EQ[dL(X,W )]≤DL

IQ(X;W ) (10)

and, similarly, the rate-distortion function of QX under the distortion measure dE(·, ·) is denoted by RE(QX ,DE).

The main result of this paper, in Theorem 1, is a single-letter formula for the largest achievable exiguous-distortion

exponent for codes under a compression constraint (RL,DL,EL) and limited key rate.

IV. MAIN RESULT

The achievability part will be proved using fixed key rate codes, but in the converse part, we will allow also

variable key rate codes, that satisfy the following assumptions:

1) Upper bound on the key rate: As kn(x) = n log |X | key-bits are always sufficient to perfectly encrypt the

source, even without distortion, it will be assumed that kn(x) ≤ n log |X | for all x ∈ X n.

2) Uniform convergence of the conditional key rate: We assume that for every QX ∈ P(X ), conditioned on

X ∈ Tn(QX), the key rate rn(X) converges in probability to R(S, QX), and moreover, this convergence is

uniform over P(X ). Namely, for any δ > 0

max
QX∈Pn(X )

P
[∣

∣rn(X)−R(S, QX)
∣

∣ > δ|X ∈ Tn(QX)
]

−−−→
n→∞

0. (11)

It is easy to prove that since 0 ≤ rn(X) ≤ log|X | with probability 1, then uniform convergence in the mean

(L1 norm) is also satisfied, and the limit in (9) exists, uniformly over QX ∈ P(X ).

3) Admissible encoders: An encoder fn will be termed admissible, if u 6= u
′ implies that fn(x,u) 6= fn(x,u

′)

for all x ∈ X n. We assume that fn is an admissible encoder.

In addition, we make two more assumptions. These assumptions are inessential, and are only made in order

to simplify the exposition of our results.

4) Upper bound on the legitimate excess-distortion exponent: It is well known [15, Theorem 9.5],[24], that for
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a given DL, if

lim inf
n→∞

1

n
log|Yn|≥ RL (12)

then there exist a sequence of codes S which satisfies the compression constraint (RL,DL,EL) iff

EL ≤ EL(PX ,DL,RL) , inf
QX :RL(QX ,DL)>RL

D(QX ||PX), (13)

where EL(PX ,DL,RL) is known as Marton’s source coding exponent. It will be assumed that the required

excess-distortion exponent at the legitimate decoder is strictly positive and not larger than Marton’s exponent,

i.e., 0 < EL ≤ EL(PX ,DL,RL).

5) Partial ordering between distortion measures: The distortion measure dE(·, ·) will be termed more lenient

than dL(·, ·), if for every w ∈ Wn, there exists z ∈ Zn such that

{x ∈ X n : dL(x,w) ≤ D} ⊆ {x ∈ X n : dE(x, z) ≤ D} , (14)

for every D ≥ 0. This corresponds to a worst case assumption regarding the distortion measure (and the

reproduction alphabet Z) used by the eavesdropper - it is at least not more demanding than the distortion

measure used by the legitimate decoder. In addition, this also puts, in some sense, the distortion levels at

the legitimate decoder and at the eavesdropper decoder, on the same scale. Therefore, it will be assumed

that DE ≥ DL, namely, the distortion level allowed by the eavesdropper is larger than the one allowed by the

legitimate decoder. It is also easily verified that this assumption implies

RE(QX ,D) ≤ RL(QX ,D) (15)

for every D > 0.

We denote by

E∗
e (DE) , min

QX

{D(QX ||PX) +RE(QX ,DE)} (16)

the perfect-secrecy exponent. Using standard method of types, it can be shown that this is the maximal exiguous-

distortion exponent that can be achieved when the eavesdropper blindly estimates the source, i.e. without using the

cryptogram. Alternatively, as evident from Theorem 1, this is the maximal exponent for unlimited key rate. We are

now ready to state our main result.

Theorem 1. Let δ > 0 be given. Then, there exists a sequence of codes S of fixed key rate R, which satisfies a

compression constraint (RL + δ,DL,EL) and properties 1-5 above,

E−
d (S,DE) ≥ min {R, E∗

e (DE)} − δ (17)

for all DE ≥ DL. Conversely, for every sequence of codes S of average key rate E[rn(x)] ≤ R for all n, which
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satisfies a compression constraint (RL,DL,EL) and properties 1-5 above,

E+
d (S,DE) ≤ min {R, E∗

e (DE)} (18)

for all DE ≥ DL.

Section VI is devoted to the proof of Theorem 1, and here we discuss its implications. The main implication

of this theorem is that the performance of lossy compression and encryption are essentially decoupled. Note that

in Theorem 1, the exiguous-distortion exponent of the eavesdropper is determined solely by the key rate and

the distortion level DE at the eavesdropper, and not by the compression constraint (RL,DL,EL) (as long as the

assumptions hold). Specifically, it holds for DL = 0, which means that increasing DL does not increase DE. In other

words, reducing the amount of information sent to the legitimate decoder cannot improve secrecy. Nonetheless, on

a positive note, as long as R ≤ E∗
e (DE), the maximal secrecy can be attained, for every DE ≥ DL, without affecting

the compression performance. In addition, note that in Theorem 1, DE has a special stature: A single sequence of

codes S is universal for all DE ≥ DL. This enables the construction of secure rate-distortion codes that are robust

to the choice of DE, which may be unspecified when designing the system.

As previously mentioned, the achievability part of Theorem 1 is proved using fixed rate codes. Since fixed rate

codes clearly satisfy the second assumption above, the maximal exiguous-distortion exponent is fully characterized

for fixed key rate coding. Furthermore, the theorem shows that variable key rate codes, from the class of codes

which satisfy the above assumptions, offer no advantage over fixed key rate codes in terms of exiguous-distortion

exponent. This is in contrast to similar problems (variable-rate channel coding with feedback [25], [26], variable-rate

Slepian-Wolf coding [27]), where the more lenient average-rate constraint allows to increase the error exponent. It

should be mentioned that while the class of variable key rate codes is restricted to satisfy uniform convergence in

probability of the conditional key rate (see the second assumption above), the important class of type dependent

variable key rate codes satisfy this assumption. In a type dependent variable key rate code, the key rate rn(x)

depends on x only via its type, namely, Q̂x = Q̂x̃ implies rn(x) = rn(x̃) = ρ(QX) for some key rate function

ρ(·) : P(X ) → R
+. Due to the symmetry of source blocks from the same type class, such a key rate allocation is

indeed plausible, and also practically motivated due to its simplicity. Such codes trivially satisfy the convergence

requirement, and so the converse part of Theorem 1 is valid.

Theorem 1 essentially generalizes [17, Theorem 1]. In [17], it was assumed that all alphabets are identical

X = W = Z , and that DE = DL = 0. Thus, the legitimate decoder need to perfectly reproduce the source block,

and the eavesdropper performance is measured by its probability of correct estimate, i.e.

pd(Sn,DE) = max
σn∈Σn

P(X = Z). (19)
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Note also that for this specific case, the perfect-secrecy exponent for this case is given by

E∗
e (DE) = min

QX

{D(QX ||PX) +H(QX)} (20)

= − logmax
x∈X

PX(x). (21)

Indeed, even without using the cryptogram, the eavesdropper can choose z = (x∗, . . . , x∗) where x∗ = maxx∈X PX(x),

and achieve E∗
e (DE).

V. OUTLINE OF THE PROOF OF THEOREM 1

Since the proof of Theorem 1 is considerably involved, this section is devoted to an informal description of the

structure and the main ideas in this proof. Hopefully, this will facilitate the reading of the formal proof, or at least

give the reader an idea of the main highlights.

To begin, we observe, in Subsection VI-A, that the exiguous-distortion exponent remains unchanged even if

the eavesdropper is aware of the type of the source block Q̂x. This enables us to first, consider each type of the

source separately, and only then incorporate all types simultaneously, both in the achievability and the converse

parts. Next, in Subsection VI-B, we provide a technique which facilitates the construction of secure rate-distortion

codes, such that in view of the eavesdropper the cryptograms are symmetric. The idea is to cover a type class

Tn(QX) using an essentially minimal number of permutations of a constituent set Dn ⊆ Tn(QX). To wit, if

Dn , {x(0), . . . ,x(|Dn|−1)} then for any permutation π over {1, . . . , n}, we define

π(Dn) , {π(x(0)), . . . , π(x(|Dn|−1))} , (22)

and then find a set of permutations {πn,t}
κn

t=0 such that

κn
⋃

t=0

πn,t(Dn) = Tn(QX), (23)

where κn is asymptotically close to its minimal value of
|Tn(QX)|

|Dn|
. For ordinary rate-distortion, such covering lemma

can be used to show the existence of a good rate-distortion code (e.g. instead of [15, Lemma 9.1]). Let us define,

the D-cover of w ∈ Wn as

D(w, QX ,DL) , {x ∈ Tn(QX) : dL(x,w) ≤ DL} . (24)

If we set Dn = D(w, QX ,DL) and find permutations {πn,t}
κn

t=0 such that (23) holds, then the set Ĉn , {πn,t(w)}κn

t=0

is a rate-distortion code such that for every x ∈ Tn(QX) there exists w ∈ Ĉn such that dL(x,w) ≤ DL. Such

permutations can be found for all types of the source, and using the method of types, it can be verified that Marton’s

source coding exponent can be achieved by such a construction. For the construction of secure rate-distortion codes,

we will use permutations of more complicated sets to cover the type.

The achievability part (lower bound) is proved in Subsection VI-C using codes of fixed key rate R. Let us
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first focus on a single type QX . For the legitimate decoder, a source block x ∈ Tn(QX) is reproduced by some

w ∈ Cn ,
{

ϕn(y,u) : y ∈ Yn,u ∈ {0, 1}nR
}

, which satisfies dL(x,w) ≤ DL, unless no such w exists. The

compression constraint (RL,DL,EL) ensures that large-distortion reproduction occurs with an exponentially decaying

probability. The eavesdropper, on the other hand, reproduces using only the cryptogram y. With a slight abuse of

notation of (24), let us define, for a given the D-cover of Cn ⊆ Wn as

D(Cn, QX ,DL) ,
⋃

w∈Cn

D(w, QX ,DL). (25)

When the eavesdropper observes y, it knows that the legitimate decoder will reproduce w from the set Cn(y) =
{

ϕn(y,u) : u ∈ {0, 1}nR
}

of size |Cn(y)|= 2nR. Furthermore, conditioning on the cryptogram y and the type QX ,

the source block X is distributed uniformly over D(Cn(y), QX ,DL). The proof of achievability is divided into

three steps. In the first step (Lemma 7), we demonstrate the existence of a good and secure rate-distortion code

conditioned on a single cryptogram, in the second step, we extend this code for an entire type class Tn(QX)

(Lemma 9), and in the third step, we extend it to all types.

In more detail, the first step of the proof (Lemma 7) shows, by a random selection mechanism, that there

exists a set C∗
n of size 2nR such that when X is distributed uniformly over D(C∗

n, QX ,DL), the exiguous-distortion

probability of any eavesdropper is asymptotically not larger than 2−n·min{R,RE(QX ,DE)}. Geometrically, this implies

that the D-covers for w ∈ Cn are distant from each other, under dE(·, ·). Thus, a secure rate-distortion code satisfying

Cn(y) = C∗
n for some cryptogram y, will have a good conditional exiguous-distortion probability given y.

In the second step, we define the code for all x ∈ Tn(QX), using a symmetry argument. Observe that the

distortion measures of both the legitimate and eavesdropper decoders are invariant to permutations (see (2) and

(5)). Thus, D(π(Cn), QX ,DL) = π (D(Cn, QX ,DL)), and the exiguous-distortion probability for an eavesdropper

when X is distributed uniformly over π (D(Cn, QX ,DL)) is the same as for D(Cn, QX ,DL). In Lemma 9, we use a

minimal number of permutations (from Subsection VI-B) of a good D-cover D(C∗
n, QX ,DL) to cover Tn(QX), and

then obtain a good secure rate-distortion code for all Tn(QX). There is a certain subtlety in the proof of Lemma

9. For an ordinary rate-distortion code, there might be more than a single w ∈ Cn such that dL(x,w) ≤ DL. From

the excess-distortion probability point of view, there is no importance to which one of these {w} will reproduce

x. However, this might result in w ∈ Cn for which only a small portion of D(w, QX ,DL) is actually reproduced

by w (as x ∈ D(w, QX ,DL) might be reproduced by some w
′ ∈ Cn which also satisfies dL(x,w) ≤ DL), which

might be harmful for secrecy purposes. Indeed, the secure rate-distortion code is constructed in Lemma 9 with

the will that conditioned on any cryptogram y, the source is distributed uniformly over D(C∗
n, QX ,DL). But, since

a source block must eventually be reproduced by a single w, then conditioned on some of the cryptograms y,

the source block will be distributed on a smaller set than D(C∗
n, QX ,DL). For such cryptograms, the conditional

exiguous-distortion probability of the eavesdropper might be large. Lemma 9 shows that if the efficient covering

described above is utilized, then the total effect of such events is negligible.
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Until this stage, we have constructed a code for Tn(QX) with appropriate conditional exiguous-distortion ex-

ponent. As we shall see, in the construction of Lemma 7 and Lemma 9, the convergence of probabilities to their

asymptotic exponent is not necessarily uniform (cf. Remark 8). In the third step of the achievability proof, we prove

that uniform convergence is possible, using an elaborated construction, built from the previous one. The idea is to

consider a dense grid on the simplex Q(X ), and construct a secure rate-distortion code, as in Lemma 9, for each

of the types in the grid. Since the of number of types in the grid is finite, then uniform convergence is assured

for types in the grid. If the type of the source block belongs to the grid, then one of the constructed codes is

used, according to its type. Otherwise, the source block will be first modified, such that the modified source block

does have type within the grid, which is not very far from the type of the original source block. The modified

source block will then be encoded using one of the codes of the grid, and thus will have both low legitimate

excess-distortion probability, and large exiguous-distortion probability for the eavesdropper. It will be shown that

the overheads required for the legitimate decoder to reproduce the original source block, rather than the modified

source block are negligible.

In Subsection VI-D, we prove the converse part in two steps. Recall that in general, for any given type QX ∈

P(X ), we have defined the average rate R(S, QX), but we allow each source block x ∈ Tn(QX) to have a different

key rate rn(x) ∈ [0, logn|X |]. In addition, for a code satisfying the compression constraint (RL,DL,EL), and type

QX such that D(QX ||PX) ≤ EL, the legitimate excess-distortion probability must decay to zero exponentially as

2−n[EL−D(QX ||PX)] but does not need to be strictly zero. In the first step of the proof of the converse, we prove

a lemma that shows that the optimal limit superior exiguous-distortion exponent is not deteriorated, if we restrict

rn(x) to be a constant within Tn(QX), which is less than R(S, QX) + δ, and also restrict the legitimate excess-

distortion probability to be exactly zero. It will be easier to prove a converse for codes with such properties, as

will be done in the second step of the proof. In the second step, we assume the structure of the code from the first

step, and evaluate the performance of an eavesdropper which adopts one of the following two simple strategies:

(1) It can guess the secret key bits, and then decode using these bits just like the legitimate decoder. (2) It can

ignore the cryptogram altogether and choose an estimate z ∈ Zn, based on only Q̂x. Clearly, in the first case, the

probability of success is 2−nR, and it is not difficult to show that the exiguous-distortion probability for the second

strategy is asymptotically 2−nE∗
e (DE). This implies the upper bound (18). We remark that the asymptotic optimality

of these two simple strategies (sometimes called key-attack and blind guessing, respectively) can also be found to

some extent in related problems [14], [21], [22].

We conclude the outline of the proof with the following comments:

• Awareness of key-length: Since the number of possible key-lengths is n log|X |, it can be compressed and

fully encrypted using negligible coding rate and key rate of 1
n log(n log|X |) bits, and it can be assumed

that the exiguous-distortion exponent is not deteriorated if the eavesdropper is aware of the key-length (as

in Subsection VI-A). Thus, in the converse proof, we could have found the exiguous-distortion exponent

conditioned on both the type and the key-length, and then average over them. The main obstacle in this
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approach is proving the second property (full type covering) assured in Lemma 13. To show this property

using the methods of Lemma 13, would require showing that the subsets of the type classes of fixed key-

length, i.e., T̃n(QX ,m) , Tn(QX) ∩ {x : kn(x) = m} for some 0 ≤ m ≤ n log|X |, can cover a type class

by essentially a minimal number of permutations, as in Lemma 4 (Subsection VI-B). However, in turn, the

proof of Lemma 4 is based on the fact that Tn(QX) is invariant to permutations, which may not hold for

T̃n(QX ,m).

• Full type covering: Let QX ∈ P(X ) be given such that D(QX ||PX) < EL. The method of types and the

expression (13) reveal that to satisfy the compression constraint (RL,DL,EL), the following condition should

hold for any given {ui}
∞
i=1

P [dL(X, ϕn(fn(X,u),u)) > DL|X ∈ Tn(QX)]
.
= 2−n[EL−D(QX ||PX)]. (26)

For ordinary rate-distortion codes, it is well known7 that if for a given ǫ ∈ (0, 1) and for all n sufficiently

large

P [dL(X,W) > DL] ≤ 1− ǫ (27)

then there exists a rate-distortion code with almost the same rate, such that

P [dL(X,W) > DL] = 0. (28)

Thus, to ensure an exponent constraint EL for ordinary rate-distortion codebook, the type classes of types

which are ‘close’ enough to PX (in the divergence sense) should be almost covered by the reproduction set

(26), but in fact, can be fully covered by the reproduction set (28). Then, the minimal rate required to satisfy

(26) is the same as the minimal rate to satisfy (28), and the compression rate cannot be decreased due to the

softer requirement in (26). By contrast, in the presence of the eavesdropper, it might happen that the softer

requirement in (26) can lead to better exiguous-distortion exponent: Even if a type class can be fully covered

using the available coding rate, perhaps the exiguous-distortion exponent can be improved if some of the

source blocks are reproduced with distortion larger than DL, but this occurs with sufficiently small probability,

as in (26). Lemma 13 shows that this is not the case.

• Compression constraint conditions: The conditions required to satisfy the coding rate constraint (3), and the

excess-distortion exponent constraint for the legitimate decoder (4) can be weakened without affecting Theorem

1. First, (3) can be weakened to

lim sup
n→∞

1

n
H(Y ) ≤ RL, (29)

where H(Y ) is the entropy of the cryptogram. Second, the excess-distortion exponent can be weakened to

7This can also be easily verified using Lemma 4.
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apply to the expectation constraint over the key-bits {Ui}
∞
i=1, rather than for every given {ui}

∞
i=1, i.e.

lim inf
n→∞

−
1

n
P [dL(X, ϕn(fn(X,U),U)) ≥ DL] ≥ EL. (30)

Obviously, since the achievability part is proved using the stronger conditions (3) and (4), it also holds under

the weaker conditions (29) and (30). For the converse, note that in Lemma 13 and in the proof of the converse,

the coding rate is essentially not constrained. The excess-distortion exponent constraint is used in the converse

proof only in eq. (255), which follows directly from the weaker condition (30). Therefore, the achievability

part holds under the strong conditions, and the converse part holds under the weak conditions.

• Legitimate excess-distortion exponent: As is evident from Theorem 1, there is no improvement in the exiguous-

distortion exponent even if EL vanishes (to wit, the distortion DL is achieved only on the average). Thus, the

excess-distortion exponent can be set to its maximal value of EL(PX ,DL,RL), as defined in (13).

• Dependency on the source distribution: From the proof of the achievability, it is evident that given Q̂x, the

operation of the encoder, the legitimate decoder and the eavesdropper decoder depend on PX only on whether

RL > RL(Q̂x,DL) or not (equivalently, from the previous comment, whether D(QX ||PX) ≤ EL or not). Since

it can be assumed that Q̂x is known to all parties, then prior knowledge of the source distribution PX is

not required to either party. Hence, the secure rate-distortion codes constructed are universal. Of course, the

exponents achieved depend on PX .

VI. PROOF OF THE THEOREM 1

We remind the reader the reverse Markov inequality [28, Section 9.3, p. 159], which is a useful tool for the

proof.

Lemma 2. Let X be a positive random variable which satisfies P(X ≤ αE[X]) = 1 for some α > 1. Then, for

any β < 1,

P (X > βE[X]) ≥
1− β

α− β
. (31)

The proof is based on the ordinary Markov inequality for the positive random variable X̃ = αE[X]−X .

A. Type Awareness of the Eavesdropper

Consider the following simple observation, which simplifies later derivations: The largest achievable exiguous-

distortion exponent is not deteriorated if the eavesdropper is aware of the type of the source block, in addition to

the cryptogram.

Proposition 3. For any QX ∈ P(X )

E−
d (S,DE, QX) = lim inf

n→∞

{

−
1

n
max
σn∈Σ̃n

logP [dE(X,Z) ≤ DE|X ∈ Tn(QX)]

}

. (32)

An analogous result holds for E+
d (S,DE, QX).
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Proof: Since Σn ⊂ Σ̃n

E−
d (S,DE, QX) ≥ lim inf

n→∞

{

−
1

n
log max

σn∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)]

}

. (33)

To show equality, let {σ̃∗
n ∈ Σ̃n} be the sequence of decoders which achieve the maximum in the right hand side

of (33). Let us define a sequence of decoders {σn ∈ Σn} as follows. First, σn produces a random guess Q ∈ Pn

of the type of the source, with the uniform distribution over Pn, and second, it decodes

σn(y) = σ̃∗
n(y,Q). (34)

Given QX ∈ P , the resulting conditional exiguous-distortion probability is given by

P [dE(X, σn(Y )) ≤ DE|X ∈ Tn(QX)] (35)

≥ P

[

dE(X, σ̃∗
n(Y,Q)) ≤ DE|Q = Q̂x,X ∈ Tn(QX)

]

· P
[

Q = Q̂x|X ∈ Tn(QX)
]

(36)

= P

[

dE(X, σ̃∗
n(Y, Q̂x)) ≤ DE|X ∈ Tn(QX)

]

·
1

|Pn|
(37)

and as |Pn|≤ (n+ 1)|X |, equality is achieved in (33).

B. Covering a Type Class via Permutations

In this subsection, we discuss the possibility to cover a type class by means of permutations of a constituent

subset. The fact that the distortion measure of the eavesdropper is invariant to permutations of both arguments hints

on the usefulness of such a covering in the construction of good secure rate-distortion codes.

Given a type QX ∈ P(X ) and δ > 0, the method of types implies that for n > n0(δ, |X |)

2n[H(QX)−δ] ≤ |Tn(QX)|≤ 2nH(QX). (38)

Now, consider the subset Dn ⊂ Tn(QX), where the elements of Dn are distinct. We say that a set of permutations

{πn,t}
κn

t=0 cover Tn(QX) if
κn
⋃

t=0

πn,t(Dn) = Tn(QX), (39)

where πn,t(Dn) means that the same permutation πn,t(·) operates on all x ∈ Dn, as defined in (22). Let κ∗n be the

minimal number of permutations of Dn required to cover Tn(QX). By a simple counting argument, we must have

κ∗n ≥
|Tn(QX)|

|Dn|
. (40)

The following lemma guaranteed the existence of a cover which essentially achieves the lower bound.

Lemma 4 ([29, Section 6, Covering Lemma 2]). For every Dn ⊂ Tn(QX), QX ∈ Pn(X )

κ∗n ≤
|Tn(QX)|

|Dn|
· log|Tn(QX)|. (41)
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The main application of this lemma is for a sequence of sets {Dn}
∞
n=1. Let nl be the sequence of block-lengths

such that Tnl
(QX) is non-empty, and let Dnl

⊂ Tnl
(QX) such that

|Dnl
|
.
= 2nlR̃. (42)

Then, Lemma 4 implies that for every δ > 0 and l ≥ l0(δ, |X |) both

κ∗nl
≥

2nl[H(QX)−δ]

2nl(R̃+δ)
(43)

= 2nl[H(QX)−R̃−2δ] (44)

from (40) and

κ∗nl
≤

2nlH(QX)

2nl(R̃−δ)
nl [H(QX) + δ] (45)

≤ 2nl[H(QX)−R̃+2δ] (46)

from Lemma 4. Thus, the cover is asymptotically efficient, and this implies that the permuted sets cannot overlap too

much. To further explore this property, let {πnl,t}
κ∗
nl

t=0 be the permutations constructed in Lemma 4 for block-length

nl, and define the exclusive permutations sets as

Gnl,t , πnl,t(Dnl
)\

{

t−1
⋃

s=0

πnl,s(Dnl
)

}

. (47)

Note that Tnl
(QX) is a disjoint union Gnl,t, and for any R < R̃, consider the union of exclusive permutations sets

of small cardinality, namely

H(R) ,
⋃

t:|Gnl,t
|≤2nR

Gnl,t. (48)

A simple aspect of the asymptotic efficiency of the covering is that under the uniform distribution on the type class,

the probability that the source block belongs to a small exclusive permutations set is also small.

Lemma 5. For any R ≤ R̃

P
[

X ∈ H(R)|X ∈ Tn(QX)
] ·
≤ 2−n(R̃−R) (49)

Proof: Let an arbitrary δ > 0 be given. For all n sufficiently large, if Tn(QX) is empty then the statement of

the lemma is satisfied by convention. Otherwise,

P
[

X ∈ H(R)|X ∈ Tn(QX)
]

≤
κ∗n · enR

|Tn(QX)|
(50)

≤
2n[H(QX)−R̃+2δ] · enR

2n[H(QX)−δ]
(51)

= 2n(R−R̃+3δ). (52)
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C. Proof of Achievability Part of Theorem 1

We follow the three steps outlined in Section V. In the first step of the proof, we focus on a single cryptogram,

Cn(y) =
{

ϕn(y,u) : u ∈ {0, 1}nR
}

, which we generically denote by the set Cn = {w(0), . . . ,w(2nR− 1)} ⊂ Wn.

We begin with some definitions and simple properties. For a given (DL,DE) and QX ∈ Pn(X ), let X̃ be uniformly

distributed over D(Cn, QX ,DL) (defined in (25)). The exiguous-distortion probability for the set Cn is defined as8

pd(Cn, QX ,DL,DE) , max
z∈Zn

P

[

dE(X̃, z) ≤ DE

]

. (53)

We have the following simple properties for pd(Cn, QX ,DL,DE).

Proposition 6. Let Cn ⊂ Wn and QX ∈ Pn(X ) be given. Then:

1) For every permutation π

pd(Cn, QX ,DL,DE) = pd(π(Cn), QX ,DL,DE), (54)

where π(Cn) is as defined in (22).

2) Let X be uniformly distributed over Dn ⊆ D(Cn, QX ,DL). Then,

max
z∈Zn

P
[

dE(X, z) ≤ DE

]

≤
|D(Cn, QX ,DL)|

|Dn|
· pd(Cn, QX ,DL,DE). (55)

Proof:

1) Let z∗ be the maximizer of (53). Since dL(x,w) = dL(π(x), π(w)) then D(π(Cn), QX ,DL) = π (D(Cn, QX ,DL)).

Since also dE(x, z) = dE(π(x), π(z)) then

pd [π(Cn), QX ,DL,DE] = max
z∈Zn

P

[

dE(π(X̃), z) ≤ DE

]

(56)

≥ P

[

dE(π(X̃), π(z∗)) ≤ DE

]

(57)

= pd(Cn, QX ,DL,DE), (58)

and the reverse inequality can be obtained similarly, by considering the inverse permutation π−1.

2) For every z ∈ Zn

P
[

dE(X, z) ≤ DE

]

=
|x ∈ Dn : dE(x, z) ≤ DE|

|Dn|
(59)

≤
|x ∈ D(Cn, QX ,DL) : dE(x, z) ≤ DE|

|Dn|
(60)

=
|D(Cn, QX ,DL)|

|Dn|
·
|x ∈ D(Cn, QX ,DL) : dE(x, z) ≤ DE|

|D(Cn, QX ,DL)|
(61)

≤
|D(Cn, QX ,DL)|

|Dn|
· pd(Cn, QX ,DL,DE). (62)

8With a slight abuse of notation, we also use here the notation pd(·).
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The next lemma is the first step in the proof, in which we prove the existence of a good set C∗
n by a random

selection.

Lemma 7. Let δ > 0 and QX ∈ P(X ) be given, and let nl be the sequence of block-lengths such that Tnl
(QX)

is non-empty. There exists a sequence of sets C∗ = {C∗
nl
} of size |C∗

nl
|= 2nlR such that for all l sufficiently large

1

nl
log|D(C∗

nl
, QX ,DL)|≥ H(QX) + R−RL(QX ,DL)− δ, (63)

and

−
1

nl
log max

z∈Znl

P

[

dE(X̃, z) ≤ DE

]

≥ min {R, RE(QX ,DE)} − δ, (64)

for all DE ≥ DL, where X̃ is distributed uniformly over D(C∗
n, QX ,DL) .

Proof: Let n be given such that Tn(QX) is non-empty. Also, let DE be given, choose any QW ∈ Pn(W),

and consider an ensemble of randomly chosen sets Cn, where each member is selected independently at random,

uniformly within a type class Tn(QW ). By definition, for any given Cn

pd(Cn, QX ,DL,DE) =
maxz∈Zn |{x ∈ D(Cn, QX ,DL) : dE(x, z) ≤ DE}|

|D(Cn, QX ,DL)|
. (65)

It should be noticed, that unlike the situation in standard random coding bounds, here the denominator of (65)

is also a random variable. Nonetheless, we will show that there exists a set Cn such that both the numerator and

denominator of (65) are close to their expected values. To begin, let us analyze the expected value of the size of

the D-cover in the denominator of (65). We first consider the case R ≤ RL(QX ,DL). For a given Cn and QXW ,

define the type class enumerator

N(QXW |x) ,
∣

∣

∣

{

w ∈ Cn : Q̂xw = QXW

}∣

∣

∣
, (66)

and let

E0 , H(QX) + R−RL(QX ,DL). (67)

Note that in the last equation the X-marginal (W -marginal) of Q is constrained to the given type QX (respectively,

QW ). For brevity, here and throughout the sequel, such constraints will be omitted. Then,

E[|D(Cn, QX ,DL)|] = E





∑

x∈Tn(QX)

I {∃w ∈ Cn : dL(x,w) ≤ DL}



 (68)

= E





∑

x∈Tn(QX)

I







⋃

QXW :EQ[dL(X,W )]≤DL

{N(QXW |x) ≥ 1}









 (69)

.
= E





∑

x∈Tn(QX)

∑

QXW :EQ[dL(X,W )]≤DL

I {N(QXW |x) ≥ 1}



 (70)
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=
∑

x∈Tn(QX)

∑

QXW :EQ[dL(X,W )]≤DL

P {N(QXW |x) ≥ 1} (71)

(a)
=

∑

x∈Tn(QX)

∑

QXW :EQ[dL(X,W )]≤DL,IQ(X;W )>R

P {N(QXW |x) ≥ 1} (72)

(b)
.
=

∑

x∈Tn(QX)

∑

QXW :EQ[dL(X,W )]≤DL,IQ(X;W )>R

2n[R−IQ(X;W )] (73)

.
= 2nHQ(X) max

QXW∈Pn(X×W):EQ[dL(X,W )]≤DL,IQ(X;W )>R

2n[R−IQ(X;W )] (74)

(c)
= exp

{

n ·

[

HQ(X) + R− min
QXW∈Pn(X×W):EQ[dL(X,W )]≤DL

IQ(X;W )

]}

(75)

(d)
= 2nE0 , (76)

where in (a) and (c) we have used the assumption R ≤ RL(QX ,DL), and so, the set {QXW : EQ [dL(X,W )] ≤

DL, IQ(X;W ) ≤ R} is empty. In (b), we have used the fact that N(QXW |x) is a binomial random variable

pertaining to 2nR trials and probability of success of exponential order exp [−nIQ(X;W )]. Passage (d) follows

from the fact that P(X ×W) is dense in Q(X ×W) and IQ(X;W ) is continuous. In addition, using the union

bound, with probability 1,

|D(Cn, QX ,DL)| ≤
∑

w∈Cn

|{x ∈ Tn(QX) : dL(x,w) ≤ DL}| (77)

·
≤ 2nR · exp

[

n · max
QXW∈Pn(X×W):EQ[dL(X,W )]≤DL

HQ(X|W )

]

(78)

= 2nE0 . (79)

Next, we upper bound the numerator of (65). For a given Cn and z ∈ Zn, define now the type class enumerator

N(QZW |z) ,
∣

∣

∣

{

w ∈ Cn : Q̂zw = QZW

}∣

∣

∣
. (80)

Then,

|{x ∈ D(Cn, QX ,DL) : dE(x, z) ≤ DE}| (81)

=

∣

∣

∣

∣

∣

⋃

w∈Cn

{x ∈ Tn(QX) : dE(x, z) ≤ DE, dL(x,w) ≤ DL}

∣

∣

∣

∣

∣

(82)

=

∣

∣

∣

∣

∣

∣

⋃

QZW

⋃

w∈Tn(QW |Z ,z)∩Cn

⋃

QX|ZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL

{

x ∈ Tn(QX|ZW , z,w)
}

∣

∣

∣

∣

∣

∣

(83)

(a)

≤
∑

QZW

∑

w∈Tn(QW |Z ,z)∩Cn

∑

QX|ZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL

∣

∣

{

x ∈ Tn(QX|ZW , z,w)
}∣

∣ (84)

.
=
∑

QZW

∑

w∈Tn(QW |Z ,z)∩Cn

∑

QX|ZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL

2nHQ(X|ZW ) (85)



22

.
=
∑

QZW

∑

w∈Tn(QW |Z ,z)∩Cn

max
QX|ZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL

2nHQ(X|ZW ) (86)

=
∑

QZW

N(QZW |z) max
QX|ZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL

2nHQ(X|ZW ) (87)

.
= max

QZW

max
QX|ZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL

N(QZW |z)2nHQ(X|ZW ) (88)

.
=

∑

QXZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL

N(QZW |z)2nHQ(X|ZW ) (89)

where (a) is the union bound, and in all the above equations, QXZW ∈ Pn(X × Z ×W). Let

J (DL,DE) , {QXZW ∈ Pn(X × Z ×W) : EQ [dE(X,Z)] ≤ DE,EQ [dL(X,W )] ≤ DL} . (90)

Taking expectation, and using the fact that |Pn(X × Z × W)|≤ (n + 1)|X ||Z||W| i.e., increases with n only

polynomially,

E

[

max
z∈Zn

|{x ∈ D(Cn, QX ,DL) : dE(x, z) ≤ DE}|

]

(91)

·
≤ E



max
z∈Zn

∑

QXZW∈J (DL,DE)

N(QZW |z)2nHQ(X|ZW )



 (92)

= E









lim
β→∞











∑

z∈Zn





∑

QXZW∈J (DL,DE)

N(QZW |z)2nHQ(X|ZW )





β










1/β








(93)

(a)
= lim

β→∞
E



















∑

z∈Zn





∑

QXZW∈J (DL,DE)

N(QZW |z)2nHQ(X|ZW )





β










1/β








(94)

.
= lim

β→∞
E





{

∑

z∈Zn

(

max
QXZW∈J (DL,DE)

N(QZW |z)2nHQ(X|ZW )

)β
}1/β



 (95)

= lim
β→∞

E





(

∑

z∈Zn

max
QXZW∈J (DL,DE)

N(QZW |z)β2nβHQ(X|ZW )

)1/β


 (96)

.
= lim

β→∞
E











∑

z∈Zn

∑

QXZW∈J (DL,DE)

N(QZW |z)β2nβHQ(X|ZW )





1/β





(97)

(b)

≤ lim
β→∞





∑

z∈Zn

∑

QXZW∈J (DL,DE)

E

[

N(QZW |z)β
]

2nβHQ(X|ZW )





1/β

(98)

= lim
β→∞

(

∑

z∈Zn

∑

QXZW∈J (DL,DE):IQ(Z;W )≤R

E

[

N(QZW |z)β
]

2nβHQ(X|ZW )

+
∑

z∈Zn

∑

QXZW∈J (DL,DE):IQ(Z;W )>R

E

[

N(QZW |z)β
]

2nβHQ(X|ZW )

)1/β

(99)
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(c)
.
= lim

β→∞

(

∑

z∈Zn

∑

QXZW∈J (DL,DE):QZ=Q̂z,IQ(Z;W )≤R

2nβ[R−IQ(Z;W )]2nβHQ(X|ZW )

+
∑

z∈Zn

∑

QXZW∈J (DL,DE):QZ=Q̂z,IQ(Z;W )>R

2n[R−IQ(Z;W )]2nβHQ(X|ZW )

)1/β

(100)

.
= lim

β→∞

(

∑

QZ

2nHQ(Z)
∑

QXW |Z :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL,IQ(Z;W )≤R

2nβ[R−IQ(Z;W )]2nβHQ(X|ZW )

+
∑

QZ

2nHQ(Z)
∑

QXW |Z :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL,IQ(Z;W )>R

2n[R−IQ(Z;W )]2nβHQ(X|ZW )

)1/β

(101)

.
= lim

β→∞

(

max
QXZW∈J (DL,DE):IQ(Z;W )≤R

2nHQ(Z)2nβ[R−IQ(Z;W )]2nβHQ(X|ZW )

+ max
QXZW∈J (DL,DE):IQ(Z;W )>R

2nHQ(Z)2n[R−IQ(Z;W )]2nβHQ(X|ZW )

)1/β

(102)

.
= lim

β→∞

(

max

{

max
QXZW∈J (DL,DE):IQ(Z;W )≤R

2nHQ(Z)2nβ[R−IQ(Z;W )]2nβHQ(X|ZW ),

max
QXZW∈J (DL,DE):IQ(Z;W )>R

2nHQ(Z)2n[R−IQ(Z;W )]2nβHQ(X|ZW )

})1/β

(103)

= lim
β→∞

max

{

max
QXZW∈J (DL,DE):IQ(Z;W )≤R

2n
1

β
HQ(Z)2n[R−IQ(Z;W )]2nHQ(X|ZW ),

max
QXZW∈J (DL,DE):IQ(Z;W )>R

2n
1

β
HQ(Z)2n

1

β
[R−IQ(Z;W )]2nHQ(X|ZW )

}

(104)

= max

{

max
QXZW∈J (DL,DE):IQ(Z;W )≤R

2n[R−IQ(Z;W )]2nHQ(X|ZW ),

max
QXZW∈J (DL,DE):IQ(Z;W )>R

2nHQ(X|ZW )

}

(105)

where (a) is by the Lebesgue monotone convergence theorem [30, Theorem 11.28] and the monotonicity of the

argument inside the expectation operator in β, and (b) is by the Jensen inequality. In (c), we have used the analysis

in [31, Subsection 6.3] of the moments of N(QZW |z), which is a binomial random variable with 2nR trials and

probability of success of the exponential order of exp [−nIQ(Z;W )]. Also, note that in all the above equations,

QXZW ∈ Pn(X × Z × W) but since P(X × Z × W) is dense in Q(X × Z × W) and the arguments of the

maximization are continuous functions of QXZW , we can change the maximization to be over Q(X × Z ×W).

Thus,

E

[

max
z∈Zn

|{x ∈ D(Cn, QX ,DL) : dE(x, z) ≤ DE}|

]

·
≤ 2nE1(DE) (106)

where

E1(DE) , max
QXZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL

{

HQ(X|ZW ) + [R− IQ(Z;W )]+
}

. (107)

Now, let δ > 0 be given. There exists n0(QX) such that for all n ≥ n0(QX), we have from (76)

E (|D(Cn, QX ,DL)|) ≥ 2n(E0−
δ

2
), (108)
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and from (79)

|D(Cn, QX ,DL)|≤ 2n(E0+
δ

2
). (109)

Define, for the given ensemble of the random sets

A0 ,

{

Cn : |D(Cn, QX ,DL)|> 2−n δ

2E[|D(Cn, QX ,DL)|]
}

. (110)

The reverse Markov lemma (Lemma 2) implies

P (A0) ≥
1− 2−n δ

2

2nδ − 2−n δ

2

≥ 2−2nδ (111)

where the second inequality is satisfied for all n ≥ n′
0 for some n′

0 ≥ n0(QX).

Now, note that we need to prove that a single set C∗
n satisfies (64) for all DE ≥ DL. To show this, we consider a

quantization of the possible values of DE. To this end, let an arbitrary η > 0 be given, such that J = RE(QX ,DL)
η is

integer, and find DE sufficiently large such that9

RE(QX ,DE) ≤ lim
DE→∞

RE(QX ,DE) + η. (112)

Let us quantize the interval [RE(QX ,DE), RE(QX ,DL)] to values {R(0), . . . ,R(J)}, where R(j) = jη and let

DE(j) = R−1
E (QX ,R(j)), where R−1

E (QX ,R) is the inverse function of RE(QX ,DE). By (105), there exists

n1(j,QX) such that for all n ≥ n1(j,QX)

E

[

max
z∈Zn

|{x ∈ D(Cn, QX ,DL) : dE(x, z) ≤ DE(j)}|

]

≤ 2n[E1(DE(j))+δ], (113)

where the expectation is over the random ensemble of sets Cn. By defining

A1j ,

{

Cn : max
z∈Zn

|{x ∈ D(Cn, QX ,DL) : dE(x, z) ≤ DE(j)}| ≤ 2n[E1(DE(j))+4δ]

}

(114)

the ordinary Markov lemma implies

P (A1j) ≥ 1−
E [maxz∈Zn |{x ∈ D(Cn, QX ,DL) : dE(x, z) ≤ DE(j)}|]

2n[E1(DE(j))+4δ]
(115)

≥ 1− 2−3nδ. (116)

Defining A1 ,
⋂J

j=0A1j we get

P (A1) = P





J
⋂

j=0

A1j



 (117)

= 1− P





J
⋃

j=0

Ac
1j



 (118)

9Note that if dE(x, z) < ∞ for all x ∈ X , z ∈ Z , then limDE→∞ RE(QX ,DE) = 0.



25

≥ 1−

J
∑

j=0

P
(

Ac
1j

)

(119)

≥ 1− J · 2−3nδ. (120)

Thus, since J does not depend on n, there exists n′
1 ≥ max0≤j≤J n1(j,QX) such that for all n ≥ n′

1

P (A0 ∩ A1) = 1− P (Ac
0 ∪ Ac

1) (121)

≥ 1− P (Ac
0)− P (Ac

1) (122)

≥ 1− (1− 2−2nδ)− J2−n 5δ

2 (123)

= 2−2nδ − J · 2−3nδ (124)

> 0. (125)

Therefore, for all sufficiently large n > max{n′
0, n

′
1}, there exists Cn ∈ A0 ∩ {

⋂J
j=0A1j}, i.e., Cn which satisfies

both

|D(Cn, QX ,DL)|> 2−n δ

2E[|D(Cn, QX ,DL)|] (126)

and

max
z∈Zn

|{x ∈ D(Cn, QX ,DL) : dE(x, z) ≤ DE(j)}| ≤ 24nδ2nE1(DE(j)) (127)

for all 0 ≤ j ≤ J . Thus we get

pd [Cn, QX ,DL,DE(j)] ≤
24nδ2nE1(DE(j))

2−n δ

2 2n(E0−n δ

2
)
= 25nδ · 2n[E1(DE(j))−E0]. (128)

If we now define E(DE) , E1(DE)− E0, then for any given QW ∈ Pn(W)

lim inf
n→∞

−
1

n
log pd [Cn, QX ,DL,DE(j)] ≥ E(DE). (129)

Now, choose let QW be the W -marginal of QXW which achieves RL(QX ,DL). Then,

E(DE) ≥ min
QXZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]EQ[dL(X,W )]≤DL,IQ(Z;W )≤R

{IQ(Z;W ) + IQ(X;Z,W )}

− min
QXW :EQ[dL(X,W )]≤DL

IQ(X;W ) (130)

(a)

≥ min
QXZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL,IQ(Z;W )≤R

{IQ(Z;W ) + IQ(X;Z,W )− IQ(X;W )} (131)

= min
QXZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL,IQ(Z;W )≤R

{IQ(Z;W ) + IQ(X;Z|W )} (132)

= min
QXZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL,IQ(Z;W )≤R

IQ(X,W ;Z) (133)

(b)

≥ min
QXZW :EQ[dE(X,Z)]≤DE

IQ(X;Z) (134)
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= RE(QX ,DE) (135)

where (a) is by restricting QXW to be the same in both minimizations of (130), and (b) is by the data processing

property of the mutual information. Similarly,

E(DE) ≥ R+ min
QXZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL,IQ(Z;W )>R

IQ(X;Z,W )

− min
QXW :EQ[dL(X,W )]≤DL

IQ(X;W ) (136)

≥ R+ min
QXZW :EQ[dE(X,Z)]≤DE,EQ[dL(X,W )]≤DL,IQ(Z;W )>R

IQ(X;Z|W ) (137)

≥ R. (138)

by restricting QXW to be the same in both minimizations of (136).

Therefore, (129), (135) and (136) imply that

lim inf
n→∞

−
1

n
log pd [Cn, QX ,DL,DE(j)] ≥ min {RE(QX ,DE(j)),R} (139)

for all 0 ≤ j ≤ J . By taking η ↓ 0, continuity of RE(QX ,DE) in DE provides the lower bound (64) for all DE ≥ DL.

Then, (63) is obtained from (126) and (108).

To complete the proof of the lemma, we consider the case of R ≥ RL(QX ,DL). Denote by Q
(n)
XW a sequence of

distributions such that Q
(n)
XW → Q∗

XW as n → ∞, where Q∗
XW achieves the rate-distortion function RL(QX ,DL).

For a given Cn, let C̃n be a subset formed by the first enRL(QX ,DL) members of Cn. The same analysis as before

shows that when randomly drawing a set Cn uniformly over the W -marginal of Q
(n)
XW , there exists a sequence of

sets {Cn} such that

|D(C̃n, QX ,DL)|≥ 2n(E0−δ) ≥ 2n[H(QX)−δ]. (140)

Then, for Cn

pd(Cn, QX ,DL,DE) =
maxz∈Zn |{x ∈ D(Cn, QX ,DL) : dE(x, z) ≤ DE}|

|D(Cn, QX ,DL)|
(141)

≤
maxz∈Zn |{x ∈ D(Cn, QX ,DL) : dE(x, z) ≤ DE}|

|D(C̃n, QX ,DL)|
(142)

≤
maxz∈Zn |{x ∈ Tn(QX) : dE(x, z) ≤ DE}|

|D(C̃n, QX ,DL)|
(143)

≤
maxz∈Zn |{x ∈ Tn(QX) : dE(x, z) ≤ DE}|

2n[H(QX)−δ]
(144)

= 2−n[H(QX)−δ] max
z∈Zn

∑

QX|Z :EQ[dE(X,Z)]≤DE

∣

∣Tn(QX|Z , z)
∣

∣ (145)

≤ 2−n[H(QX)−δ]max
QZ

∑

QX|Z :EQ[dE(X,Z)]≤DE

2nHQ(X|Z) (146)

.
= exp

(

−n

[

HQ(X)− δ − max
QXZ :EQ[dE(X,Z)]≤DE

HQ(X|Z)

])

(147)
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≤ 2−n[RE(QX ,DE)−δ] (148)

and the proof of the lemma is complete, as δ is arbitrary.

Remark 8. As mentioned in Section V, to show achievability of an exiguous-distortion exponent using the method

of types, uniform convergence of − 1
n log pd(C

∗
n, QX ,DL,DE) to the exponent min {R, RE(QX ,DE)} is required (cf.

eq. (233)). However, the proof of Lemma 7 is not sufficient to show this. Specifically, the convergence in the

asymptotic analysis of the type class enumerators, i.e. the relations

P {N(QXW |x) ≥ 1}
.
= 2n[R−IQ(X;W )] (149)

used in (73) and

E

[

N(QZW |z)β
]

.
=











2n[R−IQ(Z;W )], IQ(Z;W ) ≤ R

2nβ[R−IQ(Z;W )], IQ(Z;W ) > R

(150)

used in (100), are not uniform in QX .

We continue with the second step of the proof, which constructs from the set C∗
n a secure rate-distortion code

for all x ∈ Tn(QX). The proof of the next lemma is based on the permutations technique described in Subsection

VI-B.

Lemma 9. For any given QX ∈ P(X ) ∩ intQ(X ) and δ > 0, there exists a sequence of secure rate-distortion

codes S∗ of fixed key rate R such that

lim
n→∞

1

n
log|Yn|≤ RL(QX ,DL) + δ, (151)

and,

P [dL(X, ϕ∗
n(f

∗
n(X,u))) ≥ DL|X ∈ Tn(QX)] = 0 (152)

for every u ∈ {0, 1}nR, as well as

E−
d (S∗,DE, QX) ≥ min {R, RE(QX ,DE)} − δ (153)

for all DE ≥ DL.

Proof: Assume that QX ∈ [intQ(X )]∩Pn0
(X ) for some minimal n0 ∈ N. Since the statements in the lemma

are only about conditional events given the type QX , it is clear that the secure rate-distortion codes constructed

S∗
n, may only encode x ∈ Tn(QX), and so only block-lengths n mod n0 = 0 should be considered, as otherwise

Tn(QX) is empty.

Let C∗ = {C∗
n} be a sequence of sets of size 2nR constructed according to Lemma 7. So for all n sufficiently
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large

pd(C
∗
n, QX ,DL,DE) ≤ 2−n[min{R,RE(QX ,DE)}−δ], (154)

and

|D(C∗
n, QX ,DL)| ≥ 2n(A−δ), (155)

where

A , min {H(QX) + R−RL(QX ,DL), H(QX)} . (156)

Now, let {πn,t}
κn

t=0 be a set of permutations constructed according to Lemma 4, such that

κn
⋃

t=0

πn,t(D(C∗
n, QX ,DL)) = Tn(QX), (157)

where κn ≤ 2n[H(QX)−A+2δ)], and let {Gn,t} be the resulting exclusive permutation sets, as defined in (47).

We construct the following secure rate-distortion codes S∗
n = (f∗

n, ϕ
∗
n) of fixed key rate R, which only encode

x ∈ Tn(QX). We utilize the covering of the type class Tn(QX) by permutations of a D-cover of the set C∗
n

to encode the source block in the following way. Assume that the elements of C∗
n are arbitrarily ordered, i.e.

C∗
n = {w(0), . . . ,w(2nR − 1)}. For a given x ∈ Tn(QX), let

t∗(x) , min {t : x ∈ Gn,t} , (158)

and

i∗(x) , min{i : w(i) ∈ Gn,t∗(x), dL(x,w(i)) ≤ DL} (159)

The encoding is a concatenation of the following two parts y = f∗
n(x,u) = (ty, iy):

• A description of the permutation set, defined as ty , B[t∗(x);n(H(QX)−A+ 2δ)].

• An encrypted description of the distortion covering codeword, defined as iy , B[i∗(x);nR]⊕ u.

It is easily verified that given u, the legitimate decoder can reproduce w = ϕn(y,u) such that dL(x,w) ≤ DL, for

all x ∈ Tn(QX), and so (152) is satisfied. Regarding the coding rate, note that

1

n
log|Yn| = H(QX)−A+ 2δ + R (160)

≤ RL(QX ,DL) + 3δ (161)

for all n sufficiently large, which results in (151).

It remains to prove that for any eavesdropper σn, the conditional exiguous-distortion exponent, given that X ∈

Tn(QX), is larger than min {R, RE(QX ,DE)}− δ. From Proposition 3, it may be assumed that the eavesdropper is

aware of the type QX . Moreover, given the cryptogram Y = y, the source block X is distributed uniformly over

Gn,ty , and independent of iy. Thus, the optimal eavesdropper has the same estimate for cryptograms with the same
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ty, and we may denote its estimate as z = σn(y) , z(ty). Since Gn,0 = D(C∗
n, QX ,DL), then conditioned on the

event {t∗(X) = 0}, for any z ∈ Zn, Lemma 7 implies

P [dE(X, z) ≤ DE|X ∈ Tn(QX), t∗(X) = 0] = P [dE(X, z) ≤ DE|X ∈ Gn,0] (162)

≤ 2−n[min{R,RE(QX ,DE)}−δ] (163)

for all n sufficiently large. It then follows that for 0 < t ≤ κn,

P [dE(X, z) ≤ DE|X ∈ Tn(QX), t∗(X) = t] = P [dE(X, z) ≤ DE|X ∈ Gn,t]

(a)

≤
|Gn,0|

|Gn,t|
P [dE(X, z) ≤ DE|X ∈ Gn,0]

≤
|Gn,0|

|Gn,t|
2−n(min{R,RE(QX ,DE)}−δ), (164)

where (a) follows from the fact that for any 0 < t ≤ κn, there exists a permutation π such that π (Gn,t) ⊂ Gn,0 =

D(C∗
n, QX ,DL) and Proposition 6. Thus, the exiguous-distortion probability conditioned on t∗(X) = t can be larger

than the same probability conditioned on t∗(X) = 0, but only up to a factor of
|Gn,0|
|Gn,t|

, which is large if |Gn,t|

is small. Next, we show that the contribution to the exiguous-distortion probability of these small sets does not

impact its exponential behavior. To this end, for any fixed 0 < η < A + δ such that J = A+δ
η is an integer, let

us quantize the interval [0, A+ δ] to values {A0, . . . , AJ}, where Aj = jη. We will treat separately sets such that

2nAj ≤ |Gn,t|≤ 2nAj+1 . For all n sufficiently large

P [dE(X, z) ≤ DE|X ∈ Tn(QX)] (165)

=

κn
∑

t=0

P [X ∈ Gn,t|X ∈ Tn(QX)]P [dE(X, z(t)) ≤ DE|X ∈ Gn,t,X ∈ Tn(QX)] (166)

=

J−1
∑

j=0

∑

t:2nAj≤|Gn,t|≤2nAj+1

P [X ∈ Gn,t|X ∈ Tn(QX)]P [dE(X, z(t)) ≤ DE|X ∈ Gn,t,X ∈ Tn(QX)] (167)

(a)

≤

J−1
∑

j=0

∑

t:2nAj≤|Gn,t|≤2nAj+1

P [X ∈ Gn,t|X ∈ Tn(QX)]
|Gn,0|

|Gn,t|
2−n(min{R,RE(QX ,DE)}−δ) (168)

≤

J−1
∑

j=0

∑

t:2nAj≤|Gn,t|≤2nAj+1

P [X ∈ Gn,t|X ∈ Tn(QX)]
2n(A+δ)

2nAj
2−n(min{R,RE(QX ,DE)}−δ) (169)

=

J−1
∑

j=0

2n(A+δ)

2nAj
2−n(min{R,RE(QX ,DE)}−δ)

∑

t:2nAj≤|Gn,t|≤2nAj+1

P [X ∈ Gn,t|X ∈ Tn(QX)] (170)

(b)

≤

J−1
∑

j=0

2n(A+δ)

2nAj
2−n(min{R,RE(QX ,DE)}−δ)

P [X ∈ H(Aj+1)|X ∈ Tn(QX)] (171)

(c)

≤

J−1
∑

j=0

2n(A+δ)

2nAj
2−n(min{R,RE(QX ,DE)}−δ)2−n(A−Aj+1−δ) (172)
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≤ J · max
0≤j≤J−1

2n(Aj+1+2δ)

2nAj
2−n(min{R,RE(QX ,DE)}−δ) (173)

≤ 2n(η+3δ)2−n·min{R,RE(QX ,DE)} (174)

(d)

≤ 2n(η+4δ)2−n·min{R,RE(QX ,DE)} (175)

where (a) is using (164), (b) is using the definition in (48), (c) is using Lemma 5, and (d) is since J
.
= 1. The

result follows by taking η ↓ 0.

Remark 10. Note that only the properties (154)-(155) of D(C∗
n, QX ,DL) were used in order to prove Lemma 9.

The same proof of Lemma 9 can be used to show that if some other set Dn ⊂ D(C∗
n, QX ,DL) satisfies similar

properties, i.e. if for some E > 0

max
z∈Zn

P

[

dE(X̃, z) ≤ DE

]

≤ 2−nE , (176)

where here X̃ is distributed uniformly over Dn, and

|Dn| ≥ 2n(A−δ) (177)

then a secure rate-distortion code can be constructed, with conditional exiguous-distortion exponent E. In this case,

the code is constructed such that only source blocks in Dn are mapped to the permutation index t∗(x) = 0, but not

source blocks from D(C∗
n, QX ,DL)\Dn. In addition, if the coding rate is unconstrained, then the condition (177)

is not required. This fact will be utilized in the sequel in the proof of Lemma 13.

In the third step of the achievability proof, we construct the secure rate-distortion code for all types in P(X ).

We will need the following two lemmas.

Lemma 11. Let QX , Q′
X ∈ Pn(X ) and assume that10 ||QX −Q′

X ||= 2d∗

n where d∗ > 0. If x ∈ Tn(QX) then

min
x′∈Tn(Q′

X)
dH(x,x

′) ≤ d∗. (178)

Proof: See the extended version of [27, Lemma 20].

Lemma 12. Let QX ∈ Pn(X ) and x ∈ Tn(QX). For any given 1 ≤ k < n let x′ = x
n−k
1 . Then

||Q̂x − Q̂x′ ||< |X |·
k

n− k
. (179)

Proof: See the extended version of [27, Lemma 21].

We are now ready for the third and final step of the proof of the achievability part of Theorem 1.

Proof of achievability part of Theorem 1: Let 0 < ǫ < 1 be given, and find n0 sufficiently large such that for

any Q′
X ∈ P(X ) there exists QX ∈ Pn0

(X )∩intQ(X ) such that ||QX−Q′
X ||≤ ǫ

2 . We will term Pn0
(X )∩intQ(X )

as the grid. Also let n1 = n0ǫ+2n0|X |. We construct the following sequence of secure rate-distortion codes S for

10For two different types in Pn(X ), the minimal variation distance is 2

n
.
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all n > max{n0, n1}. We will use the following definitions and constructions:

• Let ñ =
⌊

n
n0

⌋

· n0.

• Enumerate the types of the source Pn(X ).

• Assume, w.l.o.g., that X = {1, . . . , |X |} and let X , {0} ∪ X .

• Let

Bn
H(ǫ) ,

{

x ∈ X
n
: dH(x,0) ≤

nǫ

2

}

, (180)

i.e., an Hamming ball of radius nǫ
2 and dimension n.

• Construct the codes S∗
ñ,QX

= (f∗
ñ,QX

, ϕ∗
ñ,QX

) of key rate R as in Lemma 9, for all QX ∈ Pn0
(X )∩ intQ(X ).

• For every given QX ∈ Pn(X ) find

Φǫ(QX) , argmin
Q′

X∈Pn0
(X )∩intQ(X )

||QX −Q′
X ||. (181)

• For any given x ∈ X n and x ∈ X
n

, define the replacement operator Ψ : X n × X
n

→ X
n

which for

x̃ = Ψ(x,x) satisfies

x̃i =











xi, xi = 0

xi, xi 6= 0

(182)

• For a given x ∈ X n, define the replacement set

K(x, ǫ) ,
{

x ∈ Bñ
H(ǫ) : Ψ(xñ

1 ,x) ∈ Tñ(Φǫ(Q̂x))
}

. (183)

Note that the size of K(x, ǫ) depends on x only via its type Q̂x.

The above type enumeration and the codes constructed are revealed to both the encoder and the decoder off-line.

Before we provide the details of the encoding and the legitimate decoding, we outline the main ideas. Using the

construction of Lemma 9, we construct secure rate distortion codes for each type in the grid Pn0
(X ) ∩ intQ(X ).

Since this grid has a finite number of types, then for all sufficiently large n, the normalized logarithm of the

conditional exiguous-distortion probability is close to the exponent (153) uniformly over all types in the grid. As

mentioned in the outline of the proof in Section IV, we will modify any given source block so that it can be

encoded using one of the codes in the grid. In order to allow the legitimate decoder to be able to reproduce with

the desired distortion DL, the cryptogram will be comprised of (at most) four parts, each one of them being encrypted

using key bits u
(i) for 1 ≤ i ≤ 4. First, the type of the source Q̂x is conveyed to the legitimate decoder, and, in

accordance with Proposition 3, the type information is not encrypted, and so u
(1) is the empty string. This type

will be modified to the type Φǫ(Q̂x), which is also known to the legitimate decoder and the eavesdropper. Second,

since if n mod n0 6= 0 then Q̂x may not belong to the grid, we first truncate the source block to the length ñ. The

truncated part xn
ñ+1 will be sent to the legitimate decoder losslessly, and fully encrypted using u

(2). Third, we will

modify x
ñ
1 to the modified vector v, such that Q̂v = Φǫ(Q̂x). This will be done by replacing a small number of the
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symbols of x. The symbols of x which were replaced in order to create v will be sent to the legitimate decoder

losslessly, and fully encrypted using u
(3). Note, that there might be more than one way to replace the symbols of

x, and in fact, any x ∈ K(x, ǫ) can be used for this purpose if we define v , Ψ(xñ
1 ,x) using (182) and (183).

For the sake of the analysis, it will be convenient to choose a replacement vector randomly from K(x, ǫ). This

will be achieved using key bits u, which in this case, function as common randomness rather than for encryption.

Fourth, the code s∗
ñ,Φǫ(Q̂x)

will be used to encode the modified vector v using the key bits u
(4). As we will prove,

the whole modification procedure incurs a negligible cost on the compression and secrecy performance, which we

analyze after formally defining the encoder and legitimate decoder.

Encoding: Let u = (u(1),u(2),u(3),u(4),u). The following cryptogram parts are generated:

• Source block type: Find the type index 0 ≤ j∗ ≤ |Pn(X )|−1 of the source block type in the enumeration of

the types, and let

y1 , B[j∗; log|Pn(X )|]. (184)

Set u(1) = φ, namely, the type information is not encrypted, in accordance with Proposition 3.

• Fully encrypted source block tail:

y2 , B[xn
ñ+1; (n− ñ) log|X |]⊕ u

(2) (185)

• Modification vector: Let x be the Ku-th vector in K(x, ǫ), where u is of length log|K(x, ǫ)| bits, and Ku is

integer corresponding to u, i.e.

Ku ,

log|K(x,ǫ)|
∑

l=1

ul · 2
(l−1) + 1. (186)

Also, let

v , Ψ(xñ
1 ,x) (187)

and let x′′′ ∈ X
n

where

x′′′i =











0, xi = 0

xi, xi 6= 0

. (188)

As clearly x
′′′ ∈ Bñ

H(ǫ), let i∗ be the index of x′′′ in Bñ
H(ǫ) and

y3 , B[i∗; log|Bñ
H(ǫ)|]⊕ u

(3). (189)

• Cryptogram of modified vector: Let

y4 , s∗
ñ,Φǫ(Q̂x)

(v,u(4)) (190)

where u
(4) is of length nR bits.
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The encoding of the source block is separated into two cases, depending on its type Q̂x. If RL < RL(Q̂x,DL) then

y = f∗
n(x,u) = y1. (191)

Otherwise, if RL ≥ RL(Q̂x,DL) then

y = f∗
n(x,u) = (y1, y2, y3, y4). (192)

To verify that such coding is possible, notice that from Lemma 12 and the fact that n > n1, we have

||Q̂xñ
1
− Q̂x||≤

ǫ

2
(193)

and by the triangle inequality

||Q̂xñ
1
− Q̂v||≤ ||Q̂xñ

1
− Q̂x||+||Q̂x − Q̂v||≤

ǫ

2
+

ǫ

2
= ǫ. (194)

Thus, the definition (180), and Lemma 11 imply that K(x, ǫ) is indeed non-empty, and an appropriate x can always

be found.

Decoding by the legitimate decoder: Upon observing y = f∗
n(x,u):

• Recover the type Q̂x from y1, and determine Φǫ(Q̂x) and |K(x, ǫ)|.

• If RL < RL(Q̂x,DL) then arbitrarily choose a vector from w̃ ∈ Wn, and reproduce

w , ϕ∗
n(y,u) = w̃. (195)

Otherwise, if RL ≥ RL(Q̂x,DL) then:

– Recover xn
ñ+1 from y2 and u

(2). Let w′′ ∈ Wn−ñ be such that dL(x
n
ñ+1,w

′′) = 0.

– Recover x′′′ from y3 and u
(3), and let w′′′ ∈ W ñ be such that dL(x

′′′,w′′′) = 0.

– Reproduce v from y4 and u
(4) as

w
′′′′ , ϕ∗

ñ,Q̂x

(y4,u
(4)) (196)

– Reproduce the source block as

w , ϕ∗
n(y,u) = (Ψ(w′′′′,w′′′),w′′). (197)

Note that the decoder knows |K(x, ǫ)| and thus can compute the total length of u. So, if multiple source blocks

are encoded in succession, the legitimate decoder can stay synchronized with the encoder and use the correct key

bits when deciphering the message.

For the sequence of codes S∗ constructed, we need to verify that the compression constraint is satisfied, and to

find the achievable exiguous-distortion exponent for any (type aware) eavesdropper, as well as the key rate. First,

consider the compression constraint. For the rate, recall that the cryptogram is composed of at most four parts

(192). Let Ynj be the alphabet of the j-th part, for 1 ≤ j ≤ 4, such that |Yn|=
∏4

j=1|Ynj |. We have,
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|Yn1|= |Pn(X )|≤ (n+ 1)|X |, (198)

and

|Yn2|= |X |n−ñ. (199)

For Yn3,

|Yn3|=
∣

∣Bñ
H(ǫ)

∣

∣ =

ñǫ

2
∑

k=0

(

ñ

k

)

|X |k (200)

≤
ñǫ

2
·

(

ñ
⌈

ñǫ
2

⌉

)

|X |
ñǫ

2 (201)

≤ 2ñ[hB(
ǫ

2
)+ ǫ

2
log|X |] (202)

, 2ñg(ǫ) (203)

where g(ǫ) was implicitly defined, and g(ǫ) ↓ 0 as ǫ ↓ 0. For Yn4, notice that the cryptogram part y4 is only used

for types QX which satisfy RL ≥ RL(QX ,DL). Thus,

|Yn4| ≤
∑

QX∈Pn(QX):RL≥RL(QX ,DL)

2nRL(QX ,DL) (204)

≤ |Pn(X )|·2nRL (205)

Therefore, for all n sufficiently large

lim sup
n→∞

1

n
log|Yn| ≤ lim sup

n→∞

4
∑

j=1

1

n
log|Ynj | (206)

≤ RL + g(ǫ) + 3δ. (207)

Now, as the codes S∗
ñ,QX

are constructed according to Lemma 9, it is easily verified that if RL ≥ RL(Q̂x,DL) then

for any u

dL(x, ϕ
∗
n(f

∗
n(x,u),u)) ≤ DL (208)

(see (152)). Thus, as |Pn(X )|≤ (n+ 1)|X |, for all n sufficiently large

P [dL(X, ϕ∗
n(f

∗
n(X,u),u)) ≥ DL] (209)

=
∑

QX∈Pn(X )

P [X ∈ Tn(QX)]P [dL(X, ϕ∗
n(f

∗
n(X,u),u)) ≥ DL|X ∈ Tn(QX)] (210)

≤
∑

QX∈Pn(X ):RL<RL(QX ,DL)

P [X ∈ Tn(QX)] (211)

≤
∑

QX∈Pn(X ):RL<RL(QX ,DL)

2−nD(QX ||PX) (212)
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≤ 2−n[EL(PX ,DL,RL)−δ] (213)

≤ 2−n(EL−δ). (214)

Second, let us analyze the exiguous-distortion exponent of S for an arbitrary eavesdropper. Let v̂∗ be the eaves-

dropper which maximizes the exiguous-distortion probability for the modified source block v, given the cryptogram

y. Then,

E−
d (S,DE)

(a)
= lim inf

n→∞
min

QX∈Pn(X )

{

D (QX ||PX)−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)]

}

(215)

(b)

≥ lim inf
n→∞

min

{

min
QX∈Pn(X ):RL≥RL(QX ,DL)

{

D (QX ||PX)−

1

n
log
(

|Bñ
H(ǫ)|P

[

dE(V, V̂∗) ≤ DE|V ∈ Tñ(Φǫ(QX))
])

}

,

min
QX∈Pn(X ):RL<RL(QX ,DL)

{

D (QX ||PX)−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)]

}}

(216)

(c)

≥ lim inf
n→∞

min

{

min
QX∈Pn(X ):RL≥RL(QX ,DL)

{

D (QX ||PX)−

1

n
log
[

|Bñ
H(ǫ)|P

[

dE(V, V̂∗) ≤ DE|V ∈ Tñ(Φǫ(QX))
]]

}

,

min
QX∈Pn(X ):RL<RL(QX ,DL)

{

D (QX ||PX) +RE(QX ,DE)− δ

}}

(217)

= min

{

lim inf
n→∞

min
QX∈Pn(X ):RL≥RL(QX ,DL)

{

D (QX ||PX)−

1

n
log
[

|Bñ
H(ǫ)|P

[

dE(V, V̂∗) ≤ DE|V ∈ Tñ(Φǫ(QX))
]]

}

,

lim inf
n→∞

min
QX∈Pn(X ):RL<RL(QX ,DL)

{

D (QX ||PX) +RE(QX ,DE)− δ

}}

, (218)

where the passages are explained as follows:

• Equality (a) is standard method of types, (as, e.g., in (214)). Notice that the exiguous-distortion event

{dE(X,Z) ≤ DE} in this equation is for the code Sn.

• Equality (b) is verified by establishing the following properties:

– Property 1: Due to the permutation invariance of type classes and Hamming spheres, given the event

X ∈ Tn(QX), V is distributed uniformly over Tñ(Φǫ(QX)). Indeed, let v
′,v′′ ∈ Tñ(Φǫ(QX)), where

v
′ = π(v′′) for some permutation π. Then, if for some x ∈ Tn(QX) and x ∈ K(x, ǫ)

v
′ = Ψ(xñ

1 ,x) (219)
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then

v
′′ = Ψ(π(xñ

1 ), π(x)) (220)

where (π(xñ
1 ),x

n
ñ+1) ∈ Tn(QX) and π(x) ∈ K((π(xñ

1 ),x
n
ñ+1), ǫ)

11. The property then follows from the

fact that |K(x, ǫ))| depends on x only via its type, which is identical for both x and (π(xñ
1 ),x

n
ñ+1).

– Property 2: An eavesdropper for v is aware of its type (as Q̂v = Φǫ(Q̂x))
12, and the cryptogram y2 is

not relevant for its estimate. Also, since y3 is fully encrypted (pure random bits) then it is also useless.

Thus, an eavesdropper for v uses only the type information in y1 and y4.

– Property 3: Consider the case RL ≥ RL(QX ,DL). The source block X is distributed uniformly over

Tn(QX) and V is distributed uniformly over Tñ(Φǫ(QX)). Let V̂∗ be the eavesdropper which achieves

the maximal exiguous-distortion probability for V, given y4. Then, for any eavesdropper decoder σ̃n which

estimates z

1

|Bñ
H(ǫ)|

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)] ≤ P

[

dE(V, V̂∗) ≤ DE|V ∈ Tñ(Φǫ(QX))
]

. (221)

Indeed, since X
n
ñ+1 is fully encrypted then it is easy to verify that

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)] ≤ P
[

dE(X
ñ
1 ,Z

ñ
1 ) ≤ DE|X ∈ Tn(QX)

]

. (222)

Now, any eavesdropper Z
ñ
1 for X

ñ
1 can be transformed into an eavesdropper V̂ for V, by a uniformly

distributed guess of X over Bñ
H(b) (see (187)) and then setting

v̂ =











argminz∈Z dE(xi, z), xi 6= 0

zi, xi = 0

(223)

where by assumption, minz∈Z dE(xi, z) = 0. If the guess of x is correct (according to the relation (187))

then

dE(v, v̂) ≤ dE(x, z). (224)

Since this happens with probability larger than
[

|Bñ
H(ǫ)|

]−1
, then (222) implies (221).

Equality (b) then follows from the above considerations.

• Inequality (c) is because in case RL < RL(QX ,DL) the eavesdropper has no knowledge beyond the type of

the source block, and so given such y, x is distributed uniformly over Tn(QX). For any given z ∈ Zn, using

standard method of types

P [dE(X, z) ≤ DE|X ∈ Tn(QX)] =
∑

x∈Tn(QX):dE(x,z)≤DE

1

|Tn(QX)|
(225)

11Notice that K(x) depends on x only via its first ñ components.
12Which is in fact not even required, using Proposition 3.
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=
∑

QX|Z :EQ[dE(X,Z)]≤DE

∑

x∈Tn(QX|Z ,z)

1

|Tn(QX)|
(226)

=
1

|Tn(QX)|

∑

QX|Z :EQ[dE(X,Z)]≤DE

∣

∣Tn(QX|Z , z)
∣

∣ (227)

.
= exp

{

−n · min
QX|Z :EQ[dE(X,Z)]≤DE

[−HQ(X|Z) +H(QX)]

}

(228)

Then,

max
z

P [dE(X, z) ≤ DE|X ∈ Tn(QX)] ≤ 2−n[RE(QX ,DE)−δ]. (229)

Next, we further bound the first term in the minimization of (218) as follows

lim inf
n→∞

min
QX∈Pn(X ):RL≥RL(QX ,DL)

{

D (QX ||PX)−

1

n
log
[

|Bñ
H(ǫ)|P

[

dE(V, V̂∗) ≤ DE|V ∈ Tñ(Φǫ(QX))
]]

}

(230)

(a)

≥ lim inf
n→∞

min
QX∈Pn(X ):RL≥RL(QX ,DL)

{

D (QX ||PX)−

1

n
logP

[

dE(V, V̂∗) ≤ DE|V ∈ Tñ(Φǫ(QX))
]

− g(ǫ)

}

(231)

(b)
= lim inf

n→∞
min

QX∈Pn(X ):RL≥RL(QX ,DL)

{

D (QX ||PX)−

1

ñ
logP

[

dE(V, V̂∗) ≤ DE|V ∈ Tñ(Φǫ(QX))
]

− g(ǫ)

}

(232)

(c)

≥ lim inf
n→∞

min
QX∈Pn(X ):RL≥RL(QX ,DL)

{

D (QX ||PX) + min {R, RE(QX ,DE)} − δ − g(ǫ)

}

(233)

(d)

≥ lim inf
n→∞

min
QX∈Pn(X ):RL≥RL(QX ,DL)

{

D (Φǫ(QX)||PX) + min {R, RE(QX ,DE)} − δ − δ1(ǫ)− g(ǫ)

}

(234)

(e)
= lim inf

n→∞
min

QX∈Pn0
(X ):RL≥RL(QX ,DL)

{

D (Φǫ(QX)||PX) + min {R, RE(QX ,DE)} − δ − δ1(ǫ)− g(ǫ)

}

(235)

(f)
= lim inf

n→∞
min

QX∈Pn0
(X ):RL≥RL(QX ,DL)

{

D (QX ||PX) + min {R, RE(QX ,DE)} − δ − δ1(ǫ)− g(ǫ)

}

(236)

= min
QX∈Pn0

(X ):RL≥RL(QX ,DL)

{

D (QX ||PX) + min {R, RE(QX ,DE)} − δ − δ1(ǫ)− g(ǫ)

}

, (237)

≥ lim inf
n→∞

min
QX∈Pn(X ):RL≥RL(QX ,DL)

{

D (QX ||PX) + min {R, RE(QX ,DE)} − δ − δ1(ǫ)− g(ǫ)

}

(238)

• Inequality (a) follows from the fact that since 0 < ǫ < 1, for all n sufficiently large
∣

∣Bñ
H(ǫ)

∣

∣ ≤ 2ñg(ǫ) as in

(203).

• Equality (b) is because ñ
n → 1 as n → ∞.
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• Inequality (c) is because there exists n2 sufficiently large, such that for all n > n2 the error probability of the

any eavesdropper decoder σ∗
ñ,Φǫ(QX) satisfies

−
1

ñ
logP

[

V̂ 6= V|V ∈ Tñ(Φǫ(QX))
]

≥ min {R, RE(QX ,DE)} − δ (239)

uniformly for all QX ∈ Pn0
(QX).

• Inequality (d) is by defining

δ1(ǫ) , max
QX

|D (Φǫ(QX)||PX)−D(QX ||PX)| . (240)

Note that since D(QX ||PX) is a continuous function of QX in Q(X ) (as the support of PX is assumed to be

X ), it is also uniformly continuous. So, δ1(ǫ) ↓ 0 as ǫ ↓ 0.

• Equalities (e) and (f) are because Φǫ(QX) ∈ Pn0
(X ) for all QX ∈ Pn(X ).

Substituting (238) into (218), and using the fact Pn(X ) ⊂ Q(X ) we obtain

E−
d (S,DE) ≥ min

{

min
QX∈Q(X ):RL≥RL(QX ,DL)

{

D (QX ||PX) + min {R, RE(QX ,DE)} − g(ǫ)− δ1(ǫ),

min
QX∈Q(X ):RL<RL(QX ,DL)

{

D (QX ||PX) +RE(QX ,DE)

}}

− δ (241)

≥ min

{

min
QX∈Q(X ):RL≥RL(QX ,DL)

{

D (QX ||PX) + R,

min
QX∈P(X )

{

D (QX ||PX) +RE(QX ,DE)

}}

− δ − δ1(ǫ)− g(ǫ) (242)

(a)

≥ min {R, E∗
e (DE)} − δ − δ1(ǫ)− g(ǫ) (243)

where in (a) we have used the definition in (16), and the fact that the assumption EL > 0 implies that RL ≥

RL(PX ,DL).

Next, we analyze the required key rate. If RL < RL(Q̂x,DL) then the required key rate is zero. Otherwise, if

RL ≥ RL(Q̂x,DL) then the total key rate required to encode x ∈ QX is given by

1

n

[

(n− ñ) log|X |+ log |K(x, ǫ)|+ log
∣

∣Bñ
H(ǫ)

∣

∣+ nR
]

. (244)

Now, for all n sufficiently large

1

n
(n− ñ) log|X |≤

n0 log|X |+1

n
≤ δ, (245)

1

n
log |K(x, ǫ)| ≤

1

n
log
∣

∣Bñ
H(ǫ)

∣

∣ ≤ g(ǫ), (246)

Thus, the required key rate is less than

R+ 2g(ǫ) + 2δ. (247)
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By taking ǫ ↓ 0 we obtain g(ǫ) ↓ 0 and δ1(ǫ) ↓ 0, and so we obtain the achievability part of Theorem 1.

D. Proof of Converse Part of Theorem 1

Following the outline of the converse, we begin with a lemma which constructs from a given sequence of codes

S a new sequence S∗, with constant key rate, which is less than R(S, QX) + δ, and a zero excess-distortion

probability at the legitimate receiver.

Lemma 13. Let S be an arbitrary sequence of secure rate-distortion codes, which satisfies a compression constraint

(RL,DL,EL). Also, let QX ∈ P(X ) be given such that D(QX ||PX) < EL. Then, for every δ > 0, there exists a

sequence of secure rate-distortion codes S∗ such that:

1) For all n and all x ∈ Tn(QX), S∗
n has fixed key rate r∗(x) = R

∗ where R
∗ ≤ R(S, QX) + δ.

2) For all n and {ui}
∞
i=1, S∗

n = (f∗
n, ϕ

∗
n) satisfies

P [dL(X, ϕ∗
n(f

∗
n(X,u),u)) > DL|X ∈ Tn(QX)] = 0, (248)

and in addition, S∗ satisfies a compression constraint (R∗
L ,DL,EL) for R

∗
L = log|X |.

3) For every DE ≥ DL.

E+
d (S,DE, QX) ≤ E+

d (S∗,DE, QX) + δ. (249)

Proof: We will prove this lemma by modifying the sequence of codes S into the new sequence S∗. Assume

that QX ∈ intQ(X ), and QX ∈ Pn0
(X ) for some minimal n0 ∈ N. Since the statements in the lemma are only

about conditional events given the type QX , it is clear that the new secure rate-distortion codes constructed S∗
n

need only be different from Sn for x ∈ Tn(QX), and so only block-lengths n mod n0 = 0 should be considered,

as otherwise Tn(QX) is empty. To wit, the limit n → ∞ should be read as limit l → ∞ for n = n0l, but this

will not be explicitly written, for the sake of brevity. Throughout the proof, quantities that are related to S∗ will

be superscripted by ∗. For brevity, we will denote the conditional key rate by R(QX) and R
∗
(QX) for S and S∗,

respectively .

Let δ > 0 be given. For any length 0 ≤ m ≤ n log|X | and y ∈ Yn define the ambiguity sets for a given key-length

as

An(y,m) , {x ∈ Tn(QX) : kn(x) = m, fn(x,u) = y for some u ∈ {0, 1}m} , (250)

and with a slight abuse of notation define the ambiguity set13 as

An(y) ,

n log|X |
⋃

m=0

An(y,m). (251)

For any given y and x ∈ An(y), let us denote the reproduction w(x, y) , ϕ(y,u), where u satisfies fn(x,u) = y,

13Called residue class in the terminology of [1].
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and the ambiguity set without excess-distortion

Dn(y) , {x ∈ An(y) : dL(x,w(x, y)) ≤ DL} . (252)

Also, consider the modified ambiguity set

A∗
n(y) ,







An(y)\

n(R(QX)−δ)
⋃

m=0

An(y,m)\

n log|X |
⋃

m=n(R(QX)+δ)

An(y,m)







⋂

Dn(y). (253)

For a given y, the eavesdropper knows that x ∈ An(y) and chooses its estimate accordingly. However, conditioned

on y, the probability of X is not uniform over An(y), since kn(x) is not the same for all x ∈ An(y). The proof

of the lemma is divided into two steps and its outline is as follows. In the first step, we will identify a sequence

of cryptograms {y∗n} which simultaneously satisfies the following properties:

1) The conditional exiguous-distortion exponent of the eavesdropper when X is distributed uniformly over

A∗
n(y

∗
n) is larger than the one for X distributed over An(y

∗
n) according to the distribution induced by Sn.

2) The conditional exiguous-distortion exponent conditioned on Y = y∗n equals the same exponent without this

conditioning.

In the second step of the proof, we utilize the set A∗
n(y

∗
n) to construct the new sequence of codes S∗. This is

done by the same technique used in the achievability proof of Lemma 9 - by an efficient covering of the type

class using permutations of one good set A∗
n(y

∗
n). The two properties above of y∗n will be used to show that the

exiguous-distortion exponent of S∗ may be only slightly less than that of S .

We begin with the first step. For brevity, let us assume that X is distributed uniformly over the type class

Tn(QX), and probabilities, expectations and entropies will be calculated w.r.t. this probability distribution. So, we

only consider y such that An(y) is non-empty. If we let

A(y) , P
[

R(QX)− δ ≤ rn(X) ≤ R(QX) + δ, dL(X,W) ≤ DL|Y = y
]

(254)

then for n sufficiently large

E [A(Y )] = P
[

R(QX)− δ ≤ rn(X) ≤ R(QX) + δ, dL(X,W) ≤ DL

]

≥ P
[

R(QX)− δ ≤ rn(X) ≤ R(QX) + δ
]

− P [dL(X,W) > DL]

(a)

≥ δ − P [dL(X,W) > DL]

(b)

≥ δ − 2−n[EL−D(QX ||PX)−δ] (255)

,
δ

2
(256)

where (a) is using the convergence in probability of rn(X) to R(QX) (see (11)), and (b) is since S satisfies a
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compression constraint (RL,DL,EL) and the assumption D(QX ||PX) < EL. Defining for any 0 < β < 1

V(1)
n ,

{

y ∈ Yn : A(y) ≥ β ·
δ

2

}

, (257)

then, since from the definition (254) and (256)

0 ≤
A(y)

E [A(Y )]
≤

2

δ
(258)

for all y ∈ Yn, the reverse Markov inequity (Lemma 2) implies that

P

(

Y ∈ V(1)
n

)

≥
1− β
2
δ − β

, ζ(δ, β), (259)

and choosing some β∗ < min{1, 2δ}, we obtain ζ∗(δ) , ζ(δ, β∗) > 0. Now, for γ > 1, let

V(2)
n ,

{

y ∈ Yn : max
z

P [dE(X, z) ≤ DE|Y = y] < γ · max
σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE]

}

. (260)

Then the Markov inequality implies

P(Y 6∈ V(2)
n ) = P

[

max
z

P [dE(X, z) ≤ DE|Y ] ≥ γ · max
σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE]

]

(261)

(a)

≤
E [maxz P [dE(X, z) ≤ DE|Y ]]

γ ·maxσ̃n∈Σ̃n
P [dE(X,Z) ≤ DE]

(262)

=
1

γ
(263)

where in (a) is should be recalled that z is chosen as a function of Y . Hence, by the union bound

P

(

Y ∈ V(1)
n ∩ V(2)

n

)

≥ 1− P

(

Y 6∈ V(1)
n

)

− P

(

Y 6∈ V(2)
n

)

(264)

≥ ζ∗(δ)−
1

γ
. (265)

Thus, for any given δ, there exists γ∗ > 1 sufficiently large (but independent of n) such that

P

(

Y ∈ V(1)
n ∩ V(2)

n

)

> 0. (266)

Therefore, there exists a sequence {y∗n} such that for all n sufficiently large, y∗n ∈ V
(1)
n ∩ V

(2)
n .

In the second step of the proof, we describe the construction of S∗
n. Note that by letting

U∗ , {u : ∃x ∈ A∗
n(y

∗
n) such that fn(x,u) = y∗n} (267)

and

C∗
n , {ϕn(y

∗
n,u) : u ∈ U∗} (268)

we have that A∗
n(y

∗
n) ⊆ D(C∗

n, QX ,DL). Now, recall that in Lemma 9 of the achievability proof, we have utilized
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permutations of a D-cover D(C∗
n, QX ,DL) (of a set C∗

n) which cover the type class Tn(QX), to construct a secure

rate-distortion code. Following remark 10, the set A∗
n(yn) can also be used as a constituent set in the construction

of a secure rate-distortion code, and the conditional exiguous-distortion exponent equal to the exponent achieved

when the source block X is distributed uniformly over A∗
n(y

∗
n), as in (176). Let us find the exponent achieved

when X is distributed uniformly over A∗
n(y

∗
n). To this end, denote

M(δ) ,
[

n
(

R(QX)− δ
)

, n
(

R(QX) + δ
)]

. (269)

and observe that for an arbitrary eavesdropper z, and all n sufficiently large,

max
z

P [dE(X, z) ≤ DE|Y = y∗n] (270)

≥ P [dE(X, z) ≤ DE|Y = y∗n] (271)

=
∑

x∈An(y∗
n):dE(x,z)≤DE

P [X = x|Y = y∗n] (272)

=

n log|X |
∑

m=0

∑

x∈An(y∗
n,m):dE(x,z)≤DE

P [X = x|Y = y∗n] (273)

=

∑n log|X |
m=0

∑

x∈An(y∗
n,m):dE(x,z)≤DE

P (X = x, Y = y∗n)

P (Y = y∗n)
(274)

≥

∑

m∈M(δ)

∑

x∈An(y∗
n,m):dE(x,z)≤DE

P (X = x, Y = y∗n)

P (Y = y∗n)
(275)

≥

∑

m∈M(δ)

∑

x∈An(y∗
n,m)∩Dn(y∗

n):dE(x,z)≤DE
P (X = x, Y = y∗n)

P (Y = y∗n)
(276)

(a)

≥ β
δ

2
·

∑

m∈M(δ)

∑

x∈An(y∗
n,m)∩Dn(y∗

n):dE(x,z)≤DE
P (X = x, Y = y∗n)

P
[

R(QX)− δ ≤ rn(X) ≤ R(QX) + δ, dL(X,W) ≤ DL, Y = y∗n
] (277)

= β
δ

2
·

∑

m∈M(δ)

∑

x∈An(y∗
n,m)∩Dn(y∗

n):dE(x,z)≤DE
P (X = x, Y = y∗n)

∑

m∈M(δ)

∑

x∈An(y∗
n,m)∩Dn(y∗

n)
P (X = x, Y = y∗n)

(278)

= β
δ

2
·

∑

m∈M(δ)

∑

x∈An(y∗
n,m)∩Dn(y∗

n):dE(x,z)≤DE
P (X = x, Y = y∗n)

∑

m∈M(δ)

∑

x∈An(y∗
n,m)∩Dn(y∗

n)
P (X = x, Y = y∗n)

(279)

= β
δ

2
·

∑

m∈M(δ)

∑

x∈An(y∗
n,m)∩Dn(y∗

n):dE(x,z)≤DE
P (Y = y∗n|X = x)

∑

m∈M(δ)

∑

x∈An(y∗
n,m)∩Dn(y∗

n)
P (Y = y∗n|X = x)

(280)

(b)
= β

δ

2
·

∑

m∈M(δ) 2
−m · |{x ∈ An(y

∗
n,m) ∩ Dn(y

∗
n) : dE(x, z) ≤ DE}|

∑

m∈M(δ) 2
−m · |An(y∗n,m) ∩ Dn(y∗n)|

(281)

≥ β ·
δ

2

2−n(R(QX)+δ) ·
∑

m∈M(δ) |{x ∈ An(y
∗
n,m) ∩ Dn(y

∗
n) : dE(x, z) ≤ DE}|

2−n(R(QX)−δ) ·
∑

m∈M(δ) |An(y∗n,m) ∩ Dn(y∗n)|
(282)

= β
δ

2
· 2−2nδ

∑

m∈M(δ) |{x ∈ An(y
∗
n,m) ∩ Dn(y

∗
n) : dE(x, z) ≤ DE}|

∑

m∈M(δ) |An(y∗n,m) ∩ Dn(y∗n)|
(283)

, β
δ

2
· 2−2nδ

P [dE(X
∗, z) ≤ DE] , (284)
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where (a) is because as y∗n ∈ V
(1)
n implies that

P
[

R(QX)− δ ≤ rn(X) ≤ R(QX) + δ, dL(X,W) ≤ DL, Y = y∗n
]

β δ
2

≥ P(Y = y∗n), (285)

and (b) is because for admissible encoders and x ∈ An(y
∗
n,m)

P (Y = y∗n|X = x) = 2−m. (286)

Thus,

lim sup
n→∞

−
1

n
logmax

z
P [dE(X

∗, z) ≤ DE] ≥ lim sup
n→∞

−
1

n
max

z
logP [dE(X, z) ≤ DE|Y = y∗n]− 3δ (287)

(a)
= E+

d (S,DE, QX)− 3δ (288)

where (a) is because y∗n ∈ V
(2)
n . So, by choosing δ sufficiently small, we can achieve (249) by the permutation

construction of Lemma 9.

Finally, as the legitimate reconstruction w(x, y∗n) of any x ∈ A∗
n(y

∗
n) satisfies dL(x,w(x, y∗n)) ≤ DL, the

permutation construction assures this property for all x ∈ Tn(QX). So, it is easy to verify that if S has excess-

distortion exponent EL at distortion level DL, then S∗ has an even larger exponent. As R∗
L = log|X |, the compression

constraint (R∗
L ,DL,EL) is satisfied by S∗.

We are now ready for the second and final step of the proof of the converse part of Theorem 1.

Proof of converse part of Theorem 1: Let a sequence of secure rate-distortion codes S be given, which

satisfies the compression constraint (RL,DL,EL), and let δ > 0 be given. From Proposition 3, it may be assumed

that the eavesdropper is aware of the type of the source block QX . Moreover, from Lemma 13, it may be assumed

that Sn satisfies the three properties in Lemma 13 for all QX such that D(QX ||PX) < EL. Specifically, the first

property implies that for some rate-function ρ : P(X ) → R+ the code Sn has a fixed rate rn(x) = ρ(QX) for all

x ∈ Tn(QX), and ρ(QX) ≤ R(S, QX) + δ, as long as D(QX ||PX) < EL.

Let us first focus on a type QX that satisfies D(QX ||PX) < EL, and a specific (type-aware) eavesdropper for

Sn. The eavesdropper first produces a guess û of the key-bits u (with a uniform probability over {0, 1}nρ(QX), and

then decodes ŵ = ϕn(y, û). Since dE(·, ·) is more lenient than dL(·, ·), and DE ≥ DL, there exists a ẑ ∈ Zn such

that

{x ∈ X n : dL(x, ŵ) ≤ DL} ⊆ {x ∈ X n : dE(x, ẑ) ≤ DL} (289)

⊆ {x ∈ X n : dE(x, ẑ) ≤ DE} , (290)

and so the final eavesdropper estimate is z = ẑ. For any n, let us bound the resulting conditional exiguous-distortion

probability.

P

[

dE(X, Ẑ) ≤ DE|X ∈ Tn(QX)
]

≥ P

[

Û = U|X ∈ Tn(QX)
]

×
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P

[

dE(X, Ẑ) ≤ DE|X ∈ Tn(QX), Û = U

]

(291)

≥ 2−nρ(QX) · P
[

dE(X, Ẑ) ≤ DE|X ∈ Tn(QX), Û = U

]

(292)

≥ 2−nρ(QX) · P [dL(X,W) ≤ DE|X ∈ Tn(QX)] (293)

(a)
= 2−nρ(QX) (294)

where (a) is from the second property assured for S in Lemma 13.

We now analyze the exiguous-distortion probability of S . Since |Pn(X )|≤ (n+ 1)|X |

pd(Sn,DE) =
∑

QX∈Pn(X )

P [X ∈ Tn(QX)] max
σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)] (295)

.
= max

QX∈Pn(X )
e−nD(QX ||PX) · max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)] (296)

= exp

(

−n · min
QX∈Pn(X )

{

D (QX ||PX)− (297)

1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)]

})

(298)

Now, let 0 < ǫ < EL be given, and let Q∗
X ∈ P(X ) be such that

D (Q∗
X ||PX) + lim sup

n→∞

{

−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(Q
∗
X)]

}

≤

inf
QX∈P(X )

{

D (QX ||PX) + lim sup
n→∞

{

−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)]

}}

+ ǫ (299)

and let m0 be sufficiently large so that

sup
n>m0

{

−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(Q
∗
X)]

}

≤ lim sup
n→∞

{

−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(Q
∗
X)]

}

+ ǫ. (300)

Then,

E+
d (S,DE) = lim sup

n→∞
min

QX∈Pn(X )

{

D (QX ||PX)−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)]

}

(301)

= lim
m→∞

sup
n≥m

min
QX∈Pn(X )

{

D (QX ||PX)−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)]

}

(302)

(a)
= lim

m→∞
sup
n≥m

inf
QX∈P(X )

{

D (QX ||PX)−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)]

}

(303)

≤ sup
n≥m0

inf
QX∈P(X )

{

D (QX ||PX)−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)]

}

(304)

≤ inf
QX∈P(X )

{

D (QX ||PX) + sup
n≥m0

{

−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)]

}}

(305)

≤

{

D (Q∗
X ||PX) + sup

n>m0

{

−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(Q
∗
X)]

}}

(306)
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(b)

≤ inf
QX∈P(X )

{

D (QX ||PX) + (307)

lim sup
n→∞

{

−
1

n
log max

σ̃n∈Σ̃n

P [dE(X,Z) ≤ DE|X ∈ Tn(QX)]

}}

+ 2ǫ (308)

= inf
QX∈P(X )

{

D (QX ||PX) + E+
d (S,DE, QX)

}

+ 2ǫ (309)

≤ inf
QX∈P(X ):D(QX ||PX)<EL

{

D (QX ||PX) + E+
d (S,DE, QX)

}

+ 2ǫ (310)

(c)

≤ inf
QX∈P(X ):D(QX ||PX)<EL

{

D (QX ||PX) + E+
d (S,DE, QX)

}

+ 2ǫ+ δ (311)

(d)

≤ inf
QX∈P(X ):D(QX ||PX)<EL

{D (QX ||PX) + ρ(QX)}+ 2ǫ+ δ (312)

(e)

≤ R+ 2ǫ+ 4δ, (313)

where (a) is because, by assumption, if Tn(QX) is empty then P [dE(X,Z) ≤ DE|X ∈ Tn(QX)] = 0 , (b) is from

(299) and (300), and (c) is from the third property of S promised by Lemma 13. The passage (d) follows from

(294), and so it remains to prove (e). To this end, recall that E[rn(X)] ≤ R for all n was assumed. Define, for

0 < ǫ < EL, the typical set

T̃ (PX , ǫ) , {QX ∈ P(X ) : D(QX ||PX) ≤ ǫ} , (314)

and with a slight abuse of notation, define T̃n(PX , ǫ) , T̃ (PX , ǫ) ∩ Pn(X ). Then, by the law of large numbers

lim
n→∞

∑

QX∈T̃n(PX ,ǫ)

P [X ∈ Tn(QX)] = 1. (315)

Now, assume by contradiction, that for all QX ∈ T̃ (PX , ǫ) we have ρ(QX) ≥ R + 3δ. Since by construction

ρ(QX) ≤ R(S, QX) + δ, the uniform convergence of E[rn(X)|X ∈ Tn(QX)] to R(S, QX) (see (11) and the

discussion that follows) implies that there exists n0 such that for all n > n0

E[rn(X)|X ∈ Tn(QX)] ≥ R(S, QX)− δ

≥ ρ(QX)− 2δ

≥ R+ δ, (316)

for all QX ∈ T̃n(PX , ǫ). So, from (315), there exists n1, such that for all n > n1 we have that P
[

X ∈ T̃n(PX , ǫ)
]

≥

1
1+δ/2·log|X|

, and then for all n > max{n0, n1}

E [rn(X)] =
∑

QX∈Pn(X )

P [X ∈ Tn(QX)] · E[rn(X)|X ∈ Tn(QX)] (317)

≥
∑

QX∈T̃n(PX ,ǫ)

P [X ∈ Tn(QX)] · E[rn(X)|X ∈ Tn(QX)] (318)
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≥

(

min
QX∈T̃n(PX ,ǫ)

E[rn(X)|X ∈ Tn(QX)]

)

·
∑

QX∈T̃n(PX ,ǫ)

P [X ∈ Tn(QX)] (319)

(a)

≥ (R+ δ)
1

1 + δ/2·log|X |
(320)

> (R+ δ)
1

1 + δ/R
(321)

= R, (322)

where (a) follows from (316). However, this is a contradiction to the fact that Sn satisfies E [rn(X)] ≤ R for all

n. Thus, there must exist QX ∈ T̃ (PX , ǫ) ⊂ T̃ (PX ,EL) such that ρ(QX) < R+ 3δ, which directly leads to (e) in

(313). Since ǫ > 0 and δ > 0 are arbitrary, the first term in the upper bound of (18) is proved, i.e. E+
d (S,DE) ≤ R.

To prove the second term in the upper bound of (18), i.e. E+
d (S,DE) ≤ E∗

e (DE), note that the eavesdropper can

always ignore the cryptogram and blindly choose its estimate z (based only on the type QX ). Thus, by similar

arguments leading to (229), it can be shown that for all n sufficiently large

E+
d (S,DE, QX) ≤ RE(QX ,DE). (323)

The method of types, as in (297) and the definition of E∗
e (DE) in (16), complete the proof.
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