
 
 
 
 
 

 

 

IRWIN AND JOAN JACOBS 

CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES 

 

Codewords With Memory 

Improve Achievable 

Rate Regions of the Memoryless 

Gaussian Interference Channel 

 
Wasim Huleihel and Neri Merhav 

CCIT Report #886 
September 2015 
 

DEPARTMENT OF ELECTRICAL ENGINEERING 

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL 
  

Electronics 
Computers 

Communications 



1

Codewords With Memory Improve Achievable

Rate Regions of the Memoryless Gaussian

Interference Channel

Wasim Huleihel and Neri Merhav

Department of Electrical Engineering

Technion - Israel Institute of Technology

Haifa 3200003, ISRAEL

E-mail: {wh@campus, merhav@ee}.technion.ac.il

Abstract

The two-user Gaussian interference channel (GIC) has been extensively studied in the literature

during the last four decades. The full characterization of the capacity region of the GIC is a long-

standing open problem, except the case of strong or very strong interference. For general GIC’s, many

inner bounds have been provided over the years, among of them, the Han-Kobayashi (HK) region, is

the most celebrated one. Unfortunately, the calculation of the HK region is prohibitively complex, due

to the appearance of some auxiliary random variables, whose optimal choice is an open problem. As

in other multi-user communication systems, these achievable regions are based on ensembles of i.i.d.

(memoryless) codewords, in the sense that the symbols within each codeword are drawn independently. In

this paper, we show that for the GIC, it is worthwhile to employ random coding ensembles of codewords

with memory. Specifically, we take known achievable regions for the GIC, and generalize/improve them

by allowing dependency between the code symbols. For example, we improve the state-of-the-art HK

region by drawing the codewords (of each codeword and for each user) from a first-order autoregressive

moving average (ARMA) Gaussian process. In this way, we suggest several new achievable rate regions,

which are easily calculable, and which are strictly better than state-of-the-art known achievable regions.

Index Terms

∗This research was partially supported by The Israeli Science Foundation (ISF), grant no. 412/12.

Monday 24th August, 2015 DRAFT

lesley
CCIT Report #886  September 2015



2

Interference channel (IC), achievable rate region, bounds, capacity region, Han-Kobayashi region.

I. INTRODUCTION

The two-user interference channel (IC) models a general scenario of communication between two

transmitters and two receivers (with no cooperation at either side), where each receiver decodes its

intended message from an observed signal, which is interfered by the other user, and corrupted by

channel noise. The information-theoretic analysis of this model has begun over more than four decades

ago and has recently witnessed a resurgence of interest. In this paper, we focus on the two-user Gaussian

interference channel (GIC), which has been extensively studied in the literature, see, for example, [1, Ch.

6], [2], and many references therein. In the following, we describe briefly the two-user GIC model in its

standard form, adopting to the notation in [3]. The discrete-time memoryless GIC is defined as follows:

Y1 = X1 +
√
a12X2 + Z1, (1a)

Y2 =
√
a21X1 +X2 + Z2, (1b)

where (X1, X2) and (Y1, Y2) the real-valued inputs and outputs, respectively, the cross-link gains a12

and a21 are assumed time-invariant, and Z1 and Z2 are Gaussian random variables with zero mean and

unit variance. We let Xn
1 , (X1,1, X1,2, . . . , X1,n) and Xn

2 , (X2,1, X2,2, . . . , X2,n) be two transmitted

codewords across the channel, for each user, where Xi,j designates the symbol that is transmitted by user

i ∈ {1, 2} at time instant j ∈ {1, 2, . . . , n}. As usual, we assume that the receivers have full knowledge

of the codebooks used by both users, and that there is no cooperation between the transmitters, and

between the receivers. The following power constraints are imposed on the transmitted signals:

n
∑

j=1

E(X2
i,j) ≤ nPi (2)

for i = 1, 2, where P1, P2 > 0. It is assumed that the random vectors Zn
1 and Zn

2 have i.i.d. Gaussian

entries with zero mean and unit variance, and they are independent of the inputs. Without loss of generality,

we assume that Zn
1 and Zn

2 are independent, due to the fact that the capacity region of a two-user, discrete-

time, memoryless IC depends only on the marginal probability density functions (pdfs) p(yi|x1, x2) for

i ∈ {1, 2}.

Despite of its simplicity, the problem of specifying a computable expression of the capacity region for

the two-user GIC is still open, although it has been solved for some special cases of strong interference

[4, 5], where a12, a21 ≥ 0, or very strong interference [6] where a12 ≥ 1 + P1 and a21 ≥ 1 + P2.

Recently, however, the corner points of the capacity region were fully determined [7, 8], thus approving
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Costa’s conjecture [9, 10]. The study of the memoryless IC started in [11], and continued in [12], where

the capacity region of a general discrete memoryless IC was expressed by a limiting expression (multi-

letter formula) which, unfortunately, does not lend itself to a computable expression. Fundamental simple

inner and outer bounds to the capacity region were also determined. In [13] an improved achievable rate

region was derived, by using the well-known superposition coding technique. Various inner and outer

bounds were established in [14] by transforming the original problem to some associated multiple access

or broadcast channel settings. In their important work, Han and Kobayashi (HK) [4] have derived an

inner bound for a general discrete memoryless IC. It includes the achievable regions that were earlier

established, and it is still the best known inner bound. Unfortunately, the computation of the HK achievable

region is prohibitively complex, due to the appearance of some auxiliary random variables, whose optimal

choice is an open problem. A simplified description of the HK region for the IC was derived in [15].

Finally, in [3], another achievable region was derived, based on a modified time (or frequency) division

multiplexing approach, originated in [14]. The suggested region is easily calculable, though it is a special

case of the celebrated HK region. For a comprehensive survey paper on the IC, see [16].

Recently, in [17] the sub-optimality of the HK region was demonstrated numerically on the clean Z-

interference (ZIC) channel with binary inputs and outputs. In Section 2.2 of the same paper, the authors

provided some intuition, based on their findings, why i.i.d. coding (in the sense of HK) might not be

optimal for the IC. Their intuition was based on the observation that X2 acts like a state variable on

the communication of the channel between X1 and Y1. Now if the channel from X1 to Y1, with X2

as the state, is not memoryless, we know that the optimal code distributions Xn
1 are not independent

distributions. Moreover, for the GIC, it is reasonable to believe that if the users will transmit on different

frequency bands (or, for example, employ orthogonal signals), then there will be an improvement in the

performance. These intuitions raise the following question:

Question Can we improve known achievable rate regions by allowing dependency between the compo-

nents, within each codeword of each user, rather than using memoryless (i.i.d.) distributions?

The problem is that when the channel is discrete (in amplitude), it is extremely difficult to answer these

questions. For example, assume that the codewords are drawn uniformly from a given Markov type. Then,

analyzing the probability of error (associated for example with the joint typicality decoder) would require

the calculation of entropy rates of certain hidden Markov processes, which is a well-known open problem

on its own right. Fortunately, for GIC’s, this task is easier, because asymptotic mutual information rates

have compact expressions in terms of the relevant spectra.

Motivated by these observations, in this paper, we derive several new calculable achievable rate regions
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(some of them are based on known achievable regions), where contrary to all other previous works, we

allow dependency between the components within each codeword. Specifically, we start with a general

coding theorem, which modifies the region proposed in [3], by employing codewords sampled from

processes of a general spectral density (subject to the power constraint), namely, the codewords are

drawn from a general stationary Gaussian process, rather than standard i.i.d. random coding. Then, we

consider a simple special case of a first-order1 autoregressive moving average (ARMA) process. We

show that this choice can significantly improve on the region proposed in [3], and in particular, on its

corner points. Then, we consider more sophisticated encoding/decoding schemes that are based on the

HK scheme, and propose two new simple and calculable inner bounds that considerably improve the

aforementioned regions, and improve state-of-the-art sub-regions deduced from the HK inner bound.

The paper is organized as follows. In Section II, we formalize the problem and assert the main theorems.

Specifically, in Subsection II-A, we modify Sato’s and Sason’s schemes by employing codewords of a

general spectral density. Then, to demonstrate the improvement in using such schemes, we analyze the

case of first-order ARMA process. We provide some numerical examples, and show that the new rate

regions significantly improve on Sato’s and Sason’s results. Then, in Subsection II-B, we consider schemes

that are based on the HK scheme, and derive new achievable regions. As before, we provide numerical

examples which demonstrate the improvement compared to other known results. Finally, Section III is

devoted to our main conclusions, and we also outline some possible extensions.

II. MAIN RESULTS

In this section, we present our main results and then discuss them. We first establish some notation

conventions.

In our model, each sender, k ∈ {1, 2}, wishes to communicate an independent message Mk ∈
{

1, 2, . . . , 2nRk

}

at rate Rk, and each receiver, l ∈ {1, 2}, wishes to decode its respective message.

Specifically, a (2nR1 , 2nR2 , n) code Cn consists of:

• Two message sets M1 ,
{

0, . . . , 2nR1 − 1
}

and M2 ,
{

0, . . . , 2nR2 − 1
}

for the first and second

users, respectively.

• Two encoders, where for each k ∈ {1, 2}, the k-th encoder assigns a codeword xk,i to each message

i ∈ Mk.

• Two decoders, where each decoder l ∈ {1, 2} assigns an estimate M̂l to Ml.

1By “first-order”, we mean one AR parameter and one MA parameter (i.e., one pole and one zero).
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We assume that the message pair (M1,M2) is uniformly distributed over M1 × M2. For a coded

information of block length n, the two-user memoryless IC is denoted by:

(X n
1 ×X n

2 , P
n(yn1 , y

n
2 |xn1 , xn2 ),Yn

1 × Yn
2 ) (3)

where

Pn(yn1 , y
n
2 |xn1 , xn2 ) =

n
∏

k=1

P (y1,k, y2,k|x1,k, x2,k), (4)

and in our GIC case P (y1,k, y2,k|x1,k, x2,k) is derived from (1). Since there is no cooperation between

the two receivers, the average probabilities of error are

P
(n)
e,i = 2−n(R1+R2)

∑

m1,m2

P

{

M̂i (Y
n
i ) 6= mi|M1 = m1,M2 = m2

}

, i = 1, 2. (5)

A rate pair (R1, R2) is said to be achievable if there exists a sequence of (
⌈

2nR1
⌉

,
⌈

2nR2
⌉

, n) codes,

such that P
(n)
e,1 → 0 and P

(n)
e,2 → 0, as n → ∞. The rates are expressed here in terms of bits per channel

use. The capacity region of an IC is defined as the closure of the set of all its achievable rate pairs.

As mentioned in the introduction, previous works on the IC focused mainly on standard random coding,

where each codeword is independently and identically generated according to some given probability

distribution. However, motivated by the above-mentioned interesting observation of [18], it is desirable

to analyze other ensembles with possible dependency between the components of each codeword.

In Subsection II-A below, we derive a new achievable region which is based on Sato’s and Sason’s

schemes [3, 14]. Then, in Subsection II-B, we derive inner bounds which are based on the HK scheme

[4].

A. Sato-Sason-based inner bound:

In [14, Theorem 5], it was shown that the following rate-region is achievable:

GB = conv {GB1
∪ GB2

} (6)

where conv {·} denotes the convex closure of a set, and where

GB1
, conv

⋃

PX1
,PX2











(R1, R2) :
0 ≤ R1 ≤ I(X1;Y1|X2)

0 ≤ R2 ≤ min {I(X2;Y1), I(X2;Y2)}











(7)

and

GB2
, conv

⋃

PX1
,PX2











(R1, R2) :
0 ≤ R1 ≤ min {I(X1;Y1), I(X1;Y2)}

0 ≤ R2 ≤ I(X2;Y2|X1)











. (8)
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This achievable region is interpreted as follows: the first region, GB1
, refers to the mode of work where

receiver 1 first decodes the message of the second sender, and then uses it as side information for decoding

his own message. Receiver 2 directly decodes his message based on his received signal. The second region,

GB2
, refers to the opposite mode of work, where the roles of receiver 1 and 2 are interchanged. Sason’s

scheme [3] is based on the above region. His idea was to employ the first mode for a fraction λ of the

transmission time, and the second mode for the complementary time. Let us define generically, z̄ , 1−z

for z ∈ [0, 1], and η(x) , 0.5 log2(1+x) for x ≥ 0. The following theorem states an achievability result.

Theorem 1 ([3, Th. 1]) The set of rate pairs:

Rsason =
⋃

α,β,λ∈[0,1]











(R1, R2) :
R1 ≤ λ · η

(

αP1

λ

)

+ λ̄ ·min
{

η
(

ᾱP1

λ̄+a12β̄P2

)

, η
(

a21ᾱP1

λ̄+β̄P2

)}

R2 ≤ λ̄ · η
(

β̄P2

λ̄

)

+ λ ·min
{

η
(

βP2

λ+a21αP1

)

, η
(

a12βP2

λ+αP1

)}











(9)

is achievable for the two-user GIC in (1) under the power constraints (2).

In order to obtain the above region, Sason [14] employed a random coding approach, in which

the codewords are selected in a memoryless manner, that is, they are drawn independently from a

given probability distribution. Since in our coding scheme there will be dependency between the

components of each codeword, the above single-letter expression will no longer be suitable. Let

{r11,i}∞i=0 , {r12,i}
∞
i=0 , {r21,i}

∞
i=0 and {r22,i}∞i=0 be square summable, non-negative definite sequences2

with r11,0 = r12,0 = r21,0 = r22,0 = 1. Let α, β, λ ∈ [0, 1], and define:

ν11(ω) ,
αP1

λ

(

1 + 2

∞
∑

k=1

r11,k cos (kω)

)

, (10a)

ν21(ω) ,
βP2

λ

(

1 + 2

∞
∑

k=1

r21,k cos (kω)

)

, (10b)

ν12(ω) ,
ᾱP1

λ̄

(

1 + 2

∞
∑

k=1

r12,k cos (kω)

)

, (10c)

ν22(ω) ,
β̄P2

λ̄

(

1 + 2

∞
∑

k=1

r22,k cos (kω)

)

, (10d)

where ω ∈ [0, 2π) . Finally, we define the functional:

ϕ [f ] ,
1

4π

∫ 2π

0
log2 [1 + f(ω)] dω. (11)

2A sequence {al}
∞

l=−∞
is called non-negative definite if for any n ≥ 1, the Toeplitz matrix, An×n, that is gen-

erated by {al}
n−1
l=−(n−1), is non-negative definite. Equivalently, {al}

∞

l=−∞
is non-negative definite if the spectral density

∑
∞

k=−∞
ak exp(jkω) is non-negative for any ω ∈ [0, 2π]. If ak = a−k for k ≥ 1, then the sequence {al}

∞

l=−∞
is non-

negative definite if
∑

∞

k=0 ak cos(kω) is non-negative for any ω ∈ [0, 2π].
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Let θ , (α, β, λ, {r11,i}i≥1 , {r12,i}i≥1 , {r21,i}i≥1 , {r22,i}i≥1) ∈ Θ, where Θ is the support of θ, as

defined above. The following theorem is proved in Appendix A.

Theorem 2 The set of rate pairs:

R =
⋃

θ∈Θ











(R1, R2) :
R1 ≤ λ · ϕ [ν11] + λ̄ ·min

{

ϕ
[

ν12

1+a12ν22

]

, ϕ
[

a21ν12

1+ν22

]}

R2 ≤ λ̄ · ϕ [ν22] + λ ·min
{

ϕ
[

a12ν21

1+ν11

]

, ϕ
[

ν21

1+a21ν11

]}











, (12)

is achievable for the two-user GIC in (1) under the power constraints (2).

Note that Theorem 2 is a generalization of Theorem 1. Indeed, in order to obtain Theorem 1, Sason

employed the encoding and decoding schemes mentioned above (see discussion before Theorem 1), where

during a fraction λ of the transmission time, the symbols of x1 and x2 are Gaussian with zero mean,

and variances αP1/λ and βP2/λ, respectively. During the remaining fraction λ̄ of the transmission time,

the symbols of x1 and x2 are Gaussian with zero mean, and variances ᾱP1/λ̄ and β̄P2/λ̄, respectively.

To obtain Theorem 2, on the other hand, we employ the same encoding and decoding schemes, but we

assume that the codewords (for each user and each mode), are drawn from stationary Gaussian processes,

with zero mean, and Toeplitz covariance matrices with the elements {r11,i} , {r12,i} , {r21,i} and {r22,i},

where r11,i = (αP1/λ)
−1

E {X1,mX1,m+i}, r21,i = (βP2/λ)
−1

E {X2,mX2,m+i}, for 1 ≤ m+i ≤ nλ−1,

and r12,i = (ᾱP1/λ̄)
−1

E {X1,m+nλX1,m+nλ+i}, and r22,i = (β̄P2/λ̄)
−1

E {X2,m+nλX2,m+nλ+i}.

Theorem 2 is, of course, general and it requires a union over all combinations of user spectra (that

satisfy the power constraint), so it is not calculable practically. To demonstrate the improvement of using

codewords with memory, we propose the following special case (the complete details can be found in

Appendix B). Consider the case where during a fraction λ of the transmission time, the components of

x1 and x2 are given by:

x1,i = ρx1
x1,i−1 + σ1w1,i − κ1σ1w1,i−1, i = 1, 2, . . . , nλ− 1 (13a)

x2,i = ρx2
x2,i−1 + σ2w2,i − κ2σ2w2,i−1, i = 1, 2, . . . , nλ− 1 (13b)

where, without essential loss of generality, we assume that nλ is integer, and

σ2
k ,

1− ρ2xk

1 + κ2k − 2κkρxk

, (14)

for k = 1, 2 where |ρx1
| , |ρx2

| , |κ1| , |κ2| < 1, x1,0 and x2,0 are Gaussian random variables with zero

means and variances αP1/λ and βP2/λ, {w1,i} and {w2,i} are i.i.d. Gaussian process with zero mean

and variances αP1/λ and βP2/λ, and 0 ≤ α, β ≤ 1. That is, the symbols of x1 and x2 are distributed

according to a first-order auto-regressive moving average (ARMA) model. Note that when κ1 = κ2 = 0,
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we have a first-order Gaussian Markov process (AR process). During the remaining fraction λ̄ = 1− λ

of the transmission time, the symbols of x1 and x2 are given by:

x1,i = ρx1
x1,i−1 + σ1w̃1,i − κ1σ1w̃1,i−1, i = nλ+ 1, . . . , n (15a)

x2,i = ρx2
x2,i−1 + σ2w̃2,i − κ2σ2w̃2,i−1, i = nλ+ 1, . . . , n (15b)

where x1,nλ and x1,nλ are Gaussian random variables with zero means and variances ᾱP1/λ̄ and β̄P2/λ̄,

respectively, w̃1,i and w̃2,i are i.i.d. Gaussian process with zero means and variances ᾱP1/λ̄ and β̄P2/λ̄.

When κ1 = κ2 = 0, it is evident that for i = 1, . . . , nλ− 1, consecutive samples from x1 and x2 have

correlations ρx1 and ρx2, respectively. This is also the case for i = nλ, . . . , n. The receiver, on the other

hand, has the same two modes of work, as described earlier. Let:

γ
(1)
1 (ω) ,

σ2
1αP1

∣

∣1− κ1e
jω
∣

∣

2

λ |1− ρx1
ejω|2

, (16a)

γ
(1)
2 (ω) ,

σ2
2βP2

∣

∣1− κ2e
jω
∣

∣

2

λ |1− ρx2
ejω|2

, (16b)

γ
(2)
1 (ω) ,

σ2
1ᾱP1

∣

∣1− κ1e
jω
∣

∣

2

λ̄ |1− ρx1
ejω|2

, (16c)

γ
(2)
2 (ω) ,

σ2
2β̄P2

∣

∣1− κ2e
jω
∣

∣

2

λ̄ |1− ρx2
ejω|2

, (16d)

where ω ∈ [0, 2π) , j ,
√
−1, and define ψ , (α, β, λ, ρx1

, ρx2
, κ1, κ2), and Ψ , [0, 1]3 × (−1, 1)4. We

have the following result, proved in Appendix B.

Theorem 3 The set of rate pairs:

R(1) =
⋃

ψ∈Ψ











(R1, R2) :
R1 ≤ λ · ϕ

[

γ
(1)
1

]

+ λ̄ ·min
{

ϕ
[

γ
(2)
1

1+a12γ
(2)
2

]

, ϕ
[

a21γ
(2)
1

1+γ
(2)
2

]}

R2 ≤ λ̄ · ϕ
[

γ
(2)
2

]

+ λ ·min
{

ϕ
[

a12γ
(1)
2

1+γ
(1)
1

]

, ϕ
[

γ
(1)
2

1+a21γ
(1)
1

]}











(17)

is achievable for the two-user GIC in (1) under the power constraints (2).

Several remarks regarding Theorem 3 are in order:

• The above analysis can be generalized to an ARMA process of any order, i.e.,

x1,i =

p1
∑

l=1

ρl,x1
x1,i−l + σ1w1,i − σ1 ·

q1
∑

l=1

κ1,lw1,i−l (18)

where the variance σ2
1 should be chosen such that the Var {x1,i} = αP1/λ for all 1 ≤ i ≤ λn, and

similarly for the second user. Then, we obtain the same result as before, but with:

γ
(1)
1 (ω) ,

σ2
1αP1

∣

∣1−
∑q1

l=1 κ1,le
jlω
∣

∣

2

λ
∣

∣1−
∑p1

l=1 ρ1x,le
jlω
∣

∣

2 , (19a)
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γ
(1)
2 (ω) ,

σ2
2βP1

∣

∣1−
∑q2

l=1 κ2,le
jlω
∣

∣

2

λ
∣

∣1−
∑p2

l=1 ρ2x,le
jlω
∣

∣

2 , (19b)

γ
(2)
1 (ω) ,

σ2
1ᾱP1

∣

∣1−
∑q1

l=1 κ1,le
jlω
∣

∣

2

λ̄
∣

∣1−
∑p1

l=1 ρ1x,le
jlω
∣

∣

2 , (19c)

γ
(2)
2 (ω) ,

σ2
2β̄P2

∣

∣1−
∑q2

l=1 κ2,le
jlω
∣

∣

2

λ̄
∣

∣1−
∑p2

l=1 ρ2x,le
jlω
∣

∣

2 , (19d)

where σ2
2 is chosen such that Var {x2,i} = βP2/λ for all λ1 ≤ i ≤ n.

• One can generalize the above results by using different parameters in the two segments. For example,

for the first-order ARMA process, instead of keeping the same parameters ρx1
and κ1 within the whole

codeword x1, we can conjugate the parameters ρ1x1
and κ11 for i = 1, . . . , nλ, and a correlation of

parameters ρ2x1
and κ21 for i = nλ+1, . . . , n. Accordingly, one would obtain the same result as before,

but replacing every instance of γ
(k)
i for i, k = 1, 2 with:

γ
(1)
1 (ω) ,

σ2
11αP1

∣

∣1− κ11e
jω
∣

∣

2

λ |1− ρ1x1
ejω|2

, (20a)

γ
(1)
2 (ω) ,

σ2
12βP2

∣

∣1− κ12e
jω
∣

∣

2

λ |1− ρ1x2
ejω|2

, (20b)

γ
(2)
1 (ω) ,

σ2
21ᾱP1

∣

∣1− κ21e
jω
∣

∣

2

λ̄ |1− ρ2x1
ejω|2

, (20c)

γ
(2)
2 (ω) ,

σ2
22β̄P2

∣

∣1− κ22e
jω
∣

∣

2

λ̄ |1− ρ2x2
ejω|2

, (20d)

where

σ2
kl ,

1− ρ2kxl

1 + κ2kl − 2κklρkxl

, (21)

and we take the union over all possible allocations of {ρkxl
, κkl} for k, l ∈ {1, 2}. Numerical calculations

demonstrate that in some cases, this generalization improves the achievable region.

• The capacity region of a discrete memoryless IC was expressed in [12] by the following limiting

expression:

CIC = lim sup
n→∞

conv
⋃

Pn
X1

,Pn
X2











(R1, R2) :
R1 ≤ 1

nI(X
n
1 ;Y

n
1 )

R2 ≤ 1
nI(X

n
2 ;Y

n
2 )











(22)

where limit superior of a sequence of sets, {An}, is defined as lim supn→∞An = ∩∞
N=1 ∪n≥N An.

Accordingly, it is tempting to compare the achievable region resulting from (22), when restricting the

input distribution to Gaussian ARMA processes. When doing so, numerical examples show that our

proposed achievable region is better.
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• The various integrals in (17) can actually be calculated by using Cauchy’s integral formula, which

implies that
∫ 2π
0 log2

(

1 + ζejω
)

dω = 0, whenever |ζ| < 1. For example, for κ1 = κ2 = 0, we get:

ϕ
[

γ
(1)
1

]

=
1

4π

∫ 2π

0
log2

(

1 + γ
(1)
1 (ω)

)

dω (23)

=
1

4π

∫ 2π

0
log2

(

K ·
∣

∣1− ζejω
∣

∣

2

|1− ρx1
ejω|2

)

dω (24)

=
1

2
log2K (25)

where

K ,
ρx1

ζ
, (26a)

ζ ,
χ

2ρx1

−
√

χ2

4ρ2x1

− 1, (26b)

χ , 1 + ρ2x1
+

(1− ρ2x1
)αP1

λ
. (26c)

Unfortunately, the formulas of the other integrals are more complicated, and thus we keep the above

integral representations.

In the following, we provide a numerical example which illustrates the improvement compared to [3].

First, note that by construction, Rsason ⊆ R(1). Fig. 1 presents a typical comparison between: Rsason,

R(1), R(1)
AR which is the region R(1) when fixing κ1 = κ2 = 0 (an AR process), and R(1)

MA which is the

region when fixing ρx1
= ρx2

= 0 (an MA process), for P1 = 6, P2 = 1, a12 = 3, and a21 = 0.1. The

numerical calculations were carried out by an exhaustive search over a grid on the parameter space, with

a step-size of 10−2. It is evident from the figure that the new proposed regions (AR, MA, and ARMA)

strictly include Rsason. Also, it can be seen that there is a noticeable improvement when using ARMA

input processes compared to AR input processes. The improvement compared to MA input processes is

less significant. It is interesting, however, to check what are the ARMA parameters which achieve rates

that cannot be achieved by the other filters. Consider, for example, the pair (R1, R2) = (1.191, 0.3909),

which is marked by a small circle in Fig. 1. To achieve this point, one should choose: κ1 = 0.2605,

κ2 = 0.9801, ρx1
= 0.7425, and ρx2

= 0.4950. The moduli of the frequency responses of the filters of

the two users, i.e.,

Hi(ω) ,
1− κie

−jω

1− ρxi
e−jω

, i = 1, 2, (27)

are presented in Fig. 2. It can be seen that the frequency responses for the two users tend to

amplify/attenuate in different frequency regions (one of them is a low-pass filter, and the other is a
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Fig. 1: Comparison between Rsason, R(1) (ARMA), R(1) when fixing κ1 = κ2 = 0 (AR), and R(1) when

fixing ρx1
= ρx2

= 0 (MA), for P1 = 6, P2 = 1, a12 = 3, and a21 = 0.1.

high-pass filter), which makes sense.

Fig. 3 also illustrates the improvement compared to [3]. It presents a comparison between Rsason, R(1),

and R(1)
MA, for P1 = 6, P2 = 1, a12 = 2, and a21 = 0, that is, a ZIC. It is evident that our region strictly

includes that of [3]. Also, it can be seen that our upper corner point is greater than that of Rsason. Note,

however, that one can show that the upper corner point of the capacity region, for the given setting, is

given by [8]:

C ′
1 , max

{

R1 :

(

R1,
1

2
log2 [1 + P2]

)

∈ CIC

}

= 1.083, (28)

which is larger than our values. This observation motivates us to consider more sophisticated encod-

ing/decoding schemes, described in the following subsection.

B. HK-based inner bound:

In this subsection, we consider encoding/decoding schemes based on the Han-Kobayashi (HK) scheme

[4], which will be briefly reviewed in the sequel. The idea is to split the message M1 into “private”
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Fig. 2: The modulus of the frequency response of the two users.

and “common” messages, M11 and M12 at rates R11 and R12, respectively, such that R1 = R11 +R12.

Similarly, M2 is split into two messages M21 and M22, at rates R21 and R22, respectively, such that

R2 = R21 + R22. Then, receiver k = 1, 2 recovers its intended message Mk and the common message

from the other sender (although it is not required to). This scheme is illustrated in Fig. 4. The intuition

behind this splitting is based on the receiver’s behavior at low and high signal-to-noise ratios (SNRs).

Specifically, it is well-known [1] that: (1) when the SNR is low, treating the interference as noise is

an optimal strategy, and (2) when the SNR is high, decoding and then canceling the interference is the

optimal strategy. Accordingly, the above splitting captures the general intermediate situation, where the

first decoder, for example, is interested only in partial information from the second user, in addition to its

own intended message. When i.i.d. random coding is employed, it was shown in [4] that the following

rate region is achievable:

R1 ≤ ρ1, R2 ≤ ρ2, R1 +R2 ≤ ρ12, 2R1 +R2 ≤ ρ10, R1 + 2R2 ≤ ρ20, (29)
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Fig. 3: Comparison between Rsason, R(1) (ARMA), and R(1) when fixing κ1 = κ2 = 0 (AR), for

P1 = 6, P2 = 1, a12 = 2, and a21 = 0.

where:

ρ1 = σ∗
1 + I(Y1;U1|V1V2Q) (30)

ρ2 = σ∗
2 + I(Y2;U2|V1V2Q) (31)

ρ12 = σ∗
12 + I(Y1;U1|V1V2Q) + I(Y2;U2|V1V2Q) (32)

ρ10 = 2σ∗
1 + 2I(Y1;U1|V1V2Q) + I(Y2;U2|V1V2Q)− [σ∗

1 − I(Y2;V1|V2Q)]+

+min
{

I(Y2;V2|V1, Q), I(Y2;V2|Q) + [I(Y2;V1|V2Q)− σ∗
1]

+ ,

+I(Y1;V2|V1, Q), I(Y1;V1, V2|Q)− σ∗
1} (33)

ρ20 = 2σ∗
2 + I(Y1;U1|V1V2Q) + 2I(Y2;U2|V1V2Q)− [σ∗

2 − I(Y1;V2|V1Q)]+

+min
{

I(Y1;V1|V2, Q), I(Y1;V1|Q) + [I(Y1;V2|V1Q)− σ∗
2]

+ ,

+I(Y2;V1|V2, Q), I(Y2;V2, V1|Q)− σ∗
2} , (34)
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Y1 → (M̂11, M̂12, M̂21)

Y2 → (M̂12, M̂21, M̂22)

Fig. 4: Han-Kobayashi coding scheme.

and

σ∗
1 = min {I(Y1;V1|V2, Q), I(Y2;V1|U2, V2, Q)} (35)

σ∗
2 = min {I(Y2;V2|V1, Q), I(Y1;V2|U1, V1, Q)} (36)

σ∗
12 = min {I(Y1;V1, V2|Q), I(Y2;V1, V2|Q), I(Y1;V1|V2, Q) + I(Y2;V2|V1, Q),

I(Y2;V1|V2, Q) + I(Y1;V2|V1, Q)} , (37)

where U1, U2, V1, V2 are auxiliary random variables3, and Q is a time-sharing variable.

Now, consider the GIC. As was mentioned before, evaluating the HK region for the Gaussian case, is

prohibitively complex, due to the auxiliary random variables. Unfortunately, it is still unknown how to

choose them optimally. A state-of-the-art common choice in the literature is the following:

X1 = U1 + V1, U1 ∼ N(0, ξ1P1), V1 ∼ N(0, ξ̄1P1), (38a)

X2 = U2 + V2, U2 ∼ N(0, ξ2P2), V2 ∼ N(0, ξ̄2P2), (38b)

where Ui and Vi are statistically independent for i = 1, 2, and ξ1, ξ2 ∈ [0, 1] are auxiliary parameters.

In the spirit of the previous subsection, we next provide two achievable regions, which are based on

a combination of the Sato and the HK schemes. The difference between these regions will be in their

decoding techniques. Also, we emphasize that, as in the previous subsection, here too, one can obtain

results for general Gaussian stationary processes. For simplicity of the demonstration, however, in order

to keep a reasonable number of parameters to be optimized, we will confine ourselves to first-order

3The intuition behind these auxiliaries is that the private messages are transmitted via U1 and U2, while the common

messages are transmitted via V1 and V2.
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Markov processes (first-order AR). Let us describe briefly the encoding technique.

Encoding: As before, we consider two modes of work. At the first λ fraction of the transmission time,

the symbols of x1 are as in (13a), and we generate 2nR1 such independent codewords {x1(i)}. For

the second user, however, we use rate-splitting technique, as was used in the HK scheme, and generate

2nR
′

2 and 2nR
′′

2 independent codewords {v2(i)} and {u2(i)}, respectively, where 0 ≤ R′
2 ≤ R2 and

R′′
2 = R2 −R′

2, in the following way:

u2,i = ρu2
u2,i−1 +

√

1− ρ2u2
wu
2,i, (39a)

v2,i = ρv2
v2,i−1 +

√

1− ρ2v2
wv
2,i, (39b)

where |ρu2
| , |ρv2

| < 1, u2,0 and v2,0 are Gaussian random variables with zero mean and variance βξ2P2/λ

and βξ̄2P2/λ, respectively, and
{

wu
2,i

}

and
{

wv
2,i

}

are i.i.d. Gaussian processes with zero mean and

variance βξ2P2/λ, and βξ̄2P2/λ, respectively, where 0 ≤ β, ξ2 ≤ 1. Then, the 2nR2 codewords {x2(i, j)}
are given by the element-wise addition:

x2(i, j) = u2(i) + v2(j) (40)

for i = 1, 2, . . . , 2nR
′′

2 and j = 1, 2, . . . , 2nR
′

2 . Intuitively, the {v2(i)} codewords serve as the common

information to be decoded by both receivers, while {u2(i)} codewords are the private ones, to be decoded

only by the second receiver. Finally, during the remaining fraction λ̄ = 1 − λ of the transmission time,

the roles of the encoders are swapped. Specifically, the symbols of x2 are as in (15b). For x1, we use

rate-splitting, and generate 2nR
′

1 and 2nR
′′

1 independent codewords {v1(i)} and {u1(i)}, respectively.

Then, the 2nR1 codewords {x1(i, j)} are given by:

x1(i, j) = u1(i) + v1(j) (41)

for i = 1, 2, . . . , 2nR
′′

1 and j = 1, 2, . . . , 2nR
′

1 .

Now, we consider two decoding techniques:

Decoding #1 - Successive cancellation decoding:

• Mode #1: Receiver 1 first decodes the common message v2, and then uses it as side information for

decoding x1. Receiver 2, on the other hand, decodes (simultaneously, as with the MAC) his messages

v2 and u2. This mode of work will be used a fraction λ of the transmission time.

• Mode #2: Receiver 2 first decodes the common message v1, and then uses it as side information for

decoding x2. Receiver 1, decodes his messages v1 and u1 simultaneously. This mode of work will be

used a fraction λ̄ of the transmission time.
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Decoding #2 - Simultaneous decoding:

• Mode #1: Receiver 1 decodes simultaneously the messages v2 and x1. Similarly, receiver 2 decodes

simultaneously v2 and u2. This mode of work will be used a fraction λ of the transmission time.

• Mode #2: Receiver 2 decodes simultaneously the messages v1 and x2. Similarly, receiver 1 decodes

simultaneously v1 and u1. This mode of work will be used a fraction λ̄ of the transmission time.

The following theorems, which are proved in Appendix C, give the achievable rate regions resulting

from the above encoding/decoding schemes. Let us first define the following functions:

γx1
(ω) ,

(1− ρ2x1
)αP1

λ |1− ρx1
ejω|2

, (42a)

γx2
(ω) ,

(1− ρ2x2
)β̄P2

λ̄ |1− ρx2
ejω|2

, (42b)

γu1
(ω) ,

(1− ρ2u1
)ξ1ᾱP1

λ̄ |1− ρu1
ejω|2

, (42c)

γv1
(ω) ,

(1− ρ2v1
)ξ̄1ᾱP1

λ̄ |1− ρv1
ejω|2

, (42d)

γu2
(ω) ,

(1− ρ2u2
)ξ2βP2

λ |1− ρu2
ejω|2

, (42e)

γv2
(ω) ,

(1− ρ2v2
)ξ̄2βP2

λ |1− ρv2
ejω|2

, (42f)

where ω ∈ [0, 2π) , |ρu1
| , |ρv1

| , |ρu2
| , |ρv2

| < 1, and ξ1, ξ2 ∈ [0, 1]. Finally, define ξ =

(α, β, λ, ξ1, ξ2, ρx1
, ρx2

, ρu1
, ρv1

, ρu2
, ρv2

), and Ξ , [0, 1]5 × (−1, 1)6.

Theorem 4 (Decoding #1) The set of rate pairs:

R(2) =
⋃

ξ∈Ξ











(R1, R2) :
R1 ≤ R1(ξ)

R2 ≤ R2(ξ)











(43)

where

R1(ξ) , λ · ϕ
[

γx1

1 + a12γu2

]

+ λ̄min

{

ϕ

[

γu1
+ γv1

1 + a12γx2

]

, ϕ

[

γv1

1 + a12γx2

]

+ ϕ

[

γu1

1 + a12γx2

]

,

ϕ

[

a21γv1

1 + γx2
+ a21γu1

]

+ ϕ

[

γu1

1 + a12γx2

]}

, (44)

and

R2(ξ) , λ̄ · ϕ
[

γx2

1 + a21γu1

]

+ λ ·min

{

ϕ

[

γu2
+ γv2

1 + a21γx1

]

, ϕ

[

γv2

1 + a21γx1

]

+ ϕ

[

γu2

1 + a21γx1

]

,

ϕ

[

a12γv2

1 + γx1
+ a12γu2

]

+ ϕ

[

γu2

1 + a21γx1

]}

. (45)
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is achievable for the two-user GIC in (1) under the power constraints (2).

Theorem 5 (Decoding #2) The set of rate pairs:

R(3) =
⋃

ξ∈Ξ























(R1, R2) :

R1 ≤ R̄1(ξ)

R2 ≤ R̄2(ξ)

R1 +R2 ≤ Rsum(ξ)























(46)

where

R̄1(ξ) , λ · ϕ
[

γx1

1 + a12γu2

]

+ λ̄min

{

ϕ

[

γu1
+ γv1

1 + a12γx2

]

, ϕ

[

γv1

1 + a12γx2

]

+ ϕ

[

γu1

1 + a12γx2

]

,

ϕ

[

a21γv1

1 + a21γu1

]

+ ϕ

[

γu1

1 + a12γx2

]}

, (47)

and

R̄2(ξ) , λ̄ · ϕ
[

γx2

1 + a21γu1

]

+ λ̄min

{

ϕ

[

γu2
+ γv2

1 + a21γx1

]

, ϕ

[

γv2

1 + a21γx1

]

+ ϕ

[

γu2

1 + a21γx1

]

,

ϕ

[

a12γv2

1 + a12γu2

]

+ ϕ

[

γu2

1 + a21γx1

]}

, (48)

and

Rsum(ξ) , λ ·
{

ϕ

[

γx1
+ a12γv2

1 + a12γu2

]

+ ϕ

[

γu2

1 + a21γx1

]}

+ λ̄ ·
{

ϕ

[

γx2
+ a21γv1

1 + a21γu1

]

+ ϕ

[

γu1

1 + a12γx2

]}

, (49)

is achievable for the two-user GIC in (1) under the power constraints (2).

Finally, in view of Theorems 4 and 5, we obtain the following immediate result.

Corollary 1 The rate region:

R(4) = conv
{

R(2) ∪R(3)
}

, (50)

is achievable for the two-user GIC in (1) under the power constraints (2).

One may realize that the above encoding scheme can be easily generalized by rate splitting both users

in both segments, and not just one user in each segment, as we did above. This modification adds,

of course, more parameters to be optimized. Nonetheless, numerical calculations show that there is no

noticeable improvement due to this generalization.

Given the above results, let us consider two numerical examples. First, we consider the same example

as before, and see the improvement of the new achievable regions. Fig. 5 presents a comparison between
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Fig. 5: Comparison between Rsason, R(1), and R(4), for P1 = 6, P2 = 1, a12 = 2, and a21 = 0.

Rsason, R(1), and R(4), for P1 = 6, P2 = 1, a12 = 2, and a21 = 0. The improvement resulting from the

new achievable regions is evident, where R(3) achieves the best results. Also, note that R(3) achieves the

upper corner point of the capacity region, which is given in (28). Fig. 6 presents a comparison between

Rsason, R(1), R(4), and RHK for P1 = 1, P2 = 6, a12 = 0.1, and a21 = 0.5. The region RHK is the

(state-of-the-art) HK region given in (29) and (38). Here, Rsason and R(1) coincide. It can be seen that

for this example Rsason is in some regions better than RHK, but not everywhere. The new region R(4),

however, uniformly outperforms Rsason and RHK.

III. CONCLUSION

In this paper, we analyzed several encoding/decoding schemes for the two-user GIC. Usually, as in

other multi-user communication systems, achievable rate regions for the GIC are based on ensembles of

i.i.d. codewords. In this work, however, we analyzed the impact of using random coding ensembles of

codewords with memory, and we show that it can noticeably improve known results which are based

on ensembles of i.i.d. codewords. Specifically, we took known achievable rate regions for the GIC, and

generalized them by allowing dependency between the code symbols. Numerical calculations show that
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even for very simple memory structures, such as first-order MA process, the obtained achievable rate

regions are wider than other known achievable rate regions, and in particular, the state-of-the-art HK

region.

The main difficulty with our approach, is the optimization required to obtain the achievable region.

Indeed, recall that the optimization is over the filter coefficients (and the time sharing parameters), which

may be as large as we wish, but at the expense of computational complexity. A possible simplification

is to consider the same filters but with a large number of random coefficients (in the spirit of random

coding), distributed according to some given prior distribution. Using this approach, we will end up with

optimizing over only three parameters (α, β, λ), and we can use a large number of filter coefficients.

Unfortunately, numerical calculations show that the above randomization approach significantly degrades

the achievable regions resulting from the optimizations. Another possible approach is to use time-variant

random filters. For example, x1 = H1u1 where H1 is an i.i.d. random matrix, and u1 is an i.i.d.

Gaussian random vector, and we choose the variance of u1 to apply the power constraint within each

segment. We do the same for x2. Using random matrix theory, an achievable rate region can be derived.
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Unfortunately, again, numerical calculations show that this approach fails compared to the optimization

over a relatively small number of parameters, as was carried out in the body of this work.

APPENDIX A

PROOF OF THEOREM 2

To prove Theorem 2, we will first generalize Sato’s result in (6)-(8), such that it will apply to any

input distributions, and not just i.i.d.. To this end, we need to analyze the probability of error. We next

show that a general achievable rate region, is given by:

G̃B = conv
{

G̃B1
∪ G̃B2

}

(A.1)

where

G̃B1
, lim

n→∞
conv

⋃

Pn
X1

,Pn
X2











(R1, R2) :
0 ≤ R1 ≤ 1

nI(X
n
1 ;Y

n
1 |Xn

2 )

0 ≤ R2 ≤ min
{

1
nI(X

n
2 ;Y

n
1 ), 1

nI(X
n
2 ;Y

n
2 )
}











(A.2)

and

G̃B2
, lim

n→∞
conv

⋃

Pn
X1

,Pn
X2











(R1, R2) :
0 ≤ R1 ≤ min

{

1
nI(X

n
1 ;Y

n
1 ), 1

nI(X
n
1 ;Y

n
2 )
}

0 ≤ R2 ≤ 1
nI(X

n
2 ;Y

n
2 |Xn

1 )











. (A.3)

Let Pn
1 (x1) and Pn

2 (x2) be arbitrary probability assignments on the two sets of channel input sequences

x1 and x2 of length n. Select independently M1 and M2 codewords x1i, for i = 1, 2, . . . ,M1, and x2j ,

for i = 1, 2, . . . ,M2, according to Pn
1 (x1) and Pn

2 (x2), respectively. We now describe the operation

of the two decoders corresponding to the region G̃B1
. Assume that both decoders know the probability

distributions Pn
1 (x1) and Pn

2 (x2), and therefore know the following conditional probabilities,

Pn
1 (y1|x2) =

∑

x1

Pn
1 (y1|x1,x2)P

n
1 (x1) (A.4)

Pn
2 (y2|x2) =

∑

x1

Pn
2 (y2|x1,x2)P

n
1 (x1). (A.5)

Decoder 2 chooses the message that has the largest Pn
2 (y2|x2) among the M2 codewords. Decoder 1,

first chooses the message that has the largest Pn
1 (y1|x2) among the M2 codewords and then, by using y1

and the decoded x2, chooses the message that has the largest Pn
1 (y1|x1,x2) among the M1 codewords.

Note that these decoding rules are not the optimal decoding rules (i.e., maximum-likelihood), because

they use the conditional probabilities averaged over the random coding distributions. Let

Pe,ij , P {error|i, j,x1i,x2i,y1,y2} , (A.6)
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be the average probability of decoding error conditioned on the messages i and j, the codewords x1i

and x2j , and on y1 and y2. Then the average probability of decoding error for (i, j) message pair is

P̄e,ij =
∑

x1i,x2j ,y1,y2

Pn
1 (x1i)P

n
2 (x2j)P

n(y1,y2|x1i,x2j)Pe,ij . (A.7)

The above conditional error event is the union of the three conditional error events, E1, E2, and E3, where:

E1 refers to an error in decoder 2, E2 refers to an error in decoder 1 for decoding j, and E3 refers to an

error in decoder 1 for decoding i, but correctly decoding index j. Then we have

Pe,ij ≤ P {E1 ∪ E2 ∪ E3} (A.8)

≤ P {E1}+ P {E2}+ P {Ec
2 ∩ E3} (A.9)

≤ P {E1}+ P {E2}+ P {E3|Ec
2} . (A.10)

Using Gallager’s bounding technique, we can obtain upper bounds on each of the terms at the r.h.s. of

(A.10), and thus obtain:

P̄e,ij ≤ A+B + C (A.11)

where

A = (M2 − 1)ρ
∑

y2

{

∑

x2

Pn
2 (x2)P

n
2 (y2|x2)

1/(1+ρ)

}1+ρ

(A.12)

B = (M2 − 1)ρ
∑

y1

{

∑

x2

Pn
2 (x2)P

n
2 (y1|x2)

1/(1+ρ)

}1+ρ

(A.13)

C = (M1 − 1)ρ
∑

y1,x2

Pn
2 (x2)

{

∑

x1

Pn
1 (x1)P

n
1 (y1|x1x2)

1/(1+ρ)

}1+ρ

. (A.14)

Indeed, let us derive for example the bound on P {E1}. We have:

P {E1} =
1

M2

∑

i

∑

x2,i,y2

Pn
2 (x2,i)P

n
2 (y2|x2,i)P {error|x2,i,y2} . (A.15)

Now, define the event Ai′ for each i′ 6= i, as the event that codeword x2,i′ is selected, that is,

Pn
2 (y2|x2,i′) ≥ Pn

2 (y2|x2,i). Thus, we have:

P {error|x2,i,y2} ≤ P







⋃

i′ 6=i

Ai′







≤





∑

i′ 6=i

P {Ai′}





ρ

(A.16)

for any 0 < ρ ≤ 1. From the definition of Ai′ , we have:

P {Ai′} =
∑

Ai′

Pn
2 (x2,i′) (A.17)
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≤
∑

x2,i′

Pn
2 (x2,i′)

[

Pn
2 (y2|x2,i′)

Pn
2 (y2|x2,i)

]s

(A.18)

for s > 0. Since x2,i′ is a dummy variable of the summation in (A.18), the subscript i′ can be dropped

and the bound is independent of i′. Hence,

P {error|x2,i,y2} ≤
[

(M2 − 1)
∑

x2

Pn
2 (x2)

[

Pn
2 (y2|x2)

Pn
2 (y2|x2,i)

]s
]ρ

. (A.19)

Therefore, substituting the above in (A.15), we obtain:

P {E1} ≤ (M2 − 1)ρ
1

M2

∑

i

∑

x2,i,y2

Pn
2 (x2,i)P

n
2 (y2|x2,i)

[

∑

x2

Pn
2 (x2)

[

Pn
2 (y2|x2)

Pn
2 (y2|x2,i)

]s
]ρ

(A.20)

= (M2 − 1)ρ
1

M2

∑

i

∑

y2





∑

x2,i

Pn
2 (x2,i)P

n
2 (y2|x2,i)

1−sρ





[

∑

x2

Pn
2 (x2)P

n
2 (y2|x2)

s

]ρ

. (A.21)

Finally, we substitute s = 1/(1 + ρ), and we note that x2,i is a dummy variable of summation, so we

obtain:

P {E1} ≤ (M2 − 1)ρ
∑

y2

[

∑

x2

Pn
2 (x2)P

n
2 (y2|x2)

1/(1+ρ)

]1+ρ

, (A.22)

which is (A.12). In the same way, we can obtain (A.13) and (A.14).

Returning to (A.10), by maximizing over ρ we obtain:

A = 2−nEA(R2) B = 2−nEB(R2) C = 2−nEC(R1), (A.23)

where R1 = (log2M1)/n, R2 = (log2M2)/n, and

EA(R2) = max
0≤ρ≤1

[EA0
(ρ)− ρR2] (A.24)

EB(R2) = max
0≤ρ≤1

[EB0
(ρ)− ρR2] (A.25)

EC(R1) = max
0≤ρ≤1

[EC0
(ρ)− ρR1] (A.26)

in which

EA0
(ρ) = − 1

n
log2

∑

y2

{

∑

x2

Pn
2 (x2)P

n
2 (y2|x2)

1/(1+ρ)

}1+ρ

(A.27)

EB0
(ρ) = − 1

n
log
∑

y1

{

∑

x2

Pn
2 (x2)P

n
2 (y1|x2)

1/(1+ρ)

}1+ρ

(A.28)

EC0
(ρ) = − 1

n
log

∑

y1,x2

Pn
2 (x2)

{

∑

x1

Pn
1 (x1)P

n
1 (y1|x1,x2)

1/(1+ρ)

}1+ρ

. (A.29)
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Since the average probability of error P̄e,ij does not depend on i and j, we may write:

P̄e ≤ 2−nEA(R2) + 2−nEB(R2) + 2−nEC(R1). (A.30)

Now, as usual, one can show in the usual way that the error exponents are positive if:

R1 <
1

n
I(Xn

1 ;Y
n
1 |Xn

2 ), (A.31)

R2 < min

{

1

n
I(Xn

2 ;Y
n
1 ),

1

n
I(Xn

2 ;Y
n
2 )

}

, (A.32)

where

I(Xn
1 ;Y

n
1 |Xn

2 ) =
∑

x2

Pn
2 (x2)

∑

x1,y1

Pn
1 (x1)P

n(y1|x1,x2) log
Pn(y1|x1,x2)

Pn
1 (y1|x2)

, (A.33)

I(Xn
2 ;Y

n
1 ) =

∑

x2,y1

Pn
2 (x2)P

n
1 (y1|x2) log

Pn
1 (y1|x2)

Pn(y1)
, (A.34)

I(Xn
2 ;Y

n
2 ) =

∑

x2,y2

Pn
2 (x2)P

n
2 (y2|x2) log

Pn
2 (y2|x2)

Pn(y2)
, (A.35)

where, again, Pn
1 (x1) and Pn

2 (x2) are the random coding distributions. Note that the derivatives of

EA0
(ρ), EB0

(ρ), and EC0
(ρ), w.r.t. ρ, evaluated at ρ = 0, give the above mutual information terms.

Therefore, we have proved that the rate-pair within the region G̃B1
is achievable. The proof for G̃B2

is

similar. Combining these two regions by time-sharing, we complete the proof.

Given the above result, we are ready to prove Theorem 2. Consider the situation where during a

fraction λ of the transmission time, the symbols of x1 and x2 form stationary Gaussian processes with

zero mean, and Toeplitz covariance matrices R̃
(1)
x1

, (αP1/λ) ·R(1)
x1 and R̃

(1)
x2

, (βP2/λ) ·R(1)
x2 , with

entries {r11,i}n−1
i=0 and {r21,i}n−1

i=0 , respectively, where r11,0 = r21,0 = 1, and |r11,i| , |r21,i| ≤ 1 for i > 1.

During the remaining fraction λ̄ = 1−λ of the transmission time, the symbols of x1 and x2 form again

stationary Gaussian processes with zero mean, and Toeplitz covariance matrices R̃
(2)
x1

, (ᾱP1/λ̄)R
(2)
x1

and R̃
(2)
x2

, (β̄P2/λ̄)R
(2)
x2 with entries {r12,i}n−1

i=0 and {r22,i}n−1
0=1 , respectively, where r12,0 = r22,0 = 1,

and |r12,i| , |r22,i| ≤ 1 for i > 1. Finally, note that the two input codewords satisfy the power constraints,

1

n
E ‖x1‖2 = λ

αP1

λ
+ λ̄

ᾱP1

λ̄
= P1, (A.36)

and similarly for the second user. Next, consider two modes of work:

• Mode #1: receiver 1 first decodes the message of the second sender, and then uses it as side information

for decoding his message (i.e., subtracts
√
a12x2 from the received signal y1). On the other hand, receiver

2 directly decodes x2. This mode of work corresponds to the achievable rate region G̃B1
in (A.2), and

will be used here a fraction λ of the transmission time with inputs that are distributed as described above.
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• Mode #2: In the second mode (which is dual to the first mode), we refer to the mode of work which

corresponds to the achievable rate region G̃B2
in (A.3), and assume that it is used during the remaining

fraction λ̄ of the transmission time. We will assume here that during the second mode, the two inputs

are distributed as described above.

Now, given the above modes, let R
(i)
1 and R

(i)
2 be the transmission rates in mode i. Accordingly, by a

time-sharing argument, the transmission rates of the two users are

(R1, R2) = λ · (R(1)
1 , R

(1)
2 ) + λ̄ · (R(2)

1 , R
(2)
2 ). (A.37)

Let us now calculate R
(i)
1 and R

(i)
2 , for i = 1, 2. For i = 1, we wish to calculate the mutual information

terms in G̃B1
, i.e.,

R
(1)
1 = lim

n→∞

I(Xnλ
1 ;Y nλ

1 |Xnλ
2 )

nλ
(A.38)

R
(1)
2 = min

{

lim
n→∞

I(Xnλ
2 ;Y nλ

1 )

nλ
, lim
n→∞

I(Xnλ
2 ;Y nλ

2 )

nλ

}

(A.39)

Note that:

I(Xnλ
1 ;Y nλ

1 |Xnλ
2 ) = H(Y nλ

1 |Xnλ
2 )−H(Y nλ

1 |Xnλ
1 , Xnλ

2 ) (A.40)

= H(Xnλ
1 + Znλ

1 )−H(Znλ
1 ) (A.41)

= H(Xnλ
1 + Znλ

1 )− nλ

2
log (2πe) . (A.42)

Now, (Xnλ
1 +Znλ

1 ) is a Gaussian random vector with zero mean and covariance matrix I + R̃
(1)
x1

. Thus,

I(Xnλ
1 ;Y nλ

1 |Xnλ
2 ) =

1

2
log det

[

2πe(I + R̃
(1)
x1

)
]

− nλ

2
log (2πe) (A.43)

=
1

2
log det

[

I + R̃
(1)
x1

]

. (A.44)

Similarly,

I(Xnλ
2 ;Y nλ

1 ) = H(Xnλ
1 +

√
a12X

nλ
2 + Znλ

1 )−H(Xnλ
1 + Znλ

1 ) (A.45)

=
1

2
log det

[

I + R̃
(1)
x1

+ a12R̃
(1)
x2

]

− 1

2
log det

[

I + R̃
(1)
x1

]

, (A.46)

and

I(Xnλ
2 ;Y nλ

2 ) = H(
√
a21X

nλ
1 +Xnλ

2 + Znλ
1 )−H(

√
a21X

nλ
1 +Nnλ

2 ) (A.47)

=
1

2
log det

[

I + a21R̃
(1)
x1

+ R̃
(1)
x2

]

− 1

2
log det

[

I + a21R̃
(1)
x1

]

. (A.48)

Next, we calculate the limits of these terms as n → ∞. To this end, we note that due to the stationarity,

the input covariance matrices are Toeplitz matrices, and thus we can apply Szegö’s theorem [19-22]. Let
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{

ρ
(j)
xi,k

}

be the eigenvalues of R̃
(j)
xi

, for i, j = 1, 2. Recall the definitions in (10). Then, using Szegö’s

theorem we can show that [19, Th. 4.1]:

lim
n→∞

n−1
∑

k=0

F (ρ
(1)
x1,k

) =
1

2π

∫ 2π

0
F (ν11(ω))dω (A.49)

for any continuous function F (·). Let us apply this result to our problem. First, note that:

I(Xnλ
1 ;Y nλ

1 |Xnλ
2 ) =

1

2
log det

[

I + R̃
(1)
x1

]

(A.50)

=
1

2

nλ−1
∑

k=0

log(1 + ρ
(1)
x1,k

). (A.51)

Thus, we have:

lim
n→∞

I(Xnλ
1 ;Y nλ

1 |Xnλ
2 )

nλ
=

1

4π

∫ 2π

0
log (1 + ν11(ω)) dω. (A.52)

In a similar manner:

I(Xnλ
2 ;Y nλ

1 ) =
1

2
log det

[

I + R̃
(1)
x1

+ a12R̃
(1)
x2

]

− 1

2
log det

[

I + R̃
(1)
x1

]

(A.53)

=
1

2

nλ−1
∑

k=0

log





1 + ρ
(1)
x1,k

+ a12ρ
(1)
x2,k

1 + ρ
(1)
x1,k



 (A.54)

=
1

2

nλ−1
∑

k=0

log



1 +
a12ρ

(1)
x2,k

1 + ρ
(1)
x1,k



 . (A.55)

Therefore:

lim
n→∞

I(Xnλ
2 ;Y nλ

1 )

nλ
=

1

4π

∫ 2π

0
log

(

1 +
a12ν21(ω)

1 + ν11(ω)

)

dω. (A.56)

Similarly:

lim
n→∞

I(Xnλ
2 ;Y nλ

2 )

nλ
=

1

4π

∫ 2π

0
log

(

1 +
ν21(ω)

1 + a21ν11(ω)

)

dω. (A.57)

So, to conclude the results for the first mode:

R
(1)
1 =

1

4π

∫ 2π

0
log (1 + ν11(ω)) dω, (A.58)

R
(1)
2 = min

{

1

4π

∫ 2π

0
log

(

1 +
a12ν21(ω)

1 + ν11(ω)

)

dω,
1

4π

∫ 2π

0
log

(

1 +
ν21(ω)

1 + a21ν11(ω)

)

dω

}

. (A.59)

For the second mode, i = 2, we wish to calculate the mutual information terms in G̃B2
. We have:

R
(2)
1 = min

{

lim
n→∞

I(Xnλ̄
1 ;Y nλ̄

1 )

nλ̄
, lim
n→∞

I(Xnλ̄
1 ;Y nλ̄

2 )

nλ̄

}

, (A.60)

R
(2)
2 = lim

n→∞

I(Xnλ̄
2 ;Y nλ̄

2 |Xnλ̄
1 )

nλ̄
, (A.61)
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where the superscript nλ̄ means that we consider the complementary block i = nλ, nλ+ 1, . . . , n. The

calculation of these mutual information rates is exactly the same as in the first mode. One obtains:

R
(2)
1 = min

{

1

4π

∫ 2π

0
log

(

1 +
ν12(ω)

1 + a12ν22(ω)

)

dω,
1

4π

∫ 2π

0
log

(

1 +
a21ν12(ω)

1 + ν22(ω)

)

dω

}

, (A.62)

R
(2)
2 =

1

4π

∫ 2π

0
log (1 + ν22(ω)) dω. (A.63)

Thus, by time-sharing, the achievable rate region is given by:

R =
⋃

θ∈Θ











(R1, R2) :
R1 ≤ λ · ϕ [ν11] + λ̄ ·min

{

ϕ
[

ν12

1+a12ν22

]

, ϕ
[

a21ν12

1+ν22

]}

R2 ≤ λ̄ · ϕ [ν22] + λ ·min
{

ϕ
[

a12ν21

1+ν11

]

, ϕ
[

ν21

1+a21ν11

]}











, (A.64)

where θ , (α, β, λ, {r11,i} , {r12,i} , {r21,i} , {r22,i}).

APPENDIX B

PROOF OF THEOREM 3

For completeness, we describe the coding scheme in more detail. During a fraction λ of the transmission

time, the symbols of x1 and x2 are given by:

x1,i = ρx1
x1,i−1 + σ1w1,i − κ1σ1w1,i−1, i = 1, 2, . . . , nλ− 1 (B.1a)

x2,i = ρx2
x2,i−1 + σ2w2,i − κ2σ2w2,i−1, i = 1, 2, . . . , nλ− 1 (B.1b)

where σ2
k, for k = 1, 2, is defined in (14), |ρx1

| , |ρx2
| , |κ1| , |κ2| < 1, x1,0 and x2,0 are Gaussian random

variables with zero mean and variances αP1/λ and βP2/λ, {w1,i} and {w2,i} are i.i.d. Gaussian processes

with zero mean and variances αP1/λ and βP2/λ, and 0 ≤ α, β ≤ 1. That is, the symbols of x1 and x2

are distributed according to a ARMA model. During the remaining fraction λ̄ = 1−λ of the transmission

time, the components of x1 and x2 are given by:

x1,i = ρx1
x1,i−1 + σ1w̃1,i − κ1σ1w̃1,i−1, i = nλ+ 1, . . . , n (B.2a)

x2,i = ρx2
x2,i−1 + σ2w̃2,i − κ2σ2w̃2,i−1, i = nλ+ 1, . . . , n, (B.2b)

where x1,nλ and x1,nλ are Gaussian random variables with zero mean and variances ᾱP1/λ̄ and β̄P2/λ̄,

respectively, w̃1,i and w̃2,i are i.i.d. Gaussian processes with zero mean and variances ᾱP1/λ̄ and β̄P2/λ̄.

Note that the two input codewords satisfy the power constraints: For the first user,

1

n
E ‖x1‖2 = λ

αP1

λ
+ λ̄

ᾱP1

λ̄
= P1, (B.3)
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where we have used the fact that for an ARMA process:

Var {x1,i} =
αP1

λ
· σ

2
1(1 + κ21 − 2 + κ1ρx1

)

1− ρ2x1

=
αP1

λ
, (B.4)

for i = 1, 2, . . . , nλ − 1, and similarly for i = nλ + 1, . . . , n. A similar argument is true also for the

second user.

Regarding the decoding, we consider exactly the same modes of work as in Theorem 2 (see discussion

after (A.36)). Now, given the above modes, let R
(i)
1 and R

(i)
2 be the transmission rates in mode i.

Accordingly, by a time-sharing argument, the transmission rates of the two users are

(R1, R2) = λ · (R(1)
1 , R

(1)
2 ) + λ̄ · (R(2)

1 , R
(2)
2 ). (B.5)

Let us now calculate R
(i)
1 and R

(i)
2 , for i = 1, 2. For i = 1, we wish to calculate the mutual information

terms in G̃B1
, i.e.,

R
(1)
1 = lim

n→∞

I(Xnλ
1 ;Y nλ

1 |Xnλ
2 )

nλ
(B.6)

R
(1)
2 = min

{

lim
n→∞

I(Xnλ
2 ;Y nλ

1 )

nλ
, lim
n→∞

I(Xnλ
2 ;Y nλ

2 )

nλ

}

(B.7)

We saw in (A.44), (A.46), and (A.48), that:

I(Xnλ
1 ;Y nλ

1 |Xnλ
2 ) =

1

2
log det

[

I +R(1)
x1

]

, (B.8)

I(Xnλ
2 ;Y nλ

1 ) =
1

2
log det

[

I +R(1)
x1

+ a12R
(1)
x2

]

− 1

2
log det

[

I +R(1)
x1

]

, (B.9)

and

I(Xnλ
2 ;Y nλ

2 ) =
1

2
log det

[

I + a21R
(1)
x1

+R(1)
x2

]

− 1

2
log det

[

I + a21R
(1)
x1

]

. (B.10)

Thus, we need to calculate the limits of these terms as n → ∞. We use again Szegö’s theorem [19-22].

Indeed, recall that Xn
1 and Xn

2 are ARMA processes. Accordingly, (B.1) can be rewritten as:

AnλX
nλ
1 = σ1BnλW

nλ
1 (B.11)

where

Anλ ,





















1 0 0 . . . 0

−ρx1
1 0 . . . 0

...
...

. . .
. . .

...

0 0 . . . −ρx1
1





















, (B.12)
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and

Bnλ ,





















1 0 0 . . . 0

−κ1 1 0 . . . 0

...
...

. . .
. . .

...

0 0 . . . −κ1 1





















, (B.13)

which are Toeplitz matrices. Thus, we have:

σ2
1BnλRw1

BT
nλ = AnλR

(1)
x1
AT

nλ, (B.14)

and whence, using the fact that Rw1
= (αP1/λ)I , we obtain

R(1)
x1

=
σ2
1αP1

λ
·A−1

nλBnλB
T
nλ(A

−1
nλ)

T . (B.15)

As before, let
{

ρ
(1)
x1,k

}

be the eigenvalues of R
(1)
x1 . Then, using Szegö’s theorem, we can show that [19,

Theorems 6.1 and 6.2]:

lim
n→∞

nλ−1
∑

k=0

F (ρ
(1)
x1,k

) =
1

2π

∫ 2π

0
F (γ

(1)
1 (ω))dω (B.16)

for any continuous function F (·), where γ
(1)
1 (·) is defined in (16). Thus,

lim
n→∞

I(Xnλ
1 ;Y nλ

1 |Xnλ
2 )

nλ
=

1

4π

∫ 2π

0
log
(

1 + γ
(1)
1 (ω)

)

dω. (B.17)

In a similar manner,

lim
n→∞

I(Xnλ
2 ;Y nλ

1 )

nλ
=

1

4π

∫ 2π

0
log

(

1 +
a12γ

(1)
2 (ω)

1 + γ
(1)
1 (ω)

)

dω, (B.18)

and

lim
n→∞

I(Xnλ
2 ;Y nλ

2 )

nλ
=

1

4π

∫ 2π

0
log

(

1 +
γ
(1)
2 (ω)

1 + a21γ
(1)
1 (ω)

)

dω, (B.19)

where γ
(1)
2 (·) is defined in (16). So, to conclude the results for the first mode:

R
(1)
1 =

1

4π

∫ 2π

0
log
(

1 + γ
(1)
1 (ω)

)

dω, (B.20)

R
(1)
2 = min

{

1

4π

∫ 2π

0
log

(

1 +
a12γ

(1)
2 (ω)

1 + γ
(1)
1 (ω)

)

dω,
1

4π

∫ 2π

0
log

(

1 +
γ
(1)
2 (ω)

1 + a21γ
(1)
1 (ω)

)

dω

}

. (B.21)

For the second mode, i = 2, we wish to calculate the mutual information terms in G̃B2
. We have:

R
(2)
1 = min

{

lim
n→∞

I(Xnλ̄
1 ;Y nλ̄

1 )

nλ̄
, lim
n→∞

I(Xnλ̄
1 ;Y nλ̄

2 )

nλ̄

}

, (B.22)

Monday 24th August, 2015 DRAFT



29

R
(2)
2 = lim

n→∞

I(Xnλ̄
2 ;Y nλ̄

2 |Xnλ̄
1 )

nλ̄
. (B.23)

The calculation of these mutual information rates is exactly the same as in the first mode. One obtains:

R
(2)
1 = min

{

1

4π

∫ 2π

0
log

(

1 +
γ
(2)
1 (ω)

1 + a12γ
(2)
2 (ω)

)

dω,
1

4π

∫ 2π

0
log

(

1 +
a21γ

(2)
1 (ω)

1 + γ
(2)
2 (ω)

)

dω

}

, (B.24)

R
(2)
2 =

1

4π

∫ 2π

0
log
(

1 + γ
(2)
2 (ω)

)

dω, (B.25)

where γ
(2)
1 (·) and γ

(2)
2 (·) are defined in (16). To conclude, an achievable rate region is given by:

R(1) =
⋃

α,β,λ,ρx1
,ρx2

,κ1,κ2











(R1, R2) :
R1 ≤ λ · ϕ

[

γ
(1)
1

]

+ λ̄ ·min
{

ϕ
[

γ
(2)
1

1+a12γ
(2)
2

]

, ϕ
[

a21γ
(2)
1

1+γ
(2)
2

]}

R2 ≤ λ̄ · ϕ
[

γ
(2)
2

]

+ λ ·min
{

ϕ
[

a12γ
(1)
2

1+γ
(1)
1

]

, ϕ
[

γ
(1)
2

1+a21γ
(1)
1

]}











.

(B.26)

APPENDIX C

PROOFS OF THEOREMS 4 AND 5

Encoding: As before, we consider two modes of works. During the first λ fraction of the transmission

time. Here, the components of x1 are given by:

x1,i = ρx1
x1,i−1 +

√

1− ρ2x1
w1,i, i = 1, 2, . . . , nλ− 1 (C.1)

where x1,0 is a Gaussian random variable with zero mean and variance αP1/λ, {w1,i} is i.i.d. Gaussian

process with zero mean and variance αP1/λ, where 0 ≤ α ≤ 1. We generate 2nR1 independent codewords

{x1(i)} according to the above distribution. Now regarding x2, we use rate-splitting technique, as used

in HK scheme, and generate 2nR
′

2 and 2nR
′′

2 independent codewords {v2(i)} and {u2(i)}, respectively,

where 0 ≤ R′
2 ≤ R2 and R′′

2 = R2 −R′
2, in the following way:

u2,i = ρu2
u2,i−1 +

√

1− ρ2u2
wu
2,i, (C.2a)

v2,i = ρv2
v2,i−1 +

√

1− ρ2v2
wv
2,i, (C.2b)

where |ρu2
| , |ρv2

| < 1, u2,0 and v2,0 are Gaussian random variables with zero mean and variances

βξ2P2/λ and βξ̄2P2/λ, respectively, and
{

wu
2,i

}

and
{

wv
2,i

}

are i.i.d. Gaussian processes with zero

mean and variances βξ2P2/λ, and βξ̄2P2/λ, respectively, where 0 ≤ β, ξ2 ≤ 1. Then, the 2nR2 codewords

{x2(i, j)} are given by the element-wise addition:

x2(i, j) = u2(i) + v2(j) (C.3)

for i = 1, 2, . . . , 2nR
′′

2 and j = 1, 2, . . . , 2nR
′

2 , which denote the indexes of the codewords.
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During the remaining fraction λ̄ = 1 − λ of the transmission time, the roles of the encoders are

swapped. Specifically, the components of x2 are given by:

x2,i = ρx2
x2,i−1 +

√

1− ρ2x2
w̃2,i, i = λn+ 1, . . . , n (C.4)

where x2,nλ is a Gaussian random variable with zero mean and variance β̄P2/λ̄, {w̃2,i} is i.i.d. Gaussian

process with zero mean and variance β̄P2/λ̄, where 0 ≤ β ≤ 1. We generate 2nR2 independent codewords

{x2(i)} according to the above distribution. Regarding x1, we use again rate-splitting technique, and

generate 2nR
′

1 and 2nR
′′

1 independent codewords {v1(i)} and {u1(i)}, respectively, where 0 ≤ R′
1 ≤ R1

and R′′
1 = R1 −R′

1, in the following way:

u1,i = ρu1
u1,i−1 +

√

1− ρ2u1
wu
1,i, (C.5a)

v1,i = ρv1
v1,i−1 +

√

1− ρ2v1
wv
1,i, (C.5b)

where |ρu1
| , |ρv1

| < 1, u1,λn and v1,λn are Gaussian random variables with zero mean and variances

ᾱξ1P1/λ̄ and ᾱξ̄1P1/λ̄, respectively, and
{

wu
1,i

}

and
{

wv
1,i

}

are i.i.d. Gaussian processes with zero

mean and variances ᾱξ1P1/λ̄ and ᾱξ̄1P1/λ̄, respectively, where 0 ≤ ξ1 ≤ 1. Then, the 2nR1 codewords

{x1(i, j)} are given by the element-wise addition:

x1(i, j) = u1(i) + v1(j) (C.6)

for i = 1, 2, . . . , 2nR
′′

1 and j = 1, 2, . . . , 2nR
′

1 . Finally, note that the two input codewords satisfy the

power constraints:

1

n
E ‖x1‖2 = λ

αP1

λ
+ λ̄

[

ᾱξ1P1

λ̄
+

ᾱξ̄1P1

λ̄

]

= P1, (C.7)

and similarly for the second user. As described in Subsection II-B, we consider two decoding schemes

(see, discussion after (41)).

Analysis of Decoding #1:

Using similar methods to analyze the probability of error, as used in Appendix A, it can be readily

shown that under decoding strategy #1, the following is achievable during the first mode:

R
(1)
1 ≤ lim

n→∞

1

nλ
I(Xnλ

1 ;Y nλ
1 |V nλ

2 ), (C.8a)

R′
2 ≤ lim

n→∞

1

nλ
I(V nλ

2 ;Y nλ
1 ), (C.8b)

R′
2 ≤ lim

n→∞

1

nλ
I(V nλ

2 ;Y nλ
2 |Unλ

2 ), (C.8c)

R′′
2 ≤ lim

n→∞

1

nλ
I(Unλ

2 ;Y nλ
2 |V nλ

2 ), (C.8d)
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R
(1)
2 = R′

2 +R′′
2 ≤ lim

n→∞

1

nλ
I(Unλ

2 , V nλ
2 ;Y nλ

2 ). (C.8e)

Accordingly, for the second mode, the following is achievable:

R
(2)
2 ≤ lim

n→∞

1

nλ̄
I(Xnλ̄

2 ;Y nλ̄
2 |V nλ̄

1 ), (C.9a)

R′
1 ≤ lim

n→∞

1

nλ̄
I(V nλ̄

1 ;Y nλ̄
2 ), (C.9b)

R′
1 ≤ lim

n→∞

1

nλ̄
I(V nλ̄

1 ;Y nλ̄
1 |Unλ̄

1 ), (C.9c)

R′′
1 ≤ lim

n→∞

1

nλ̄
I(Unλ̄

1 ;Y nλ̄
1 |V nλ̄

1 ), (C.9d)

R
(2)
1 = R′

1 +R′′
1 ≤ lim

n→∞

1

nλ̄
I(Unλ̄

1 , V nλ̄
1 ;Y nλ̄

1 ). (C.9e)

Indeed, for the first mode, for example, we see that receiver 1 first decodes V2, and thus R′
2 is bounded

by (C.8b). Then he uses his estimate as side information to decode X1, and thus R1 is bounded by

(C.8a). Receiver 2, on the other hand, simultaneously decodes U2 and V2, as in decoding for the MAC,

and thus we have (C.8c)-(C.8e). Before we continue, we simplify the above regions by eliminating the

virtual rates R′
1, R′′

1 , R′
2, and R′′

2 . We do that by applying Fourier-Motzkin algorithm [1, Appendix D].

For the first mode, set R′
2 = R

(1)
2 −R′′

2 , and eliminate R′
2 from (C.8a)-(C.8e), to obtain:

R
(1)
1 ≤ lim

n→∞

1

nλ
I(Xnλ

1 ;Y nλ
1 |V nλ

2 ), (C.10a)

R
(1)
2 −R′′

2 ≤ lim
n→∞

1

nλ
I(V nλ

2 ;Y nλ
1 ), (C.10b)

R
(1)
2 −R′′

2 ≤ lim
n→∞

1

nλ
I(V nλ

2 ;Y nλ
2 |Unλ

2 ), (C.10c)

R′′
2 ≤ lim

n→∞

1

nλ
I(Unλ

2 ;Y nλ
2 |V nλ

2 ), (C.10d)

R
(1)
2 ≤ lim

n→∞

1

nλ
I(Unλ

2 , V nλ
2 ;Y nλ

2 ). (C.10e)

Since (C.10a) and (C.10e) are independent of R′′
2 , we ignore them. Now, collect the inequalities including

R′′
2 with positive coefficients to obtain:

R′′
2 ≤ lim

n→∞

1

nλ
I(Unλ

2 ;Y nλ
2 |V nλ

2 ), (C.11)

and with negative coefficients to obtain:

R
(1)
2 −R′′

2 ≤ lim
n→∞

1

nλ
I(V nλ

2 ;Y nλ
1 ), (C.12a)

R
(1)
2 −R′′

2 ≤ lim
n→∞

1

nλ
I(V nλ

2 ;Y nλ
2 |Unλ

2 ). (C.12b)

Next, eliminate R′′
2 by adding (C.11) to (C.12a) and (C.12b) to obtain the inequalities not including R′′

2 :

R
(1)
2 ≤ lim

n→∞

1

nλ

[

I(V nλ
2 ;Y nλ

1 ) + I(Unλ
2 ;Y nλ

2 |V nλ
2 )
]

(C.13a)
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R
(1)
2 ≤ lim

n→∞

1

nλ

[

I(V nλ
2 ;Y nλ

2 |Unλ
2 ) + I(Unλ

2 ;Y nλ
2 |V nλ

2 )
]

. (C.13b)

Thus, we obtain that for the first mode, the following is achievable:

R
(1)
1 ≤ lim

n→∞

1

nλ
I(Xnλ

1 ;Y nλ
1 |V nλ

2 ), (C.14a)

R
(1)
2 ≤ lim

n→∞

1

nλ

[

I(V nλ
2 ;Y nλ

1 ) + I(Unλ
2 ;Y nλ

2 |V nλ
2 )
]

, (C.14b)

R
(1)
2 ≤ lim

n→∞

1

nλ

[

I(V nλ
2 ;Y nλ

2 |Unλ
2 ) + I(Unλ

2 ;Y nλ
2 |V nλ

2 )
]

, (C.14c)

R
(1)
2 ≤ lim

n→∞

1

nλ
I(Unλ

2 , V nλ
2 ;Y nλ

2 ). (C.14d)

Accordingly, for the second mode, the following is achievable:

R
(2)
2 ≤ lim

n→∞

1

nλ̄
I(Xnλ̄

2 ;Y nλ̄
2 |V nλ̄

1 ), (C.15a)

R
(2)
1 ≤ lim

n→∞

1

nλ̄

[

I(V nλ̄
1 ;Y nλ̄

2 ) + I(Unλ̄
1 ;Y nλ̄

1 |V nλ̄
1 )
]

, (C.15b)

R
(2)
1 ≤ lim

n→∞

1

nλ̄

[

I(V nλ̄
1 ;Y nλ̄

1 |Unλ̄
1 ) + I(Unλ̄

1 ;Y nλ̄
1 |V nλ̄

1 )
]

, (C.15c)

R
(2)
1 ≤ lim

n→∞

1

nλ̄
I(Unλ̄

1 , V nλ̄
1 ;Y nλ̄

1 ). (C.15d)

As before, by a time-sharing argument, the transmission rates of the two users are

(R1, R2) = λ · (R(1)
1 , R

(1)
2 ) + λ̄ · (R(2)

1 , R
(2)
2 ). (C.16)

Finally, we evaluate each of the mutual information terms in (C.14) and (C.15). Let:

γx1
(ω) ,

(1− ρ2x1
)αP1

λ |1− ρx1
ejω|2

(C.17a)

γx2
(ω) ,

(1− ρ2x2
)β̄P2

λ̄ |1− ρx2
ejω|2

(C.17b)

γu1
(ω) ,

(1− ρ2u1
)ξ1ᾱP1

λ̄ |1− ρu1
ejω|2

(C.17c)

γv1
(ω) ,

(1− ρ2v1
)ξ̄1ᾱP1

λ̄ |1− ρv1
ejω|2

(C.17d)

γu2
(ω) ,

(1− ρ2u2
)ξ2βP2

λ |1− ρu2
ejω|2

(C.17e)

γv2
(ω) ,

(1− ρ2v2
)ξ̄2βP2

λ |1− ρv2
ejω|2

. (C.17f)

As before, using Szegö’s theorem we obtain that:

lim
n→∞

1

nλ
I(Xnλ

1 ;Y nλ
1 |V nλ

2 ) = ϕ

[

γx1

1 + a12γu2

]

, (C.18a)
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lim
n→∞

1

nλ

[

I(V nλ
2 ;Y nλ

1 ) + I(Unλ
2 ;Y nλ

2 |V nλ
2 )
]

= ϕ

[

a12γv2

1 + γx1
+ a12γu2

]

+ ϕ

[

γu2

1 + a21γx1

]

,(C.18b)

lim
n→∞

1

nλ

[

I(V nλ
2 ;Y nλ

2 |Unλ
2 ) + I(Unλ

2 ;Y nλ
2 |V nλ

2 )
]

= ϕ

[

γv2

1 + a21γx1

]

+ ϕ

[

γu2

1 + a21γx1

]

, (C.18c)

lim
n→∞

1

nλ
I(Unλ

2 , V nλ
2 ;Y nλ

2 ) = ϕ

[

γu2
+ γv2

1 + a21γx1

]

, (C.18d)

and

lim
n→∞

1

nλ̄
I(Xnλ̄

2 ;Y nλ̄
2 |V nλ̄

1 ) = ϕ

[

γx2

1 + a21γu1

]

, (C.19a)

lim
n→∞

1

nλ̄

[

I(V nλ̄
1 ;Y nλ̄

2 ) + I(Unλ̄
1 ;Y nλ̄

1 |V nλ̄
1 )
]

= ϕ

[

a21γv1

1 + γx2
+ a21γu1

]

+ ϕ

[

γu1

1 + a12γx2

]

,(C.19b)

lim
n→∞

1

nλ̄

[

I(V nλ̄
1 ;Y nλ̄

1 |Unλ̄
1 ) + I(Unλ̄

1 ;Y nλ̄
1 |V nλ̄

1 )
]

= ϕ

[

γv1

1 + a12γx2

]

+ ϕ

[

γu1

1 + a12γx2

]

, (C.19c)

lim
n→∞

1

nλ̄
I(Unλ̄

1 , V nλ̄
1 ;Y nλ̄

1 ) = ϕ

[

γu1
+ γv1

1 + a12γx2

]

. (C.19d)

Thus, to summarize our results, our new achievable rate region is given by:

R(2) =
⋃

ξ∈Ξ











(R1, R2) :
R1 ≤ R1(ξ)

R2 ≤ R2(ξ)











(C.20)

where

R1(ξ) , λ · ϕ
[

γx1

1 + a12γu2

]

+ λ̄min

{

ϕ

[

γu1
+ γv1

1 + a12γx2

]

, ϕ

[

γv1

1 + a12γx2

]

+ ϕ

[

γu1

1 + a12γx2

]

,

ϕ

[

a21γv1

1 + γx2
+ a21γu1

]

+ ϕ

[

γu1

1 + a12γx2

]}

, (C.21)

and

R2(ξ) , λ̄ · ϕ
[

γx2

1 + a21γu1

]

+ λ ·min

{

ϕ

[

γu2
+ γv2

1 + a21γx1

]

, ϕ

[

γv2

1 + a21γx1

]

+ ϕ

[

γu2

1 + a21γx1

]

,

ϕ

[

a12γv2

1 + γx1
+ a12γu2

]

+ ϕ

[

γu2

1 + a21γx1

]}

. (C.22)

Analysis of Decoding #2:

As was done in Appendix A, we can show that under decoding strategy #2, the following is achievable

for the first mode:

R
(1)
1 ≤ lim

n→∞

1

nλ
I(Xnλ

1 ;Y nλ
1 |V nλ

2 ), (C.23a)

R′
2 ≤ lim

n→∞

1

nλ
I(V nλ

2 ;Y nλ
1 |Xnλ

1 ), (C.23b)

R
(1)
1 +R′

2 ≤ lim
n→∞

1

nλ
I(Xnλ

1 , V nλ
2 ;Y nλ

1 ), (C.23c)
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R′
2 ≤ lim

n→∞

1

nλ
I(V nλ

2 ;Y nλ
2 |Unλ

2 ), (C.23d)

R′′
2 ≤ lim

n→∞

1

nλ
I(Unλ

2 ;Y nλ
2 |V nλ

2 ), (C.23e)

R
(1)
2 = R′

2 +R′′
2 ≤ lim

n→∞

1

nλ
I(Unλ

2 , V nλ
2 ;Y nλ

2 ), (C.23f)

while for the the second mode, we have:

R
(2)
2 ≤ lim

n→∞

1

nλ̄
I(Xnλ̄

2 ;Y nλ̄
2 |V nλ̄

1 ), (C.24a)

R′
1 ≤ lim

n→∞

1

nλ̄
I(V nλ̄

1 ;Y nλ̄
2 |Xnλ̄

2 ), (C.24b)

R
(2)
2 +R′

1 ≤ lim
n→∞

1

nλ̄
I(Xnλ̄

2 , V nλ̄
1 ;Y nλ̄

2 ), (C.24c)

R′
1 ≤ lim

n→∞

1

nλ̄
I(V nλ̄

1 ;Y nλ̄
1 |Unλ̄

1 ), (C.24d)

R′′
1 ≤ lim

n→∞

1

nλ̄
I(Unλ̄

1 ;Y nλ̄
1 |V nλ̄

1 ), (C.24e)

R
(2)
1 = R′

1 +R′′
1 ≤ lim

n→∞

1

nλ̄
I(Unλ̄

1 , V nλ̄
1 ;Y nλ̄

1 ). (C.24f)

As can be noticed from (C.23), in the first mode, we see that now receiver 2 simultaneously (contrary

to decoding #1) decodes V1 and X2, and thus R′
1 and R

(2)
2 is bounded by (C.23a)-(C.23c). Receiver 1,

again, simultaneously decodes U1 and V1, and thus we have (C.23d)-(C.23f). As was done for decoding

#1, we can simplify the above regions, by eliminating the virtual rates R′
1, R′′

1 , R′
2, and R′′

2 , via the

Fourier-Motzkin algorithm. Eventually, one obtains for the first mode that the following is achievable:

R
(1)
1 ≤ lim

n→∞

1

nλ
I(Xnλ

1 ;Y nλ
1 |V nλ

2 ), (C.25a)

R
(1)
2 ≤ lim

n→∞

1

nλ
I(Unλ

2 , V nλ
2 ;Y nλ

2 ), (C.25b)

R
(1)
2 ≤ lim

n→∞

1

nλ

[

I(V nλ
2 ;Y nλ

1 |Xnλ
1 ) + I(Unλ

2 ;Y nλ
2 |V nλ

2 )
]

, (C.25c)

R
(1)
2 ≤ lim

n→∞

1

nλ

[

I(V nλ
2 ;Y nλ

2 |Unλ
2 ) + I(Unλ

2 ;Y nλ
2 |V nλ

2 )
]

, (C.25d)

R
(1)
1 +R

(1)
2 ≤ lim

n→∞

1

nλ

[

I(Xnλ
1 , V nλ

2 ;Y nλ
1 ) + I(Unλ

2 ;Y nλ
2 |V nλ

2 )
]

, (C.25e)

and for the second mode:

R
(2)
2 ≤ lim

n→∞

1

nλ̄
I(Xnλ̄

2 ;Y nλ̄
2 |V nλ̄

1 ), (C.26a)

R
(2)
1 ≤ lim

n→∞

1

nλ̄
I(Unλ̄

1 , V nλ̄
1 ;Y nλ̄

1 ), (C.26b)

R
(2)
1 ≤ lim

n→∞

1

nλ̄

[

I(V nλ̄
1 ;Y nλ̄

2 |Xnλ̄
2 ) + I(Unλ̄

1 ;Y nλ̄
1 |V nλ̄

1 )
]

, (C.26c)

R
(2)
1 ≤ lim

n→∞

1

nλ̄

[

I(V nλ̄
1 ;Y nλ̄

1 |Unλ̄
1 ) + I(Unλ̄

1 ;Y nλ̄
1 |V nλ̄

1 )
]

, (C.26d)
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R
(1)
1 +R

(1)
2 ≤ lim

n→∞

1

nλ̄

[

I(Xnλ̄
2 , V nλ̄

1 ;Y nλ̄
2 ) + I(Unλ̄

1 ;Y nλ̄
1 |V nλ̄

1 )
]

. (C.26e)

Using Szegö’s theorem we get that (see (C.18) and (C.19)):

lim
n→∞

1

nλ

[

I(V nλ
2 ;Y nλ

1 |Xnλ
1 ) + I(Unλ

2 ;Y nλ
2 |V nλ

2 )
]

= ϕ

[

a12γv2

1 + a12γu2

]

+ ϕ

[

γu2

1 + a21γx1

]

, (C.27a)

lim
n→∞

1

nλ

[

I(Xnλ
1 , V nλ

2 ;Y nλ
1 ) + I(Unλ

2 ;Y nλ
2 |V nλ

2 )
]

= ϕ

[

γx1
+ a12γv2

1 + a12γu2

]

+ ϕ

[

γu2

1 + a21γx1

]

,(C.27b)

and

lim
n→∞

1

nλ̄

[

I(V nλ̄
1 ;Y nλ̄

2 |Xnλ̄
2 ) + I(Unλ̄

1 ;Y nλ̄
1 |V nλ̄

1 )
]

= ϕ

[

a21γv1

1 + a21γu1

]

+ ϕ

[

γu1

1 + a12γx2

]

, (C.28a)

lim
n→∞

1

nλ̄

[

I(Xnλ̄
2 , V nλ̄

1 ;Y nλ̄
2 ) + I(Unλ̄

1 ;Y nλ̄
1 |V nλ̄

1 )
]

= ϕ

[

γx2
+ a21γv1

1 + a21γu1

]

+ ϕ

[

γu1

1 + a12γx2

]

.(C.28b)

Whence, we obtained the following achievable region:

R(3) =
⋃

ξ∈Ξ























(R1, R2) :

R1 ≤ R̄1(ξ)

R2 ≤ R̄2(ξ)

R1 +R2 ≤ Rsum(ξ)























(C.29)

where

R̄1(ξ) , λ · ϕ
[

γx1

1 + a12γu2

]

+ λ̄min

{

ϕ

[

γu1
+ γv1

1 + a12γx2

]

, ϕ

[

γv1

1 + a12γx2

]

+ ϕ

[

γu1

1 + a12γx2

]

,

ϕ

[

a21γv1

1 + a21γu1

]

+ ϕ

[

γu1

1 + a12γx2

]}

, (C.30)

and

R̄2(ξ) , λ̄ · ϕ
[

γx2

1 + a21γu1

]

+ λ̄min

{

ϕ

[

γu2
+ γv2

1 + a21γx1

]

, ϕ

[

γv2

1 + a21γx1

]

+ ϕ

[

γu2

1 + a21γx1

]

,

ϕ

[

a12γv2

1 + a12γu2

]

+ ϕ

[

γu2

1 + a21γx1

]}

, (C.31)

and

Rsum(ξ) , λ ·
{

ϕ

[

γx1
+ a12γv2

1 + a12γu2

]

+ ϕ

[

γu2

1 + a21γx1

]}

+ λ̄ ·
{

ϕ

[

γx2
+ a21γv1

1 + a21γu1

]

+ ϕ

[

γu1

1 + a12γx2

]}

. (C.32)
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