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Abstract

We consider the problem of block-coded communication, where in each block, the channel law belongs to one

of two disjoint sets. The decoder is aimed to decode only messages that have undergone a channel from one of the

sets, and thus has to detect the set which contains the prevailing channel. We begin with the simplified case where

each of the sets is a singleton. For any given code, we derive the optimum detection/decoding rule in the sense

of the best trade-off among the probabilities of decoding error, false alarm, and misdetection, and also introduce

sub-optimal detection/decoding rules which are simpler to implement. Then, various achievable bounds on the error

exponents are derived, including the exact single-letter characterization of the random coding exponents for the

optimal detector/decoder. We then extend the random coding analysis to general sets of channels, and show that

there exists a universal detector/decoder which performs asymptotically as well as the optimal detector/decoder,

when tuned to detect a channel from a specific pair of channels. The case of sets of binary symmetric channels is

discussed in detail.

Index Terms

Joint detection/decoding, error exponent, false alarm, misdetection, random coding, expurgation, mismatch

detection, detection complexity, universal detection.

I. INTRODUCTION

Consider communicating over a channel, for which the prevailing channel law PY |X (X and Y being the channel

input and output, respectively) is supposed to belong to a family of channels W . For example, W could be a

singleton W = {W}, or some ball centered at W with respect to (w.r.t.) a given metric (say, total variation). This

ball represents some uncertainty regarding the channel, which may result, e.g., from estimation errors. The receiver

would also like to examine an alternative hypothesis, in which the channel PY |X is not in W , and belongs to a

different set V , disjoint from W . Such a detection procedure will be useful, for example, in the following cases:

1) Time-varying channels: In many protocols, communication begins with a channel estimation phase, and later

on, at the data transmission phase, the channel characteristics are tracked using adaptive algorithms [1, Chapters

lesley
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8 and 9]. However, it is common, that apart from its slow variation, the channel may occasionally also change

abruptly, for some reason. Then, the tracking mechanism totally fails, and it is necessary to initialize communication

again with a channel estimation phase. The detection of this event is usually performed at high communication

layers, e.g., by inspecting the output data bits of the decoder, and verifying their correctness in some way. This

procedure could be aided, or even replaced, by identifying a distinct change in the channel as part of the decoding.

Note that this problem is a block-wise version of the change-point detection problem from sequential analysis [2],

[3] (see, also [4] and referenced therein for a recent related work).

2) Arbitrarily varying channels in blocks: In the same spirit, consider a bursty communication system, where

within each burst, the underlying channel may belong to either one of two sets, resulting from two very distinctive

physical conditions. For example, a wireless communication signal may occasionally be blocked by some large

obstacle which results in low channel gain compared to the case of free-space propagation, or it may experience

strong interference from other users [5]. The receiver should then decide if the current channel enables reliable

decoding.

3) Secure decoding: In channels that are vulnerable to intrusions, the receiver would like to verify that an

authorized transmitter has sent the message. In these cases, the channel behavior could serve as a proxy for the

identity of the transmitter. For example, a channel with a significantly lower or larger signal-to-noise ratio (SNR)

than predicted by the geographical distance between the transmitter and receiver, could indicate a possible attempt

to intrude the system. The importance of identifying such cases is obvious, e.g., if the messages are used to control

a sensitive equipment at the receiver side.

4) Multiple access channels with no collisions: Consider a slotted sparse multiple access channel, for which two

transmitters are sending messages to a common receiver only in a very small portion of the available slots1, via

different channels. Thus, it may be assumed that at each slot, at most one transmitter is active. The receiver would

like to identify the sender with high reliability. As might be dictated by practical considerations, the same codebook

is used by both transmitters and the receiver identifies the transmitter via a short header, which is common to all

codewords of the same transmitter.2 The receiver usually identifies the transmitter based on the received header

only. Of course, this header is an undesired overhead, and so it is important to maximize the detection performance

for any given header. To this end, the receiver can also use the codeword sent, and identify the transmitter using

the different channel.

Thus, beyond the ordinary task of decoding the message, the receiver would also like to detect the event PY |X ∈ V ,

or, in other words, perform hypothesis testing between the null hypothesis PY |X ∈ W and the alternative hypothesis

PY |X ∈ V . For example, if the channel quality is gauged by a single parameter, say, the crossover probability of a

binary symmetric channel (BSC), or the SNR of an additive white Gaussian noise channel (AWGN), then W and

1For simplicity, assume that each codeword occupies exactly a single slot.
2Also, if senders simply use different codebooks, then the detection performance would be related to the error probability of the codebook

which is comprised from joining the two codebooks. The random coding exponents for the case that the codebook of each transmitter is

chosen independently from the codebook of the other user can be obtained by slightly modifying the results of [6].
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V could be two disjoint intervals of this parameter.

This problem of joint detection/decoding belongs to a larger class of hypothesis testing problems, in which after

performing the test, another task should be performed, depending on the chosen hypothesis. For example, in [7],

[8], the problem of joint hypothesis testing and Bayesian estimation was considered, and in [9] the subsequent task

is lossless source coding. A common theme for all the problems in this class, is that separately optimizing the

detection and the task is sub-optimal, and so, joint optimization is beneficial.

In a more recent work [10], we have studied the related problem of joint detection and decoding for sparse com-

munication [11], which is motivated by strongly asynchronous channels [12], [13]. In these channels the transmitter

is either completely silent or transmits a codeword from a given codebook. The task of the detector/decoder is to

decide whether transmission has taken place, and if so, to decode the message. Three figures of merit were defined

in order to judge performance: (i) the probability of false alarm (FA) - i.e., deciding that a message has been sent

when actually, the transmitter was silent and the channel output was pure noise, (ii) the probability of misdetection

(MD) - that is, deciding that the transmitter was silent when it actually transmitted some message, and (iii) the

probability of inclusive error (IE) - namely, not deciding on the correct message sent, namely, either misdetection

of erroneous decoding. We have then found the optimum detector/decoder that minimizes the IE probability subject

to given constraints on the FA and the MD probabilities for a given codebook, and also provided single-letter

expressions for the exact random coding exponents. While this is a joint detector/decoder, we have also observed

that an asymptotic separation principle holds, in the following sense: A detector/decoder which achieves the optimal

exponents may be comprised of an optimal detector in the Neyman-Pearson sense for the FA and MD probabilities,

followed by ordinary maximum likelihood (ML) decoding.

In this paper, we study the problem of joint channel detection between two disjoint sets of memoryless channels

W,V , and decoding. We mainly consider discrete alphabets, but some of the results are easily adapted to continuous

alphabets. We begin by considering the case of simple hypotheses, namely W = {W} and V = {V }. As in

[10], we measure the performance of the detector/decoder by its FA, MD and IE probabilities, derive the optimal

detector/decoder, and show that here too, an asymptotic separation principle holds. Due to the numerical instability

of the optimal detector, we also propose two simplified detectors, each of which suits better a different rate range.

Then, we discuss a plethora of lower bounds on the achievable exponents: For the optimal detector/decoder, we

derive single-letter expressions for the exact random coding exponents, as well as expurgated bounds which improve

the bounds at low rates. The exact random coding exponents are also derived for the simplified detectors/decoders.

In addition, we also derive Gallager/Forney-style random coding and expurgated bounds, which are simpler to

compute, and can be directly adapted to continuous channels. However, as we show in a numerical example,

the Gallager/Forney-style exponents may be strictly loose when compared to the exact exponents, even in simple

cases. Thus, using the refined analysis technique which is based on type class enumeration (see, e.g., [14], [15]

and references therein) and provides the exact random coding exponents is beneficial in this case. Afterwards, we

discuss a generalization to composite hypotheses, i.e., W,V that are not singletons. Finally, we discuss in detail
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the archetype example for which W,V are a pair BSCs.

The detection problem addressed in [10] can be seen to be a special case of the problem studied here, for which

the the output of the channel V is completely independent of its input, and plays the role of noise. It turns out that

the optimal detector/decoder and its properties for the problem studied here are straightforward generalizations of

[10], and thus we will discuss them rather briefly and only cite the relevant results from [10]. However, there is a

substantial difference in the analysis of the random coding detection exponents in [10], compared to the analysis

here. In [10], the discrimination is between the codebook and noise. The detector compares a likelihood which

depends on the codebook with a likelihood function that depends on the noise. So, when analyzing the performance

of random coding, the random choice of codebook only affects the distribution of the likelihood of the ‘codebook

hypothesis’. By contrast, here, since we would like to detect the channel, the random choice of codebook affects the

likelihood of both hypotheses, and consequently, the two hypotheses may be highly dependent. One consequence

of this situation, is that to derive the random coding exponents, it is required to analyze the joint distribution of

type class enumerators (cf. Subsection V-A), and not just rely on their marginal distributions. The expurgated and

Gallager/Forney-style exponents, as well as the simplified detectors/decoders are studied here for the first time.

The outline of the rest of the paper is as follows. In Section II, we establish notation conventions and provide

some preliminaries, and in Section III, we formulate the problem of detecting between two channels. In Section

IV, we derive the optimum detector/decoder and discuss some of its properties, and also introduce sub-optimal

detectors/decoders. In Section V, we present our main results regarding various single-letter achievable exponents.

In Section VI, we discuss the problem of detection of composite hypotheses. Finally, in Section VII, we exemplify

the results for a pair of BSCs. We defer most of the proofs to the appendices.

II. NOTATION CONVENTIONS AND PRELIMINARIES

Throughout the paper, random variables will be denoted by capital letters, specific values they may take will

be denoted by the corresponding lower case letters, and their alphabets, similarly as other sets, will be denoted

by calligraphic letters. Random vectors and their realizations will be denoted, respectively, by capital letters and

the corresponding lower case letters, both in the bold face font. Their alphabets will be superscripted by their

dimensions. For example, the random vector X = (X1, . . . , Xn), (n - positive integer) may take a specific vector

value x = (x1, . . . , xn) in X n, the n-th order Cartesian power of X , which is the alphabet of each component of

this vector.

A joint distribution of a pair of random variables (X,Y ) on X ×Y , the Cartesian product alphabet of X and Y ,

will be denoted by QXY and similar forms, e.g. Q̃XY . Since usually QXY will represent a joint distribution of X

and Y , we will abbreviate this notation by omitting the subscript XY , and denote, e.g, QXY by Q. The X-marginal

(Y -marginal), induced by Q will be denoted by QX (respectively, QY ), and the conditional distributions will be

denoted by QY |X and QX|Y . In accordance with this notation, the joint distribution induced by QX and QY |X will

be denoted by Q = QX ×QY |X .
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For a given vector x, let Q̂x denote the empirical distribution, that is, the vector {Q̂x(x), x ∈ X}, where Q̂x(x)

is the relative frequency of the letter x in the vector x. Let T (PX) denote the type class3 associated with PX , that

is, the set of all sequences {x} for which Q̂x = PX . Similarly, for a pair of vectors (x,y), the empirical joint

distribution will be denoted by Q̂xy.

The mutual information of a joint distribution Q will be denoted by I(Q), where Q may also be an empirical joint

distribution. The information divergence between QX and PX will be denoted by D(QX‖PX), and the conditional

information divergence between the empirical conditional distribution QY |X and PY |X , averaged over QX , will be

denoted by D(QY |X‖PY |X |QX). Here too, the distributions may be empirical.

The probability of an event A will be denoted by P{A}, and the expectation operator will be denoted by E{·}.

Whenever there is room for ambiguity, the underlying probability distribution Q will appear as a subscript, i.e.,

PQ{·} and EQ{·}. The indicator function will be denoted by I{·}. Sets will normally be denoted by calligraphic

letters. The complement of a set A will be denoted by A. Logarithms and exponents will be understood to be

taken to the natural base. The notation [t]+ will stand for max{t, 0}. We adopt the standard convention that when

a minimization (respectively, maximization) problem is performed on an empty set the result is ∞ (respectively,

−∞).

For two positive sequences, {an} and {bn}, the notation an
.
= bn will mean asymptotic equivalence in the

exponential scale, that is, limn→∞
1
n log(an

bn
) = 0, and similar standard notations ≤̇ and ≥̇ will also be used. When

an is a sequence of conditional probabilities, i.e, an = P (An|Bn) for some pair of sequence of events {An}
∞
n=1

and {Bn}
∞
n=1, the notation P(An|Bn)

.
= bn will mean

lim
l→∞

1

nl
log

(

anl

bnl

)

= 0, (1)

where {nl}
∞
l=1 is the sequence of blocklengths such that P(Bnl

) > 0. We shall use the notation an
.
= e−n∞ when

an decays super-exponentially to zero.

Throughout the sequel, we will make a frequent use of the fact that
∑kn

i=1 an(i)
.
= max1≤i≤kn

an(i) as long as

{an(i)} are positive and kn
.
= 1. Accordingly, for kn sequences of positive random variables {An(i)}, all defined

on a common probability space, and a deterministic sequence bn,

P

{

kn
∑

i=1

An(i) ≥ bn

}

.
= P

{

max
1≤i≤kn

An(i) ≥ bn

}

(2)

= P

kn
⋃

i=1

{An(i) ≥ bn} (3)

.
=

kn
∑

i=1

P {An(i) ≥ bn} (4)

.
= max

1≤i≤kn

P {An(i) ≥ bn} , (5)

3The blocklength will not be displayed since it will be understood from the context.
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provided that b′n
.
= bn implies P{An(i) ≥ b′n}

.
= P{An(i) ≥ bn}.4 In simple words, summations and maximizations

are equivalent and can be both “pulled out outside” P{·} without changing the exponential order, as long as kn
.
= 1.

The equalities in (5) will be termed henceforth ‘the union rule’ (UR). By the same token,

P

{

kn
∑

i=1

An(i) ≤ bn

}

.
= P

{

max
1≤i≤kn

An(i) ≤ bn

}

(6)

= P

kn
⋂

i=1

{An(i) ≤ bn}, (7)

and these equalities will be termed henceforth ‘the intersection rule’ (IR).

The natural candidate for kn is the number of joint types possible for a given block length n, and this fact, along

with all other rules of the method of types [16] will be used extensively henceforth, without explicit reference.

III. PROBLEM FORMULATION

Consider a discrete memoryless channel (DMC), characterized by a finite input alphabet X , a finite output alphabet

Y , and a given matrix of single-letter transition probabilities {PY |X(y|x)}x∈X ,y∈Y . Let Cn = {x1,x2 . . . ,xM} ⊂

X n, denote a codebook for blocklength n and rate R, for which the transmitted codeword is chosen with a

uniform probability distribution over the M =
⌈

enR
⌉

codewords. The conditional distribution PY |X may either

satisfy PY |X = W (the null hypothesis), or PY |X = V (the alternative hypothesis). It is required to design

a detector/decoder which is oriented to decode messages only arriving via the channel W . Formally, such a

detector/decoder φ is a partition of Yn into M+1 regions, denoted by {Rm}Mm=0.5 If y ∈ Rm for some 1 ≤ m ≤M

then the m-th message is decoded. If y ∈ R0 (the rejection region) then the channel V is identified, and no decoding

takes place.

For a codebook Cn and a given detector/decoder φ, the probability of false alarm (FA) is given by

PFA(Cn, φ) ,
1

M

M
∑

m=1

W (R0|xm), (8)

the probability of misdetection (MD) is given by

PMD(Cn, φ) ,
1

M

M
∑

m=1

V (R0|xm), (9)

and the probability of inclusive error (IE) is defined as

PIE(Cn, φ) ,
1

M

M
∑

m=1

W
(

Rm|xm

)

. (10)

Thus, the IE event is the total error event, namely, when the correct codeword xm is not decoded either because

4Consider the case where bn
.
= ebn (b being a constant, independent of n) and the exponent of P{An(i) ≥ ebn} is a continuous function

of b.
5The decoder φ naturally depends on the blocklength via the codebook Cn, but this will be omitted.
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of a FA or an ordinary erroneous decoding.6 The probability of decoding to an erroneous codeword, excluding the

rejection region, is termed the exclusive error (EE) probability and is defined as

PEE(Cn, φ) , PIE(Cn, φ)− PFA(Cn, φ). (11)

When obvious from context, we will omit the notation of the dependence of these probabilities on Cn and φ.

For a given code Cn, we are interested in achievable trade-offs between PFA, PMD and PIE. Consider the following

problem:

minimize PIE

subject to PFA ≤ ǫFA

PMD ≤ ǫMD (12)

where ǫFA and ǫMD are given prescribed quantities, and it is assumed that these two constraints are not contradictory.

Indeed, there is some tension between PMD and PFA as they are related via the Neyman-Pearson lemma [18, Theorem

11.7.1]. For a given ǫFA, the minimum achievable PMD is positive, in general. It is assumed then that the prescribed

value of ǫMD is not smaller than this minimum. In the problem under consideration, it makes sense to relax the

tension between the two constraints to a certain extent, in order to allow some freedom to minimize PIE under these

constraints. While this is true for any finite blocklength, as we shall see (Proposition 3), an asymptotic separation

principle holds, and the optimal detector in terms of exponents has full tension between the FA and MD exponents.

The optimal detector/decoder for the problem (12) will be denoted by φ∗.

Remark 1. Naturally, one can use the detector/decoder φ∗ for messages sent via V . The detection performance for

this detector/decoder would simply be obtained by exchanging the meaning of FA with MD.

Our goal is to find the optimum detector/decoder for the problem (12), and then analyze the achievable exponents

associated with the resulting error probabilities.

IV. JOINT DETECTORS/DECODERS

In this section, we discuss the optimum detector/decoder for the problem (12), and some of its properties. We

will also derive an asymptotically optimal version, and discuss simplified decoders, whose performance is close to

optimal in some regimes.

A. The Optimum Detector/Decoder

Let a, b ∈ R, and define the detector/decoder φ∗ = {R∗
m}Mm=0, where:

R∗
0 ,

{

y : a ·

M
∑

m=1

W (y|xm) + max
m

W (y|xm) ≤ b ·

M
∑

m=1

V (y|xm)

}

, (13)

6This definition is conventional in related problems. For example, in Forney’s error/erasure setting [17], one of the events defined and

analyzed is the total error event, which is comprised of a union of an undetected error event and an erasure event.
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and

R∗
m , R∗

0

⋂

{

y : max
m

W (y|xm) ≥ max
k 6=m

W (y|xk)

}

, (14)

where ties are broken arbitrarily.

Lemma 2. Let a codebook Cn be given, let φ∗ be as above, and let φ be any other partition of Yn into M + 1

regions. If PFA(Cn, φ) ≤ PFA(Cn, φ
∗) and PMD(Cn, φ) ≤ PMD(Cn, φ

∗) then PIE(Cn, φ) ≥ PIE(Cn, φ
∗).

Proof: The proof is almost identical to the proof of [10, Lemma 1] and thus omitted.

Note that this detector/decoder is optimal (in the Neyman-Pearson sense) for any given blocklength n and

codebook Cn. Thus, upon a suitable choice of the coefficients a and b, its solves the problem (12) exactly. As

common, to assess the achievable performance, we resort to large blocklength analysis of error exponents. For a

given sequence of codes C , {Cn}
∞
n=1 and a detector/decoder φ, the FA exponent is defined as

EFA (C, φ) , lim inf
n→∞

−
1

n
logPFA (Cn, φ) , (15)

and the MD exponent EMD (C, φ) and the IE exponent EIE (C, φ) are defined similarly. The asymptotic version of

(12) is then stated as finding the detector/decoder which achieves the largest EIE under constraints on EFA and EMD.

To affect these error exponents, the coefficients a, b in (13) need to exponentially increase/decrease as a functions

of n. Denoting a , enα and b , enβ , the rejection region of Lemma 2 becomes

R∗
0 =

{

y : enα ·

M
∑

m=1

W (y|xm) + max
m

W (y|xm) ≤ enβ ·

M
∑

m=1

V (y|xm)

}

. (16)

For α ≥ 0, the ML term on the right-hand side (r.h.s.) of (16) is negligible w.r.t. the left-hand side (l.h.s.), and the

obtained rejection region is asymptotically equivalent to

R′
0 ,

{

y : enα ·

M
∑

m=1

W (y|xm) ≤ enβ ·

M
∑

m=1

V (y|xm)

}

(17)

which corresponds to an ordinary Neyman-Pearson test between the hypotheses that the channel is W or V .

Thus, unlike the fixed blocklength case, asymptotically, we obtain a complete tension between the FA and MD

probabilities. Also, comparing (17), and (16), we may observe that the term maxmW (y|xm) in R∗
0 is added in

favor of the alternative hypothesis W . So, in case of a tie in the ordinary Neyman-Pearson test (17), the optimal

detector/decoder will actually decide in favor of W .

As the next proposition shows, the above discussion implies that there is no loss in error exponents when using

the detector/decoder φ′, whose rejection region is as in (17), and if y /∈ R′
0 then ordinary ML decoding for W

is used, as in (14). This implies an asymptotic separation principle between detection and decoding: the optimal

detector can be used without considering the subsequent decoding, and the optimal decoder can be used without

considering the preceding detection. As a result, asymptotically, there is only a single degree of freedom to control

the exponents. Thus, when analyzing error exponents in Section V, we will assume that φ′ is used, and since (17)
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depends on the difference α−β only, we will set henceforth β = 0 for φ′. The parameter α will be used to control

the trade-off between the FA and MD exponents, just as in ordinary hypothesis testing.

Proposition 3. For any given sequence of codes C = {Cn}
∞
n=1, and given constraints on the FA and MD exponents,

the detector/decoder φ′ achieves the same IE exponent as φ∗.

Proof: Assume that the coefficients α, β of φ∗ (in (16)) are tuned to satisfy constraints on the FA and MD

exponents, say EFA and EMD. Let us consider replacing φ∗ by φ′, with the same α, β. Now, given that the mth

codeword was transmitted, the conditional IE probability (10) is the union of the FA event and the event

{

W (Y|xm) < max
k 6=m

W (Y|xk)

}

, (18)

namely, an ordinary ML decoding error. The union bound then implies

PIE(Cn, φ) ≤ P ∗
O (Cn) + PFA(Cn, φ) (19)

where P ∗
O (Cn) is the ordinary decoding error probability, assuming the ML decoder tuned to W . As the union

bound is asymptotically exponentially tight for a union of two events, then

PIE (Cn, φ
∗)

.
= PO (Cn, φ

∗) + PFA (Cn, φ
∗) (20)

.
= max {PO (Cn, φ

∗) , PFA (Cn, φ
∗)} , (21)

or

EIE (C, φ
∗) = min {EO (C, φ

∗) , EFA (C, φ
∗)} . (22)

Now, the ordinary decoding error probability is the same for φ∗ and φ′ and so the first term in (21) is the same

for both detectors/decoders. Also, given any constraint on the MD exponent, the detector defined by R′
0 achieves

the maximal FA exponent, and so

EFA (C, φ
∗) ≤ EFA(C, φ

′). (23)

In light of (22), this implies that φ′ satisfies the MD and FA constraints, and at the same time, achieves an IE

exponent at least as large as that of φ∗.

The achievable exponent bounds will be proved by random coding over some ensemble of codes. Letting over-bar

denote an average w.r.t. some ensemble, we will define the random coding exponents, as

EFA (φ) , lim
l→∞

−
1

nl
logPFA (Cnl

, φ) , (24)

where {nl}
∞
l=1 is a sub-sequence of blocklengths. When we assume a fixed composition ensemble with distribution

PX , this sub-sequence will simply be the blocklengths such that T (PX) is not empty, and when we will assume the

independent identically distributed (i.i.d.) ensemble, all blocklengths are valid. To comply with definition (15), one
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can obtain codes which are good for all sufficiently large blocklength by slightly modifying the input distribution.

The MD exponent EMD (φ) and the IE exponent EIE (φ) are defined similarly, where the three exponents share the

same sequence of blocklengths.

Now, if we provide random coding exponents for the FA, MD and ordinary decoding exponents, then the existence

of a good sequence of codes can be easily shown. Indeed, Markov inequality implies that

P
(

PFA(Cnl
, φ) ≥ exp [−nl (EFA (φ)− δ)]

)

≤ e−nl
δ

2 , (25)

for all l sufficiently large. Thus, with probability tending to 1, the chosen codebook will have FA probability

not larger than exp [−n (EFA (φ)− δ)]. As the same can be said on the MD probability and the ordinary error

probability, then one can find a sequence of codebooks with simultaneously good FA, MD and ordinary decoding

error probabilities, and from (22), also good IE probability. For this reason, henceforth we will only focus on the

detection performance, namely the FA and MD exponents. The IE exponent can be simply obtained by (22) and

the known bounds of ordinary decoding, namely: (i) the standard Csiszár and Körner random coding bounds [16,

Theorem 10.2] (and its tightness [16, Problem 10.34]7) and the expurgated bound [16, Problem 10.18] for fixed

composition ensembles, (ii) the random coding bound [21, Theorem 5.6.2], and the expurgated bound [21, Theorem

5.7.1] for the ensemble of i.i.d. codes.

Beyond the fact that φ′ is slightly a simpler detector/decoder than φ∗, it also enables to prove a very simple

relation between its FA and MD exponents. For the next proposition, we will use the notation φ′α and R′
0,α to

explicitly denote their dependence on α.

Proposition 4. For any ensemble of codes such that EFA(C, φ
′
α) and EMD(C, φ

′
α) are continuous in α, the FA and

MD exponents of φ′α satisfy

EFA(C, φ
′
α) = EMD(C, φ

′
α) + α. (26)

Proof: For typographical convenience, let us assume that the sub-sequence of blocklengths is simply N. The

detector/decoder φ′α is the one which minimizes the FA probability under an MD probability constraint. Considering

e−nα ≥ 0 as a positive Lagrange multiplier, it is readily seen that for any given code, φ′α minimizes the following

Lagrangian:

L(Cn, φ, α) , PFA (Cn, φ) + e−nαPMD (Cn, φ) (27)

=
∑

y

{

1

M

M
∑

m=1

W (y|xm)I {y ∈ R0}+ e−nα 1

M

M
∑

m=1

V (y|xm)I
{

y ∈ R0

}

}

(28)

Hence,

L(Cn, φ, α) ≥ L(Cn, φ′α, α) = PFA(Cn, φ
′
α) + e−nαPMD(Cn, φ

′
α), (29)

7See also the extended version [19, Appendix C], which provides a simple proof to the tightness of the random coding exponent of

Slepian-Wolf coding [20]. A very similar method can show the tightness of the random coding exponent of channel codes.
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or, after taking limits

lim
n→∞

−
1

n
logL(Cn, φ, α) = min {EFA(φ), EMD(φ) + α} . (30)

≤ lim
n→∞

−
1

n
logL(Cn, φ′α, α) (31)

= min
{

EFA(φ
′
α), EMD(φ

′
α) + α

}

. (32)

Now, assume by contradiction that

EFA(φ
′
α) > EMD(φ

′
α) + α. (33)

Then, from continuity of the FA and MD exponents, one can expand R′
0,α to some R′

0,α with α < α and obtain a

decoder φ′α for which

EMD(φ
′
α) + α < EMD(C, φ

′
α) + α = EFA(C, φ

′
α) < EFA(C, φ

′
α). (34)

Thus,

L(Cn, φ′α, α) ≥ L(Cn, φ′α, α) (35)

which contradicts (33), and so

EFA(C, φ
′
α) ≤ EMD(C, φ

′
α) + α. (36)

Similarly, it can be shown that reversed strict inequality in (33) contradicts the optimality of φ′α, and so (26)

follows.

Remark 5. Consider the following related problem

minimize PEE

subject to PFA ≤ ǫFA

PMD ≤ ǫMD (37)

and let φ∗∗ be the optimal detector/decoder for the problem (37). Now, as PIE = PEE + PFA, it may be easily

verified that when PFA = ǫFA for the optimal detector/decoder φ∗ (of the problem (12)), then φ∗ is also the optimal

detector/decoder for the problem (37). However, when PFA < ǫFA for φ∗, then φ∗∗ is different, since it easy to check

that for the problem (37), the constraint PFA ≤ ǫFA for φ∗∗ must be achieved with equality. To gain some intuition

why (37) is more complicated than (12), see the discussion in [10, Section III].

B. Simplified Detectors/Decoders

Unfortunately, the asymptotically optimal detector/decoder (17) is very difficult to implement in its current form.

The reason is that the computation of
∑M

m=1W (y|xm) is usually intractable, as it is the sum of exponentially

many likelihood terms, where each likelihood term is exponentially small. This is in sharp contrast to ordinary
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decoders, based on comparison of single likelihood terms which can be carried out in the logarithmic scale, rendering

them numerically feasible. In a recent related work [22] dealing with the optimal erasure/list decoder [17], it was

observed that a much simplified decoder is asymptotically optimal. For the detector/decoder discussed in this paper,

this simplification of (17) implies that the rejection region

R′′
0 ,

{

y : enα ·max
Q

Ñ(Q|y)enfW (Q) ≤ enβ ·max
Q

Ñ(Q|y)enfV (Q)

}

, (38)

is asymptotically optimal, where the type class enumerators are defined as

Ñ(Q|y) ,
∣

∣

∣

{

x ∈ Cn : Q̂xy = QXY

}∣

∣

∣
. (39)

While the above mentioned numerical problem does not arise in R′′
0 , there is still room for additional simplification

which significantly facilitates implementation, at the cost of degrading the performance, perhaps only slightly. For

zero rate, the type class enumerators cannot increase exponentially, and so either Ñ(Q|y) = 0 or Ñ(Q|y)
.
= 1.

Thus, for low rates, we propose the use of a sub-optimal detector/decoder, which has the following rejection region

R0,L ,

{

y : enα · max
1≤m≤M

W (y|xm) < max
1≤m≤M

V (y|xm)

}

. (40)

We will denote the resulting detector/decoder by φL. In this context, this is a generalized likelihood ratio test

[23], in which the codeword is the ‘nuisance parameter’ for the detection problem. For high rates (close to the

capacity of the channel), the output distribution 1
M

∑M
m=1W (y|xm) of a ‘good’ code [24] tends to be close to a

memoryless distribution W̃ , (PX ×W )Y for some distribution PX . Thus, for high rates, a possible approximation

is a sub-optimal detector/decoder, which has the following rejection region

R0,H ,

{

y : enα · W̃ (y) < Ṽ (y)
}

, (41)

where Ṽ , (PX ×W )Y . We will denote the resulting detector/decoder by φH.

As was recently demonstrated in [22], while φL and φH are much simpler to implement than φ′, they have the

potential to cause only slight loss in exponents compared to φ′. Since the random coding performance of φH is

simply obtained by the standard analysis of hypothesis testing between two memoryless hypotheses (cf. Subsection

V-C), we will mainly focus on φL.

V. ACHIEVABLE ERROR EXPONENTS

In this section, we derive various achievable exponents for the joint detection/decoding problem (12), for a

given pair of DMCs (W,V ), at rate R. In Subsection V-A, we derive the exact random coding performance of the

asymptotically optimal detector/decoder φ′. In Subsection V-B, we derive an improved bound for low rates using the

expurgation technique. In Subsection V-C, we discuss the exponents achieved by the sub-optimal detectors/decoders

φL and φH. In Subsection V-D, we provide Gallager/Forney-style lower bounds on the exponents. While these

bounds can be loose and only lead to inferior exponents when compared to Subsections V-A and V-B, it is indeed



13

useful to derive them since: (i) they are simpler to compute, since they require solving at most two-dimensional

optimization problems8, irrespective of the input/output alphabet sizes, (ii) the bounds are translated almost verbatim

to memoryless channels with continuous input/output alphabets, like the AWGN channel. For brevity, in most cases

the notation of the dependence on the problem parameters (i.e. R,PX , α,W, V ) will be omitted, and will be

reintroduced only when necessary.

A. Exact Random Coding Exponents

We begin with a sequence of definitions. Throughout, Q̃ will represent the joint type of the true transmitted

codeword and the output, and Q is some type of competing codewords. We denote the normalized log-likelihood

ratio of a channel W by

fW (Q) ,
∑

x∈X ,y∈Y

Q(x, y) logW (y|x), (42)

with the convention fW (Q̂xy) = −∞ if W (y|x) = 0. We define the set

QW , {Q : fW (Q) > −∞} (43)

and for γ ∈ R,

s(Q̃Y , γ) , min
Q∈QW :QY =Q̃Y

I(Q) + [−α− fW (Q) + γ]+ . (44)

Now, define the sets

J1 ,

{

Q̃ : fW (Q̃) ≤ −α+ fV (Q̃)
}

, (45)

J2 ,

{

Q̃ : s
(

Q̃Y , fV (Q̃)
)

≥ R
}

, (46)

the exponent

EA , min
Q̃∈∩2

i=1Ji

D(Q̃Y |X‖W |PX), (47)

the sets

K1 ,

{

(Q̃,Q) : QY = Q̃Y

}

, (48)

K2 ,

{

(Q̃,Q) : fW (Q) ≤ −α+ fV (Q)
}

, (49)

K3 ,

{

(Q̃,Q) : fV (Q) ≥ α+ fW (Q̃)−
[

R− I(Q)
]

+

}

, (50)

K4 ,

{

(Q̃,Q) : s
(

Q̃Y , fV (Q) +
[

R− I(Q)
]

+

)

≥ R
}

, (51)

and the exponent

EB , min
(Q̃,Q)∈∩4

i=1Ki

{

D(Q̃Y |X‖W |PX) +
[

I(Q)−R
]

+

}

. (52)

8When there are no input constraints. When input constraints are given, as e.g. in the power limited AWGN channel, it is required to

solve four-dimensional optimization problem (cf. (159)).
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In addition, let us define the type-enumeration detection random coding exponent as

ERC

TE (R,α, PX ,W, V ) , min {EA, EB} . (53)

Theorem 6. Let a distribution PX and a parameter α ∈ R be given. Then, there exists a sequence of codes

C = {Cn}
∞
n=1 of rate R such that for any δ > 0

EFA (C, φ
∗) ≥ ERC

TE (R,α, PX ,W, V )− δ, (54)

EMD (C, φ
∗) ≥ ERC

TE (R,α, PX ,W, V )− α− δ. (55)

The main challenge in analyzing the random coding FA exponent, is that the likelihoods of both hypotheses,

namely
∑M

m=1W (Y|Xm) and
∑M

m=1 V (Y|Xm) are very correlated due to the fact the once the codewords are

drawn, they are common for both likelihoods. This is significantly different from the situation in [10], in which

the likelihood
∑M

m=1W (Y|Xm) was compared to a likelihood Q0(Y), of a completely different distribution9.

We first make the following observation.

Fact 7. For the detector/decoder φ′

PFA(Cn, φ
′) = PW

(

Y ∈ R′
0

)

(56)

= PW

(

∑M
m=1W (Y|xm)

∑M
m=1 V (Y|xm)

≤ e−nα

)

(57)

where PW (A) is the probability of the event A under the hypothesis that the channel is W . Similarly,

PMD(Cn, φ
′) = PV

(

Y 6∈ R′
0

)

(58)

= PV

(

∑M
m=1W (Y|xm)

∑M
m=1 V (Y|xm)

≥ e−nα

)

(59)

= PV

(

∑M
m=1 V (Y|xm)

∑M
m=1W (Y|xm)

≤ enα

)

. (60)

Thus, the random coding MD exponent can be obtained by replacing α with −α, and W with V in the FA exponent,

i.e.

lim
l→∞

−
1

nl
logPMD(Cnl

, φ∗) = ERC

TE (R,−α, PX , V,W ) (61)

where {nl} is the sub-sequence of blocklengths such that T (PX) is not empty.

Before rigorously proving Theorem 6, we make a short detour to present the type class enumerators concept

[14], and also derive two useful lemmas. Recall that when analyzing the performance of a randomly chosen code, a

common method is to first evaluate the error probability conditioned on the transmitted codeword (assumed, without

loss of generality, to be x1) and the output vector y, and average only over {Xm}Mm=2. Afterwards, the ensemble

9In [10], Q0(Y) represented the hypothesis that no codeword was transmitted and only noise was received.
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average error probability is obtained by averaging w.r.t. the random choice of (X1,Y). We will assume that the

codewords are drawn randomly and uniformly from T (PX), and so all joint types Q mentioned henceforth will

satisfy QX = PX , even if this is not explicitly displayed.

To analyze the conditional error probability, it is useful [14] to define the type class enumerators

N(Q|y) ,
∣

∣

∣

{

x ∈ Cn\x1 : Q̂xy = Q
}∣

∣

∣
, (62)

which, for a given y, count the number of codewords, excluding x1, which have joint type Q with y. As the

codewords in the ensemble are drawn independently, N(Q|y) is a binomial random variable pertaining to M =
⌈

enR
⌉

trials and probability of success of the exponential order of e−nI(Q), and consequently, E [N(Q|y)]
.
=

exp [n(R− I(Q))]. A more refined analysis, similar to the one carried in [14, Subsection 6.3], shows that for any

given u ∈ R

P {N(Q|y) ≥ enu}
.
= exp

{

−en[u]+ (n [I(Q)−R+ [u]+]− 1)
}

. (63)

Consequently, if I(Q) < R, N(Q|y) concentrates double-exponentially rapidly around its average
.
= en[R−I(Q)],

and if I(Q) > R, then with probability tending to 1 we have N(Q|y) = 0, and P {N(Q|y) ≥ 1}
.
= e−n[I(Q)−R],

as well as P {N(Q|y) ≥ enu}
.
= e−n∞ for any u > 0.

We now derive two useful lemmas. In the first lemma, we show that if a single joint type Q is excluded from

the possible joint types for a randomly chosen codeword Xl and y, then the probability of drawing some other

joint type is not significantly different from its unconditional counterpart. In the second lemma we characterize the

behavior of the probability of the intersection of events in which the type class enumerators are upper bounded.

Lemma 8. For any Q 6= Q

P

(

Q̂Xly = Q|Q̂Xly 6= Q
)

.
= P

(

Q̂Xly = Q
)

.
= e−nI(Q). (64)

Proof: For any given Q

P

(

Q̂Xly = Q
)

.
= e−nI(Q), (65)

and if I(Q) = 0 then

P

(

Q̂Xly = Q
)

→ 0, (66)

as n→ ∞, although sub-exponentially [16, Problem 2.2]. Thus, for any Q 6= Q,

P

(

Q̂Xly = Q|Q̂Xly 6= Q
)

=
P

(

Q̂Xly = Q, Q̂Xly 6= Q
)

P

(

Q̂Xly 6= Q
) (67)

=
P

(

Q̂Xly = Q
)

1− P

(

Q̂Xly = Q
) (68)
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.
= e−nI(Q). (69)

Lemma 9. Let a set Q of joint types, a continuous function J(Q) in Q, and a type Q̃Y be given. Let {N̂(Q|y)}Q∈Q

be a sequence of sets of binomial random variables pertaining to Kn trials and probability of success pn. Then,

if Kn
.
= enR and pn

.
= e−nI(Q)

P





⋂

Q∈Q:QY =Q̃Y

{

N̂(Q|y) < enJ(Q)
}















= 1− o(n), S(Q̃Y ; J,Q) > R

.
= e−n∞, otherwise

, (70)

where y ∈ T (Q̃Y ), and

S(Q̃Y ; J,Q) , min
Q∈Q:QY =Q̃Y

I(Q) + [J(Q)]+ . (71)

Proof: A similar statement was proved in [10, pp. 5086-5087], but for the sake of completeness, we include

its short proof. If there exists at least one Q ∈ Q with QY = Q̃Y for which I(Q) < R and R − I(Q) > J(Q),

then this Q alone is responsible for a double exponential decay of the intersection probability, because then the

event in question would be a large deviations event whose probability decays exponentially with M =
⌈

enR
⌉

,

thus double-exponentially with n, let alone the intersection over all Q ∈ Q. The condition for this to happen is

R > S(Q̃Y ; J,Q). Conversely, if for every Q ∈ Q with QY = Q̃Y , we have I(Q) > R or R− I(Q) < J(Q), i.e.,

R < S(Q̃Y ; J,Q), then the intersection probability is close to 1, since the intersection is over a sub-exponential

number of events with very high probability. Thus (70) follows.

Remark 10. A natural choice for N̂(Q|y) is simply N(Q|y). However, in what follows, we will need to analyze a

conditional version of the type enumerators, namely, events of the form {N(Q|y) = N1|N(Q|y) = N2} for some

0 ≤ N1, N2 ≤M . As Lemma 8 above hints, in some cases the conditional distribution of N(Q|y) is asymptotically

the same as the unconditional distribution. In this respect, it should be noted that the result of Lemma 9 is proved

using the marginal distribution of each N̂(Q|y) alone, and not their joint distribution. It should also be noted that

the second argument of S(Q̃Y ; ·, ·) in (71) is a function of the joint type Q, and the third argument is a set of joint

types. Finally, since the types are dense in the subspace of the simplex of all the type satisfying QY = Q̃Y , then

the exclusion of a single type form the intersection in (70) does not change the result of the lemma.

Remark 11. As QX = PX the minimization in (71) is in fact over the variables {QY |X(y|x)}x∈X ,y∈Y . Thus,

whenever J(Q) is convex in QY |X , then

S(Q̃Y ; J,Q) = min
Q∈Q:QY =Q̃Y

max
0≤λ≤1

[I(Q) + λJ(Q)] (72)

(a)
= max

0≤λ≤1
min

Q∈Q:QY =Q̃Y

[I(Q) + λJ(Q)] (73)

where (a) is by the minimax theorem [25], as both I(Q) and J(Q) are convex in QY |X and the minimization
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set involves only linear constraints and thus convex. This dual form is simpler to compute than (71), since the

inner minimization in (73) is a convex optimization problem [26], and the outer maximization problem requires

only a simple line-search. Note that the function s(Q̃Y ; γ) is a specific instance of S(Q̃Y ; ·, ·) defined in (71) with

Q = QW and J(Q) = −α− fW (Q) + γ which is convex in QY |X (in fact, linear).

We are now ready to prove Theorem 6.

Proof of Theorem 6: We begin by analyzing the FA exponent. Assume, without loss of generality, that the

first message is transmitted. Let us condition on the event X1 = x1 and Y = y, and analyze the average over the

ensemble of fixed composition codes of type PX . For brevity, we will denote Q̃ = Q̂x1y. The average conditional

FA probability for the decoder φ′ with parameter α is given by

PFA(x1,y) , P
(

y ∈ R′
0|X1 = x1,Y = y

)

(74)

(a)
= P

(

W (y|x1) +

M
∑

m=2

W (y|Xm) ≤ e−nα · V (y|x1) + e−nα ·

M
∑

m=2

V (y|Xm)

)

(75)

(UR)
.
= P

(

W (y|x1) +

M
∑

m=2

W (y|Xm) ≤ e−nα · V (y|x1)

)

+ P

(

W (y|x1) +

M
∑

m=2

W (y|Xm) ≤ e−nα ·

M
∑

m=2

V (y|Xm)

)

(76)

(IR)
.
= P

(

M
∑

m=2

W (y|Xm) ≤ e−nα · V (y|x1)

)

· I
{

W (y|x1) ≤ e−nα · V (y|x1)
}

+ P

(

W (y|x1) +

M
∑

m=2

W (y|Xm) ≤ e−nα ·

M
∑

m=2

V (y|Xm)

)

(77)

= P





∑

Q

N(Q|y)enfW (Q) ≤ e−nα · enfV (Q̃)



 · I
{

fW (Q̃) ≤ −α+ fV (Q̃)
}

+ P



enfW (Q̃) +
∑

Q

N(Q|y)enfW (Q) ≤ e−nα ·
∑

Q

N(Q|y)enfV (Q)



 (78)

, A(Q̃) +B(Q̃) (79)

.
= max

{

A(Q̃), B(Q̃)
}

, (80)

where A(Q̃) and B(Q̃) were implicitly defined, and (a) is because {Xm}Mm=2 are chosen independently of (X1,Y).

For the first term,

A(Q̃)
(IR)
.
= P





⋂

Q: fW (Q)>−∞

{

N(Q|y) < en[−α+fV (Q̃)−fW (Q)]
}



 · I
{

fW (Q̃) ≤ −α+ fV (Q̃)
}

(81)

(a)
.
= I

{

S(Q̃Y ;−α+ fV (Q̃)− fW (Q),QW ) > R
}

· I
{

fW (Q̃) ≤ −α+ fV (Q̃)
}

, (82)

where (a) is by Lemma 9 . Upon averaging over (X1,Y), we obtain the exponent EA of (47), when utilizing the
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definition in (44). Moving on to the second term, we first assume that enfW (Q̃) > 0. Then,

B(Q̃)
(UR)
.
=
∑

Q

P



enfW (Q̃) +
∑

Q

N(Q|y)enfW (Q) ≤ e−nα ·N(Q|y)enfV (Q)



 (83)

(IR)
.
=
∑

Q

P





⋂

Q 6=Q

{

N(Q|y)enfW (Q) ≤ e−nα ·N(Q|y)enfV (Q)
}

∩

{

N(Q|y)enfW (Q) ≤ e−nα ·N(Q|y)enfV (Q)
}

∩
{

enfW (Q̃) ≤ e−nα ·N(Q|y)enfV (Q)
}



 (84)

(a)
=

∑

Q: fW (Q)≤−α+fV (Q)

P





⋂

Q 6=Q

{

N(Q|y)enfW (Q) ≤ e−nα ·N(Q|y)enfV (Q)
}

{

enfW (Q̃) ≤ e−nα ·N(Q|y)enfV (Q)
}



 (85)

(b)
=

∑

Q: fW (Q)≤−α+fV (Q)

P





⋂

Q 6=Q: fW (Q)>−∞

{

N(Q|y) ≤ en[−α+fV (Q)−fW (Q)] ·N(Q|y)
}

{

1 ≤ en[−α+fV (Q)−fW (Q̃)] ·N(Q|y)
}



 (86)

,
∑

Q: fW (Q)≤−α+fV (Q)

ζ(Q), (87)

where (a) is since when fW (Q) > −α+ fV (Q) the second event in the intersection implies N(Q|y) = 0, but this

implies that the third event does not occur, and in (b) we have rearranged the terms. To continue the analysis of

the exponential behavior of B(Q̃), we split the analysis into three cases:

Case 1: 0 < I(Q) ≤ R. For any 0 < ǫ < R− I(Q) let

Gn ,

{

en[R−I(Q)−ǫ] ≤ N(Q|y) ≤ en[R−I(Q)+ǫ]
}

, (88)

which satisfies P [Gn]
.
= 1. Thus,

ζ(Q) = P





⋂

Q 6=Q: fW (Q)>−∞

{

N(Q|y) ≤ en[−α+fV (Q)−fW (Q)] ·N(Q|y)
}

∩

{

1 ≤ en[−α+fV (Q)−fW (Q̃)] ·N(Q|y)
}



 (89)

≤ P





⋂

Q 6=Q: fW (Q)>−∞

{

N(Q|y) ≤ en[−α+fV (Q)−fW (Q)] ·N(Q|y)
}

∩

{

1 ≤ en[−α+fV (Q)−fW (Q̃)] ·N(Q|y)
}



P(Gn) + P(Gn) (90)
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.
= P





⋂

Q 6=Q: fW (Q)>−∞

{

N(Q|y) ≤ en[−α+fV (Q)−fW (Q)] ·N(Q|y)
}

∩

{

1 ≤ en[−α+fV (Q)−fW (Q̃)] ·N(Q|y)
}

|Gn



 (91)

≤̇P





⋂

Q 6=Q: fW (Q)>−∞

{

N(Q|y) ≤ en[−α+fV (Q)−fW (Q)+R−I(Q)+ǫ]
}

∩

{

1 ≤ en[−α+fV (Q)−fW (Q̃)+R−I(Q)+ǫ]
}

|Gn



 (92)

(a)
.
= I

{

S(Q̃Y ;−α+ fV (Q)− fW (Q) +R− I(Q) + ǫ,QW ) > R
}

×

I

{

−α+ fV (Q)− fW (Q̃) +R− I(Q) + ǫ ≥ 0
}

, (93)

where (a) is since conditioned on Gn, N(Q|y) is a binomial random variable with probability of success
.
= e−nI(Q)

(see Lemma 8), and more than enR−en[R−I(Q)−ǫ] .= enR trials (whenever QY = QY , and N(Q|y) = 0 otherwise),

and by using Lemma 9 and Remark 10.10 Similarly,

ζ(Q) = P





⋂

Q 6=Q: fW (Q)>−∞

{

N(Q|y) ≤ en[−α+fV (Q)−fW (Q)] ·N(Q|y)
}

{

1 ≤ en[−α+fV (Q)−fW (Q̃)] ·N(Q|y)
}



 (94)

≥ P





⋂

Q 6=Q: fW (Q)>−∞

{

N(Q|y) ≤ en[−α+fV (Q)−fW (Q)] ·N(Q|y)
}

∩

{

1 ≤ en[−α+fV (Q)−fW (Q̃)] ·N(Q|y)
}

|Gn



P(Gn) (95)

.
= P





⋂

Q 6=Q: fW (Q)>−∞

{

N(Q|y) ≤ en[−α+fV (Q)−fW (Q)] ·N(Q|y)
}

∩

{

1 ≤ en[−α+fV (Q)−fW (Q̃)] ·N(Q|y)
}

|Gn



 (96)

≥̇P





⋂

Q 6=Q: fW (Q)>−∞

{

N(Q|y) ≤ en[−α+fV (Q)−fW (Q)+R−I(Q)−ǫ]
}

∩

{

1 ≤ en[−α+fV (Q)−fW (Q̃)+R−I(Q)−ǫ]
}

|Gn



 (97)

10We have also implicitly used the following obvious monotonicity property: If N1 and N2 are two binomial random variables pertaining

to the same probability of success but the number of trials of N1 is larger than the number of trials of N2 then P (N1 ≤ L) ≤ P (N2 ≤ L).
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(a)
.
= I

{

S(Q̃Y ;−α+ fV (Q)− fW (Q) +R− I(Q)− ǫ,QW ) > R
}

×

I

{

−α+ fV (Q)− fW (Q̃) +R− I(Q)− ǫ ≥ 0
}

, (98)

where (a) is now since conditioned on Gn, N(Q|y) is a binomial random variable, with probability of success

.
= e−nI(Q) (see Lemma 8), and less than enR trials (whenever QY = QY , and N(Q|y) = 0 otherwise), and by

utilizing again Lemma 9 and Remark 10. As ǫ > 0 is arbitrary,

ζ(Q)
.
= I

{

S(Q̃Y ;−α+ fV (Q)− fW (Q) +R− I(Q),QW ) > R
}

×

I

{

−α+ fV (Q)− fW (Q̃) +R− I(Q) > 0
}

(99)

Case 2: Assume that I(Q) = 0. This case is not significantly different from Case 1. Indeed, for any 0 < ǫ < R, let

Gn ,

{

en(R−ǫ) ≤ N(Q|y) ≤
1

2
enR
}

, (100)

then P [Gn]
.
= 1. To see this, we note that for Xl drawn uniformly within T (PX).

E
[

N(Q|y)
]

= enR · P
(

Q̂Xly = Q
)

(101)

(a)

≤
1

4
enR (102)

for all n sufficiently large, where (a) is since P

(

Q̂Xly = Q
)

→ 0 as n→ ∞. So, by Markov inequality

P

{

N(Q|y) ≤
1

2
enR
}

≥ P
{

N(Q|y) ≤ 2E
[

N(Q|y)
]}

≥
1

2
. (103)

Since, as before P
{

en(R−ǫ) ≤ N(Q|y)
} .

= 1, and the intersection of two high probability sets also has high

probability, we obtain P [Gn]
.
= 1. The rest of the analysis follows as in Case 1, and the result is the same, when

setting I(Q) = 0.

Case 3: Assume that I(Q) > R. Then, for any ǫ > 0

ζ(Q) = P





⋂

Q 6=Q: fW (Q)>−∞

{

N(Q|y) ≤ en[−α+fV (Q)−fW (Q)] ·N(Q|y)
}

∩

{

1 ≤ en[−α+fV (Q)−fW (Q̃)] ·N(Q|y)
}



 (104)

(a)
.
= P





⋂

Q 6=Q: fW (Q)>−∞

{

N(Q|y) ≤ en[−α+fV (Q)−fW (Q)] ·N(Q|y)
}

∩

{

1 ≤ en[−α+fV (Q)−fW (Q̃)] ·N(Q|y)
}

|1 ≤ N(Q|y) ≤ enǫ



P
(

1 ≤ N(Q|y) ≤ enǫ
)

(105)
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(b)

≥̇ P





⋂

Q 6=Q: fW (Q)>−∞

{

N(Q|y) ≤ en[−α+fV (Q)−fW (Q)]
}

∩

{

1 ≤ en[−α+fV (Q)−fW (Q̃)]
}

|1 ≤ N(Q|y) ≤ enǫ



 e−n(I(Q)−R) (106)

(c)
.
= I

{

S(Q̃Y ;−α+ fV (Q)− fW (Q),QW ) > R
}

I

{

−α+ fV (Q)− fW (Q̃) ≥ 0
}

e−n(I(Q)−R), (107)

where (a) is since conditioned on N(Q|y) = 0 the probability of the event is 0, and

P
[

N(Q|y) ≥ enǫ
] .
= 0, (108)

(b) is since

P
(

1 ≤ N(Q|y) ≤ enǫ
)

≥ P
(

N(Q|y) = 1
)

(109)

.
= e−n(I(Q)−R), (110)

and (c) is since conditioned on 1 ≤ N(Q|y) ≤ enǫ, N(Q|y) is a binomial random variable, with probability of

success
.
= e−nI(Q) (see Lemma 8), and

.
= enR trials (whenever QY = QY , and N(Q|y) = 0 otherwise), and by

utilizing once again Lemma 9 and Remark 10. Similarly, using

P
(

1 ≤ N(Q|y) ≤ enǫ
)

≤ enǫP
(

N(Q|y) = 1
) .
= e−n(I(Q)−R−ǫ), (111)

the same analysis as in the previous case, shows a reversed inequality. As ǫ > 0 is arbitrary, then

ζ(Q)
.
= I

{

S(Q̃Y ;−α+ fV (Q)− fW (Q),QW ) > R
}

I

{

−α+ fV (Q)− fW (Q̃) > 0
}

e−n(I(Q)−R). (112)

Returning to (87), we obtain that B(Q̃) is exponentially equal to the maximum between

max
Q: fW (Q)<−α+fV (Q), I(Q)≤R, fV (Q)>α+fW (Q̃)−R+I(Q)

I

{

S(Q̃Y ;−α+ fV (Q)− fW (Q) +R− I(Q),QW ) > R
}

,

(113)

and

max
Q: fW (Q)<−α+fV (Q), I(Q)>R, fV (Q)>α+fW (Q̃)

I

{

S(Q̃Y ;−α+ fV (Q)− fW (Q),QW ) > R
}

e−n(I(Q)−R), (114)

or, more succinctly,

B(Q̃) = max
Q

I

{

S(Q̃Y ;−α+ fV (Q)− fW (Q) +
[

R− I(Q)
]

+
,QW ) > R

}

e
−n[I(Q)−R]

+ (115)

where the maximization is over

{

Q : fW (Q) < −α+ fV (Q), fV (Q) > α+ fW (Q̃)−
[

R− I(Q)
]

+

}

. (116)
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Now, in the evaluation of B(Q̃) we have assumed that enfW (Q̃) > 0. However, there is no need to analyze the case

enfW (Q̃) = 0 since as

fW (Q̃) = −D(Q̃Y |X ||W |PX)−HQ̃(Y |X) (117)

and HQ̃(Y |X) ≤ log|Y|< ∞, then enfW (Q̃) = 0 implies P(Q̂x1y = Q̃)
.
= exp

[

−nD(Q̃Y |X ||W |PX)
]

.
= e−n∞.

Thus, upon averaging over (X1,Y) we obtain the exponent EB of (52), utilizing (44). Then, we obtain the required

result from (80).

Next, for the MD exponent, we observe that as ERC
TE (R,α, PX ,W, V ) is continuous in α, Fact 7 above implies

that the MD exponent will be also continuous in α. So, Proposition 4 implies that when the codewords are drawn

from a fixed composition ensemble with distribution PX ,

lim
l→∞

−
1

nl
logPMD(Cnl

, φ∗) = ERC

TE (R,α, PX ,W, V )− α. (118)

Finally, the continuity of ERC
TE (R,α, PX ,W, V ) in PX implies that for all sufficiently large n, one can find a

distribution P ′
X close enough to PX such that (54) and (55) hold, which completes the proof of the theorem.

To keep the flow of the proof, we have omitted a technical point which we now address.

Remark 12. The ensemble average FA probability should be obtained by averaging PFA(X1,Y) w.r.t. (X1,Y).

However, we have averaged its asymptotic equivalence in the exponential scale, resulting from analyzing the terms

A(Q̃) and B(Q̃). Thus, in a sense, we have interchanged the expectation and limit order. This is possible due to

the fact that all the asymptotic equivalence relations become tight for n sufficiently large, which does not depend

on Q̃ (i.e. on (X1,Y)). Indeed, the union and intersection rules add a negligible term to the exponent. This term

depends only on the number of types, which is polynomial in n, independent of the specific type Q̃. The asymptotic

equivalence relations that stem from Lemma 9 do not depend on Q̃, as functions of Q̃ only play the role of bounds

on the sums of weighted type enumerators. Indeed, it is evident from the proof of Lemma 9 that the required

blocklength n to approach convergence of the probability does not depend on J(Q).

B. Expurgated Exponents

We begin again with several definitions. Throughout, PXX̃ will represent a joint type of a pair of codewords.

Let us define the Chernoff distance11

ds(x, x̃) , − log





∑

y∈Y

W 1−s(y|x)V s(y|x̃)



 (119)

and the set

L ,
{

PXX̃ : PX̃ = PX , I(PXX̃) ≤ R
}

. (120)

11When s is maximized, then the result is the Chernoff information [18, Section 11.9]. For s = 1
2

this is the Bhattacharyya distance.
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In addition, let us define the type-enumeration detection expurgated exponent as

EEX

TE (R,α, PX ,W, V ) , max
0≤s≤1

min
PXX̃∈L

{

αs+ E

[

ds(X, X̃)
]

+ I(PXX̃)−R
}

. (121)

Theorem 13. Let a distribution PX and a parameter α ∈ R be given. Then, there exists a sequence of codes

C = {Cn}
∞
n=1 of rate R such that for any δ > 0

EFA (C, φ
∗) ≥ EEX

TE (R,α, PX ,W, V )− δ, (122)

EMD (C, φ
∗) ≥ EEX

TE (R,α, PX ,W, V )− α− δ. (123)

The proof can be found in Appendix A.

Remark 14. Hölder inequality shows that ds(x, x̃) ≥ 0. In (121), there is freedom to maximize over 0 ≤ s ≤ 1, and

naturally, s = 1
2 is a valid choice. Due to the symmetry of ds(x, x̃) in s around s = 1

2 when W = V , for the ordinary

decoding exponent, the optimal choice is s = 1
2 (as also manifested at R = 0 by the Shannon-Gallager-Berlekamp

upper bound [27, Theorem 4]), but here, no such symmetry exists.

Remark 15. In Theorem 13 we have assumed a fixed composition code of type PX . As discussed in [16, Problem

10.23 (b)], for ordinary decoding, the exponent (121) is at least as large as the corresponding exponent using

Gallager’s approach to expurgation [21, Section 5.7], and for the maximizing PX , the two bounds coincide. Thus,

for ordinary decoding, the exponent bound (121) offers an improvement over Gallager’s approach when the input

type PX is constrained. For joint detection/decoding, there is an additional source of possible improvement - the

input type PX which best suits channel coding is not necessarily the best input type for the detection problem.

We also mention that for R = 0, an improvement at any given PX can be obtained by taking the upper concave

envelope of (121) (see [16, Problem 10.22] and the discussion in [28, Section II]).

Remark 16. This expurgation technique can be used also for continuous alphabet channels, and specifically, for

AWGN channels, see [29, Section 4].

C. Exact Random Coding Exponents of Simplified Detectors/Decoders

We now discuss the random coding exponents achieved by the simplified detectors/decoders φL and φH introduced

in Subsection IV-B. We begin with φL. For γ ∈ R, let us define

t(Q̃Y , γ) , min
Q∈QW :Q=Q̃Y ,−α−fW (Q)+γ≤0

I(Q), (124)

the sets J1,L , J1 and

J2,L ,

{

Q̃ : t
(

Q̃Y , fV (Q̃)
)

≥ R
}

, (125)

the exponent

EA,L , min
Q̃∩2

i=1Ji,L

D(Q̃Y |X‖W |PX), (126)
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the sets K1,L , K1, K2,L , K2
12

K3,L ,

{

(Q̃,Q) : fV (Q) ≥ α+ fW (Q̃)
}

, (127)

K4,L ,

{

(Q̃,Q) : t
(

Q̃Y , fV (Q)
)

≥ R
}

, (128)

and the exponent

EB,L , min
(Q̃,Q)∈∩4

i=1Ki,L

D(Q̃Y |X‖W |PX) +
[

I(Q)−R
]

+
. (129)

In addition, let us define the low-rate detection random coding exponent as

ERC

L (R,α, PX ,W, V ) , min {EA,L, EB,L} . (130)

Theorem 17. Let a distribution PX and a parameter α ≥ 0 be given. Then, there exists a sequence of codes

C = {Cn}
∞
n=1 of rate R such that for any δ > 0

EFA (C, φ
∗) ≥ ERC

L (R,α, PX ,W, V )− δ, (131)

EMD (C, φ
∗) ≥ ERC

L (R,−α, PX , V,W )− δ. (132)

The proof can be found in Appendix B.

Next, we discuss the random coding exponents of φH. As this is a simple hypothesis testing between two

memoryless sources W̃ and Ṽ , the standard analysis [30] and [18, Section 11.7] is applicable verbatim. For given

0 ≤ µ ≤ 1, let

Qµ(y) ,
W̃µ(y)Ṽ 1−µ(y)

∑

y′∈Y W̃
µ(y′)Ṽ 1−µ(y′)

(133)

for all x ∈ X , and let us define the high-rate detection random coding exponent as

ERC

H (R,α, PX ,W, V ) , D(Qµ(α)||W̃ ), (134)

where µ(α) is chosen so that

D(Qµ(α)||W̃ )−D(Qµ(α)||Ṽ ) = −α. (135)

Theorem 18. Let a distribution PX and a parameter α ≥ 0 be given. Then, there exists a sequence of codes

C = {Cn}
∞
n=1 of rate R such that for any δ > 0

EFA (C, φ
∗) ≥ ERC

H (R,α, PX ,W, V )− δ, (136)

EMD (C, φ
∗) ≥ ERC

H (R,α, PX ,W, V )− α− δ. (137)

12It can be noticed that the only difference between K3,L,K4,L and K3,K4 are the exclusion of I(Q)−R terms and replacing s(Q̃Y , γ)
with t(Q̃Y , γ).
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Proof: The proof follows the standard analysis in [18, Section 11.7].

Remark 19. The decoder φH and its random coding exponents do not depend on the rate R.

D. Gallager/Forney-Style Exponents

Next, we derive achievable exponents using the classical Gallager/Forney technique.

1) Random Coding Exponents: For a given distribution {PX(x)}x∈X , and parameters s, ρ, define

E′
0(s, ρ) , − log





∑

y∈Y

(

∑

x∈X

PX(x)W
(1−s)/ρ(y|x)V

s/ρ(y|x)

)ρ


 , (138)

and

E′′
0 (s, ρ) , − log





∑

y∈Y

(

∑

x∈X

PX(x)W
(1−s)/ρ(y|x)

)ρ(
∑

x∈X

PX(x)V
s/ρ(y|x)

)ρ


 , (139)

and let the Gallager/Forney detection random coding exponent be defined as

ERC

GF (R,α, PX ,W, V ) , max
0≤s≤1,max{s,1−s}≤ρ≤1

min
{

αs+ E′
0(s, ρ)− (ρ− 1)R,

αs+ E′′
0 (s, ρ)− (2ρ− 1)R

}

. (140)

Theorem 20. Let a distribution PX and a parameter α ∈ R be given. Then, there exists a sequence of codes

C = {Cn}
∞
n=1 of rate R such that for any δ > 0

EFA (C, φ
∗) ≥ ERC

GF (R,α, PX ,W, V )− δ, (141)

EMD (C, φ
∗) ≥ ERC

GF (R,α, PX ,W, V )− α− δ. (142)

The proof can be found in Appendix C.

2) Expurgated Exponents: For a given distribution {PX(x)}x∈X and parameters s, ρ, define

E′
x(s) , − log





∑

x∈X

PX(x)
∑

y∈Y

W 1−s(y|x)V s(y|x)



 , (143)

and

E′′
x(s) , − log





∑

y∈Y

(

∑

x∈X

PX(x)W 1−s(y|x)

)(

∑

x∈X

PX(x)V s(y|x)

)



 , (144)

and let the Gallager/Forney detection expurgated exponent be defined as

EEX

GF (R,α, PX ,W, V ) , sup
0≤s≤1,ρ≥1

min
{

sα+ E′
x(s), sα+ E′′

x(s)− ρR
}

. (145)

Theorem 21. Let a distribution PX and a parameter α ∈ R be given. Then, there exists a sequence of codes
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C = {Cn}
∞
n=1 of rate R such that for any δ > 0

EFA (C, φ
∗) ≥ EEX

GF (R,α, PX ,W, V )− δ, (146)

EMD (C, φ
∗) ≥ EEX

GF (R,α, PX ,W, V )− α− δ. (147)

The proof can be found in Appendix D.

E. Discussion

We summarize this section with the following discussion.

1) Monotonicity in the rate: The ordinary random coding exponents are decreasing with the rate R, and vanish

at I(PX × W ). By contrast, the detection exponents are not necessarily so. Indeed, the exponent EA of (47)

is increasing with the rate. For the exponent EB of (52), as R increases, the objective function decreases and

K3 expands, but the set K4 diminishes13, and so no monotonicity is assured for EB , and as a results, also for

ERC
TE (R,α, PX ,W, V ). The same holds for φL, whereas φH does not depend on R at all. The expurgated exponent

EEX
TE (R,α, PX ,W, V ) of (121) decreases in R. To gain intuition, recall from (63), that when I(Q) < R the type

enumerator N(Q|y) concentrates double-exponentially rapidly around its average
.
= exp [n(R− I(Q))]. Thus, for

any given y, an increase of the rate will introduce codewords having a joint type that was not typically seen at lower

rates, and this new joint type might dominate one of the likelihoods. However, it is not clear to which direction

this new type will tip the scale in the likelihoods comparison, and so the rate increase does not necessarily imply

an increase or a decrease of one of the exponents. In addition, the above discussion and (21) imply that the largest

achievable rate such that PIE → 0 as n→ ∞, may still be the mutual information I(PX ×W ), or, in other words,

the detection does not cause a rate loss.

2) Computation of the exponents: Unfortunately, the optimization problems involved in computing the exact

exponents of Subsections V-A and V-C are usually not convex, and might be complex to solve when the alphabets

are large. For example, for the exact exponents, computing EA of (47) is not a convex optimization problem since

J2 is not a convex set of Q̃, and computing EB of (52) is not a convex optimization problem since K3 and K4

are not convex sets of (Q̃,Q), and not even of (Q̃Y |X , QY |X). An efficient algorithm their efficient computation

is an important open problem. However, the expurgated exponent (121) is concave14 in s and convex in PXX̃ .

This promotes the importance of the lower bounds derived in Subsection V-D, which only require two-dimensional

optimization problems, irrespective of the alphabet sizes.

3) Choice of input distribution: Thus far, the input distribution PX was assumed fixed, but it can obviously

be optimized. Nonetheless, there might be a tension between the optimal choice for channel coding versus the

optimal choice for detection. For example, consider the detection problem between W , a Z-channel, i.e. W (0|0) =

13As its r.h.s. always increases, but its l.h.s. does not.
14The second derivative w.r.t. s of ds(x, x̃) is the variance of log V (y|x̃)

W (y|x)
w.r.t. the distribution PY which satisfies PY (y) ∝

W 1−s(y|x)V s(y|x̃).
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1,W (0|1) = w for some 0 ≤ w ≤ 1, and V , an S-channel, i.e. V (1|0) = v, V (1|1) = 1 for some 0 ≤ v ≤ 1.

Choosing PX(0) = 1 will result an infinite FA and MD exponents (upon appropriate choice of α), but is useless

from the channel coding perspective. One possible remedy is to define a Lagrangian that weighs, e.g. the FA and

ordinary decoding exponents with some weight, and optimize it over the input type. However, still, the resulting

optimization might be non-tractable.

4) Simplified decoders: Intuitively, the low-rate simplified detector/decoder φL has worse FA-MD trade-off than

the optimal detector/decoder φ′ since the effect of a non-typical codeword may be averaged out in 1
M

∑M
m=1W (y|xm),

but may totally change max1≤m≤M W (y|xm). However, there exists a critical rate Rcr such that for all R ≤ Rcr

the exponents of the two detectors/decoders coincide, when using the same parameter α. To see this, first let

Q̃A , argmin
Q̃∈J1

D(Q̃Y |X‖W |PX), (148)

i.e. the exponent EA for R = 0, and in fact, for all rates satisfying

R ≤ s
(

Q̃Y ; fV (Q̃A)
)

, Rcr,A. (149)

Since from Remark 28 (Appendix B)

s(Q̃Y , γ) ≤ t(Q̃Y , γ) (150)

this is also the exponent EA,L. Now, letting R = 0 in {Ki}
4
i=3 and then solving

(Q̃B, QB) , argmin (Q̃,Q)∈∩4
i=1Ki

{

D(Q̃Y |X‖W |PX) + I(Q)
}

(151)

we get the exponent EB for R = 0, and in fact, for all rates satisfying

R ≤ min
{

I(QB), s
(

Q̃Y ; fV (QB)
)}

, Rcr,B. (152)

Similarly, this is also the exponent EB,L. In conclusion, for all R ≤ Rcr , min {Rcr,A, Rcr,B} it is assured that the FA

exponents of φ′ and φL are exactly the same. In the same manner, a critical rate can be found for the MD exponent.

For the the high-rate simplified detector/decoder φH we only remark that in some cases, the output distributions W̃

and Ṽ may be equal, and so this detector/decoder is useless, even though φ′ achieves strictly positive exponents

(cf. the example in Section VII).

5) Continuous alphabet channels: As previously mentioned, one of the advantages of the Gallager/Forney-Style

bounds is their simple generalization to continuous channels with input constraints. We briefly describe this well

known technique [21, Chapter 7]. For concreteness, let us focus on the power constraint E[X2] ≤ 1. In this technique

a one-dimensional input distribution is chosen, say with density fX(x), which satisfies the input constraint. Then,

an n-dimensional distribution is defined as follows

fn(x) = ψ−1
I

{

n− δ ≤

n
∑

i=1

x2m,i ≤ n

}

n
∏

i=1

PX(xi), (153)
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where ψ is a normalization factor. This distribution corresponds to a uniform distribution over a thin n-dimensional

spherical shell, which is the surface of the n-dimensional ‘ball’ of sequences which satisfy the input constraint. While

this input distribution is not memoryless, it is easily upper bounded by a memoryless distribution: by introducing

a parameter r ≥ 0, and using

I

{

n− δ ≤

n
∑

i=1

xm,i ≤ n

}

≤ exp

[

r ·

(

n
∑

i=1

x2m,i − n+ δ

)]

(154)

we get

fn(x) ≤ ψ−1erδ
n
∏

i=1

PX(xi)e
r[x2

i−1]. (155)

Now, e.g., in the derivation in (C.9) we may use

E

[

W
(1−s)/ρ(y|Xm)V

s/ρ(y|Xm)
]

=

∫

x

fn(x)W
(1−s)/ρ(y|Xm)V

s/ρ(y|Xm)dx (156)

≤ ψ−1erδ
[∫

x
fX(x)er[x

2−1]W
(1−s)/ρ(yi|x)V

s/ρ(yi|x)dx

]n

. (157)

As discussed in [21, p. 341], the term ψ−1erδ is sub-exponential, and can be disregarded. Now, the resulting

exponential functions can be modified. For example, for a pair of power constrained AWGN channels W and V ,

we may define15

E′
0(s, ρ, r) , − log

∫ ∞

−∞

(∫ ∞

−∞
fX(x)er[x

2−1]W
(1−s)/ρ(y|x)V

s/ρ(y|x)dx

)ρ

dy, (158)

where the dependence in r was made explicit, and similarly,

E′′
0 (s, ρ, r1, r2) , − log

∫ ∞

−∞

(∫ ∞

−∞
fX(x)er1[x

2−1]W
(1−s)/ρ(y|x)dx

)ρ(∫ ∞

−∞
fX(x)er2[x

2−1]V
s/ρ(y|x)dx

)ρ

dy,

(159)

which requires two new parameters r1, r2. Then, the exponent in (140) can be computed exactly in the same way,

with additional maximization over non-negative r, r1, r2. To obtain an explicit bound, it is required to choose an

input distribution. The natural choice is the Gaussian distribution, which is appropriate from the channel coding

perspective16, and also enables to obtain analytic bounds. Of course, it might be very far from being optimal for the

purpose of pure detection. Then, the integrals in (158) can be solved by ‘completing the square’ in the exponent

of Gaussian distributions17, and the optimal values of r and ρ can be found analytically [21, Section 7.4]. Here,

since two channels are involved, and we also need to optimize over s, we have not been able to obtain simple

expressions18. Nonetheless, the required optimization problem is only four-dimensional, and can be easily solved

15Since the additive noise has a density, the probability distributions in the bounds of subsection V-D can be simply replaced by densities,

and the summations can be replaced by integrals.
16Nevertheless, it should be recalled that Gaussian input is optimal at high rates (above some critical rate). At low rates, the optimal input

distribution is not known, even for pure channel coding.

17Namely, the identities
∫∞

t=−∞
exp

[

−at2 − bt
]

dt =
√

π
a
· e

b2

4a and
∫∞

t=−∞
exp

[

−a t2

2

]

dt =
√

2π
a

.

18Nonetheless, for a given s, the expression for E′
0(s, ρ, r) is rather similar to the ordinary decoding exponent E0(ρ, r) and so the optimal

ρ and r can be analytically found.
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by an exhaustive search. Finally, it can be noticed that the computing the expurgated bounds is a similar problem

as

E′
x(s, r) = E′

0(s, ρ = 1, r) (160)

and

E′′
x(s, r) = E′′

0 (s, ρ = 1, r). (161)

6) Comparison with [10]: As mentioned in the introduction (Section I), the problem studied here is a general-

ization of [10]. Indeed, when the channel V does not depend on the input, i.e. V (y|x) = Q0(y), then the problem

studied in [10] is obtained19. Of course, the detectors derived in Section IV can be used directly for this special

case. Moreover, the exponent expressions can be slightly simplified as follows. A joint type Q̃ is feasible if and

only if fW (PX × Q̃Y ) ≤ −α+ fV (PX × Q̃Y ), both in EA of (47) and EB of (52), as otherwise, the sets J2 and

K4 are empty. For any such Q̃ which satisfies this condition, when utilizing the fact that fV (Q) depends only on

QY = Q̃Y , the optimal choice for EB is Q = PX × Q̃Y , since it results I(Q) = 0. Under this choice, we get

J1 ⊂ K3 and J2 ⊂ K4 and so EA ≥ EB . Thus, from (53)

ERC

TE (R,α, PX ,W, V ) = min
Q̃∈∩4

i=3Mi

D(Q̃Y |X‖W |PX) (162)

where

M3 ,

{

Q̃ : fV (Q̃) ≥ α+ fW (Q̃)−R
}

, (163)

replaces K3, and

M4 ,

{

Q̃ : s
(

Q̃Y , fV (Q̃Y ) +R
)

≥ R
}

, (164)

replaces K4. Thus, the minimization in the exponent is only on Q̃.

VI. COMPOSITE DETECTION

Up until now, we have assumed that detection is performed between two simple hypotheses, namely W and V .

In this section, we briefly discuss the generalization of the random coding analysis to composite hypotheses, to

wit, a detection between a channel W ∈ W and a channel V ∈ V , where W and V are disjoint. Due to the nature

of the problems outlined in the introduction (Section I), we adopt a worst case approach. For a codebook Cn and

a given detector/decoder φ, we generalize the FA probability to

PFA(Cn, φ) , max
W∈W

1

M

M
∑

m=1

W (R0|xm), (165)

and analogously, the MD and IE probabilities are obtained by maximizing over V ∈ V and W ∈ W , respectively.

Then, the trade-off between the IE probability and the FA and MD probabilities in (12) is defined exactly the same

19The meaning of FA and MD here is opposite to their respective meaning in [10], as sanctioned by the motivating applications.
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way.

Just as we have seen in (22) (proof of Proposition 3), for any sequence of codebooks Cn and decoder φ

EIE(Cn, φ) = min {EO(Cn, φ), EFA(Cn, φ)} (166)

where here, EO(Cn, φ) is the exponent achieved by an ordinary decoder, which is not aware of W . Thus, the

asymptotic separation principle holds here too, in the sense that the optimal detector/decoder may first use a detector

which achieves the optimal trade-off between the FA and MD exponents, and then a decoder which achieves the

optimal ordinary exponent.

We next discuss the achievable random coding exponents. 20 As is well known, the maximum mutual information

[31], [16, Chapter 10, p. 147] universally achieves the random for ordinary decoding. So, as in the simple hypotheses

case, it remains to focus on the optimal trade-off between the FA and MD exponents, namely, solve

minimize PFA

subject to PMD ≤ e−nEMD (167)

for some given exponent EMD > 0. The next Lemma shows that the following universal detector/decoder φU, whose

rejection region is

RU

0 ,

{

y : enα ·

M
∑

m=1

max
W∈W

W (y|xm) ≤

M
∑

m=1

max
V ∈V

V (y|xm)

}

, (168)

solves (167). The universality here is in the sense of (167), i.e., achieving the best worst-case (over W ) FA exponent,

under a worst case constraint (over V ) on the MD exponent. There might be, however, a loss in exponents compared

to a detector which is aware of the actual pair (W,V ) (cf. Corollary 23).

Lemma 22. Let C = {Cn} be a given sequence of codebooks, let φU be as above, and let φ be any other partition

of Yn into M + 1 regions. Then, if EFA(C, φ) ≥ EFA(C, φ
∗) then EMD(C, φ) ≤ EMD(Cn, φ

∗).

Proof: The idea is that the maximum in (165) can be interchanged with the sum without affecting the

exponential behavior. Specifically, let us define the sets of channels which maximize fW (Q) for some Q

WU ,

{

W ∈ W : ∃Q such that W = argmax
W ′∈W

fW ′(Q)

}

. (169)

Clearly, since fW (Q) is only a function of the joint type, the cardinality of the sets WU is not larger than the

number of different joint types, and so their cardinality increases only polynomially with n. Then,

PFA(Cn, φ) = max
W∈W

∑

y∈R0

1

M

M
∑

m=1

W (y|xm) (170)

≤
∑

y∈R0

1

M

M
∑

m=1

max
W∈W

W (y|xm) (171)

20In universal decoding, typically only the random coding exponents are attempted to be achieved, cf. Remark 25.
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=
∑

y∈R0

1

M

M
∑

m=1

max
W∈WU

W (y|xm) (172)

,
∑

y∈R0

g(y) (173)

≤
∑

y∈R0

1

M

M
∑

m=1

∑

W∈WU

W (y|xm) (174)

=
∑

W∈WU

1

M

M
∑

m=1

∑

y∈R0

W (y|xm) (175)

.
= max

W∈WU

1

M

M
∑

m=1

∑

y∈R0

W (y|xm) (176)

≤ max
W∈W

1

M

M
∑

m=1

∑

y∈R0

W (y|xm) (177)

= PFA(Cn, φ) (178)

where the measure g(y) was implicitly defined. Thus, up to a sub-exponential term which does not affect exponents,

PFA(Cn, φ)
.
=
∑

y∈R0

g(y). (179)

Similarly, defining the measure

h(y) ,
1

M

M
∑

m=1

max
V ∈V

V (y|xm) (180)

we get

PMD(Cn, φ) =
∑

y∈R0

h(y). (181)

Now, the ordinary Neyman-Pearson lemma [18, Theorem 11.7.1] can be invoked21 to show that the optimal detector

is of the form (168), which completes the theorem.

It now remains to evaluate, for a given pair of channels (W,V ) ∈ W×V , the resulting random coding exponents

when φU is used. Fortunately, this is an easy task given Theorem 6. Let us define the generalized normalized

log-likelihood ratio of the set of channels W as

fW(Q) , max
W∈W

∑

x∈X ,y∈Y

Q(x, y) logW (y|x). (182)

The following is easily verified.

Corollary 23 (to Theorem 6). Let a distribution PX and a parameter α ∈ R be given. Then, there exists a sequence

21Note that the Neyman-Pearson lemma is also valid for general positive measures, not just for probability distributions. This can also be

seen from the Lagrange formulation (28).
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of codes C = {Cn}
∞
n=1 of rate R, such that for any δ > 0

EFA (C, φ
U) ≥ ERC

TE,U (R,α, PX ,W, V )− δ, (183)

EMD (C, φ
U) ≥ ERC

TE,U (R,α, PX ,W, V )− α− δ (184)

where ERC
TE,U (R,α, PX ,W, V ) is defined as ERC

TE (R,α, PX ,W, V ) of (53), but replacing fW (Q) with fW(Q) and

fV (Q) with fV(Q) in all the definitions preceding Theorem 6.

We conclude with a few remarks.

Remark 24. The function fW(Q) is a convex function of Q (as a pointwise maximum of linear functions), but

not a linear function. This may harden the optimization problems involved in computing the exponents. Also, we

implicitly assume that the set of channels W is sufficiently ‘regular’, so that fW(Q) is a continuous function of Q.

Remark 25. The same technique works for the simplified low-rate detector/decoder. Unfortunately, since the bound

(A.4) (Appendix A) utilizes the structure of the optimal detector/decoder, it is difficult to generalize the bounds

which rely on it, namely, the expurgated exponents and the Gallager/Forney-style bounds. This is common to many

other problem in universal decoding - for a non-exhaustive list of examples, see [32], [33], [34], [35], [36].

Remark 26. A different approach to composite hypothesis testing is the competitive minimax approach [37]. In this

approach, a detector/decoder is sought which achieves the largest fraction of the error exponents achieved for a

detection of only a pair of channels (W,V ), uniformly over all possible pairs of channels (W,V ). The application

of this method on generalized decoders was exemplified for Forney’s erasure/list decoder [17] in [38], [39], and

the same techniques can work for this problem.

VII. AN EXAMPLE: A DETECTION OF A PAIR BINARY SYMMETRIC CHANNELS

Let W and V be a pair of BSCs with crossover probabilities w ∈ (0, 1) and v ∈ (0, 1), respectively. In this case

the exponent bounds of Section V can be greatly simplified, if the input distribution is uniform, i.e. PX = (12 ,
1
2).

Indeed, in Appendix E we provide simplified expressions for the type-enumeration based exponents. Interestingly,

while this input distribution is optimal from the channel coding perspective, the two output distributions W̃ and Ṽ it

induces are also uniform, and so the simple decoder which only uses the output statistics, namely φH of Subsection

IV-B, is utterly useless. However, the optimal decoder φ′ can produce strictly positive exponents.

We have plotted the FA exponent versus the MD exponent for the detection between two BSCs with w = 0.1

and v = 0.4. We have assumed the uniform input distribution PX = (12 ,
1
2), which results the capacity CW ,

I(PX × W ) ≈ 0.37 (nats). Figure 1 shows that at zero rate, the expurgated bound which is based on type-

enumeration significantly improves the random coding bound. In addition, the Gallager/Forney-style random coding

exponent coincides with the exact exponent. By contrast, the Gallager/Forney-style expurgated exponent offers no

improvement over the ordinary random coding bound (and thus not displayed). Figure 2 shows that at R = 0.5·CW ,
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Figure 1. The trade-off between the FA exponent and the MD exponent at R = 0, for the detection of a BSC W with crossover probability

0.1, from a BSC V with crossover probability 0.4, when using the optimal detector φ′. The solid line corresponds to the exact random

coding exponent, and also to the Gallager/Forney-style random coding exponent. The dashed line corresponds to the expurgated exponent.
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Figure 2. The trade-off between the FA exponent and the MD exponent at R = 0.5 · CW , for the detection of a BSC W with crossover

probability 0.1, from a BSC V with crossover probability 0.4. The solid line corresponds to the exact random coding exponent of φ′, and

also to the exact random coding exponent of φL. The dotted line corresponds Gallager/Forney-style random coding exponent of φ′.

the simplified low-rate detector/decoder φL still performs as well as the optimal detector/decoder φ′. This, in fact

continues to hold for all rates less than R ≈ 0.8·CW . In addition, it is evident that the Gallager/Forney-style random

coding exponent is a poor bound, which exemplifies the importance of the ensemble-tight bounding technique of

the type enumeration method.
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APPENDIX A

PROOF OF THEOREM 13

Before getting into the proof, we derive a standard bound on the FA probability, which will also be used in

Appendices C and D. For any given code and s ≥ 0

PFA(Cn, φ
′) =

∑

y∈R′
0

1

M

M
∑

m=1

W (y|xm) (A.1)

=
∑

y∈R′
0

[

1

M

M
∑

m=1

W (y|xm)

]1−s [

1

M

M
∑

m=1

W (y|xm)

]s

(A.2)

(a)

≤ e−nαs
∑

y∈R′
0

[

1

M

M
∑

m=1

W (y|xm)

]1−s [

1

M

M
∑

m=1

V (y|xm)

]s

(A.3)

≤ e−nαs
∑

y∈Yn

[

1

M

M
∑

m=1

W (y|xm)

]1−s [

1

M

M
∑

m=1

V (y|xm)

]s

, (A.4)

where (a) is from (17).

Proof of Theorem 13: For a given code Cn, a codeword 1 ≤ m ≤M , and a joint type PXX̃ , define the type

class enumerator

Ńm(PXX̃ , Cn) ,
∣

∣

∣

{

x ∈ Cn\xm : Q̂xmx = PXX̃

}∣

∣

∣
. (A.5)

Upon restricting 0 ≤ s ≤ 1 in (A.4), we obtain the bound

PFA(Cn, φ
′) ≤ e−nαs

∑

y∈Yn

[

1

M

M
∑

m=1

W (y|xm)

]1−s [

1

M

M
∑

m=1

V (y|xm)

]s

(A.6)

(a)

≤ e−nαs 1

M

M
∑

m=1

M
∑

k=1

∑

y∈Yn

W 1−s(y|xm)V s(y|xk) (A.7)

(b)
= e−nαs 1

M

M
∑

m=1

∑

PXX̃

Ńm(PXX̃ , Cn) exp
[

−n
(

EPXX̃

[

ds(X, X̃)
])]

, (A.8)

where (a) follows from
∑

i a
ν
i ≥ (

∑

i ai)
ν

for ν ≤ 1, and (b) is using (A.5) and (119). Now, the packing lemma

[16, Problem 10.2] essentially shows (see also [29, Appendix]) that for any δ > 0, there exists a code C∗
n (of rate

R) such that

Ńm(PXX̃ , C
∗
n) ≤











exp
[

n
(

R+ δ − I(PXX̃)
)]

, I(PXX̃) ≤ R+ δ

0, I(PXX̃) > R+ δ

(A.9)

for all 1 ≤ m ≤M and PXX̃ . This, along with Proposition 4 completes the proof of the theorem.
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APPENDIX B

PROOF OF THEOREM 17

The proof is very similar to the proof of Theorem 6. We will use the following lemma, which is analogous to

Lemma 9.

Lemma 27. Under the conditions of Lemma 9,

P





⋂

Q∈Q:QY =Q̃Y

{

I

{

N̂(Q|y) ≥ 1
}

< enJ(Q)
}















= 1− o(n), T(Q̃Y ; J,Q) > R

.
= e−n∞, otherwise

, (B.1)

where y ∈ T (Q̃Y ), and

T(Q̃Y ; J,Q) , min
Q∈Q:Q=Q̃Y ,J(Q)≤0

I(Q). (B.2)

Proof: We have

P





⋂

Q∈Q:QY =Q̃Y

{

I {N(Q|y) ≥ 1} < enJ(Q)
}



 = P





⋂

Q∈Q:QY =Q̃Y ,J(Q)≤0

{I {N(Q|y) = 0}}



 . (B.3)

From this point onward, the proof follows the same lines of the proof of Lemma 9.

Remark 28. Remarks 10 and 11 are also valid here. If J(Q) is convex in QY |X then Lagrange duality [26, Chapter

5] implies

T(Q̃Y ; J,Q) = min
Q∈Q:Q=Q̃Y

max
λ≥0

[I(Q) + λJ(Q)] (B.4)

= max
λ≥0

min
Q∈Q:Q=Q̃Y

[I(Q) + λJ(Q)] . (B.5)

The only difference from S(Q̃Y ; J,Q) of (73) in this case is the maximization domain for λ. Note that the function

t(Q̃Y ; γ) of (124) is a specific instance of T(Q̃Y ; ·, ·) defined in (B.2) with Q = QW and J(Q) = −α−fW (Q)+γ

which is convex in QY |X (in fact, linear).

Proof of Theorem 17: In general, since

M
∑

m=2

W (y|xm) =
∑

Q

N(Q|y)enfW (Q) (B.6)

but

max
2≤m≤M

W (y|xm) = max
Q

I {N(Q|y) ≥ 1} enfW (Q) (B.7)

.
=
∑

Q

I {N(Q|y) ≥ 1} enfW (Q), (B.8)

then the analysis of the FA exponent of φL follows the same lines as the analysis in the proof of Theorem 6, when

replacing N(Q|y) with I {N(Q|y) ≥ 1}. Thus, in the following we only highlight the main changes. Just as in the
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derivations leading to (80),

PFA(x1,y) , P (y ∈ R0,L|X1 = x1,Y = y) (B.9)

.
= max

{

AL(Q̃), BL(Q̃)
}

, (B.10)

where

AL(Q̃) , P





∑

Q

I {N(Q|y) ≥ 1} enfW (Q) ≤ e−nα · enfV (Q̃)



 · I
{

fW (Q̃) ≤ −α+ fV (Q̃)
}

(B.11)

and

BL(Q̃) , P

(

enfW (Q̃) +max
Q

I {N(Q|y) ≥ 1} enfW (Q) ≤ e−nα ·max
Q

I {N(Q|y) ≥ 1} enfV (Q)

)

. (B.12)

For the first term,

AL(Q̃)
(IR)
.
= P





⋂

Q: fW (Q)>−∞

{

I {N(Q|y) ≥ 1} < en[−α+fV (Q̃)−fW (Q)]
}



 · I
{

fW (Q̃) ≤ −α+ fV (Q̃)
}

(B.13)

(a)
.
= I

{

T(Q̃Y ;−α+ fV (Q̃)− fW (Q),QW ) > R
}

· I
{

fW (Q̃) ≤ −α+ fV (Q̃)
}

, (B.14)

where (a) is by Lemma 27. Upon averaging over (X1,Y), we obtain the exponent EA,L of (126) (utilizing the

definition (124)).

Moving on to the second term, similarly as in the analysis leading to (87)

BL(Q̃)
.
=

∑

Q: fW (Q)≤−α+fV (Q)

P





⋂

Q 6=Q: fW (Q)>−∞

{

I {N(Q|y) ≥ 1} ≤ en[−α+fV (Q)−fW (Q)] · I
{

N(Q|y) ≥ 1
}

}

∩

{

1 ≤ en[−α+fV (Q)−fW (Q̃)] · I
{

N(Q|y) ≥ 1
}

}



 (B.15)

,
∑

Q: fW (Q)≤−α+fV (Q)

ζL(Q). (B.16)

We now split the analysis into three cases:

Cases 1 and 2: Assume 0 ≤ I(Q) < R. An analysis similar to cases 1 and 2 in the proof of Theorem 6 shows

that

ζL(Q)
.
= I

{

T(Q̃Y ;−α+ fV (Q)− fW (Q),QW ) > R
}

I

{

−α+ fV (Q)− fW (Q̃) > 0
}

. (B.17)

Case 3: Assume that I(Q) > R. An analysis similar to case 3 in the proof of Theorem 6 shows that the inner
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probability in (B.16) is exponentially equal to

ζL(Q)
.
= I

{

T(Q̃Y ;−α+ fV (Q)− fW (Q),QW ) > R
}

I

{

−α+ fV (Q)− fW (Q̃) > 0
}

e−n(I(Q)−R). (B.18)

Returning to (B.16) we obtain that BL(Q̃) is exponentially equal to the maximum between

max
Q: fW (Q)<−α+fV (Q), I(Q)<R, fV (Q)>α+fW (Q̃)

I

{

T(Q̃Y ;−α+ fV (Q)− fW (Q),QW ) > R
}

, (B.19)

and

max
Q: fW (Q)<−α+fV (Q), I(Q)≥R, fV (Q)>α+fW (Q̃)

I

{

T(Q̃Y ;−α+ fV (Q)− fW (Q),QW ) > R
}

e−n(I(Q)−R), (B.20)

or, more succinctly,

B(Q̃) = max
Q

I

{

T(Q̃Y ;−α+ fV (Q)− fW (Q),QW ) > R
}

e
−n[I(Q)−R]

+ (B.21)

where the maximization is over

{

Q : fW (Q) < −α+ fV (Q), fV (Q) ≥ α+ fW (Q̃)
}

. (B.22)

Upon averaging over (X1,Y), we obtain the exponent EB,L of (129) (utilizing again (124)), and the proof of the

FA exponent (131) is proved using (B.10).

For the MD expression, since φL is not necessarily the optimal detector in the Neyman-Pearson sense, we cannot

use Proposition 4. However, due to the symmetry in R0,L of W and V , a similar observation as in Fact 7 holds,

which leads directly to (132). The rest of the proof follows the same lines as the proof of theorem 6.

APPENDIX C

PROOF OF THEOREM 20

Proof of Theorem 20: As in the proof of Theorem 6, we only need to upper bound the FA probability as the

MD probability can be easily evaluated from the FA bound, using Proposition 4. It remains to derive an upper bound

on the average FA error probability. We assume the ensemble of randomly selected codes of size M =
⌈

enR
⌉

, where

each codeword is selected independently at random, with i.i.d. components from the distribution PX . Introducing

a parameter ρ ≥ max {s, 1− s}, we continue the bound (A.4) as follows:

PFA(Cn, φ
′) ≤ e−n(αs+R)

∑

y∈Yn

[

M
∑

m=1

W (y|xm)

]ρ(1−s)/ρ [ M
∑

m=1

V (y|xm)

]ρs/ρ

(C.1)

(a)

≤ e−n(αs+R)
∑

y∈Yn

[

M
∑

m=1

W
(1−s)/ρ(y|xm)

]ρ [ M
∑

m=1

V
s/ρ(y|xm)

]ρ

(C.2)

= e−n(αs+R)
∑

y∈Yn

[

M
∑

m=1

M
∑

k=1

W
(1−s)/ρ(y|xm)V

s/ρ(y|xk)

]ρ

, (C.3)
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where (a) follows from (
∑

i ai)
ν ≤

∑

i a
ν
i for ν ≤ 1. Using now the fact that the codewords are selected at random,

we obtain

PFA(Cn, φ
′) ≤ e−n(αs+R)

∑

y∈Yn

E

{[

M
∑

m=1

M
∑

k=1

W
(1−s)/ρ(y|Xm)V

s/ρ(y|Xk)

]ρ}

(C.4)

(a)

≤ e−n(αs+R)
∑

y∈Yn

{

M
∑

m=1

M
∑

k=1

E

[

W
(1−s)/ρ(y|Xm)V

s/ρ(y|Xk)
]

}ρ

, (C.5)

where (a) is by restricting ρ ≤ 1 and using Jensen Inequality. For a given y, let us focus on the inner expectation.

If m = k then

E

[

W
(1−s)/ρ(y|Xm)V

s/ρ(y|Xm)
]

= E

[

n
∏

i=1

W
(1−s)/ρ(yi|Xm,i)V

s/ρ(yi|Xm,i)

]

(C.6)

=

n
∏

i=1

E

[

W
(1−s)/ρ(yi|Xm,i)V

s/ρ(yi|Xm,i)
]

(C.7)

=

n
∏

i=1

(

∑

x∈X

PX(x)W
(1−s)/ρ(yi|x)V

s/ρ(yi|x)

)

(C.8)

, Ψs,ρ(y). (C.9)

Otherwise, if m 6= k, then since the codewords are selected independently

E

[

W
(1−s)/ρ(y|Xm)V

s/ρ(y|Xk)
]

= E

[

W
(1−s)/ρ(y|Xm)

]

E

[

V
s/ρ(y|Xk)

]

(C.10)

= E

[

n
∏

i=1

W
(1−s)/ρ(yi|Xm,i)

]

E

[

n
∏

i=1

V
s/ρ(yi|Xk,i)

]

(C.11)

=

n
∏

i=1

E

[

W
(1−s)/ρ(yi|Xm,i)

]

E

[

V
s/ρ(yi|Xk,i)

]

(C.12)

=

n
∏

i=1

(

∑

x∈X

PX(x)W
(1−s)/ρ(yi|x)

)(

∑

x∈X

PX(x)V
s/ρ(yi|x)

)

(C.13)

, Γs,ρ(y). (C.14)

So, the double inner summand in (C.5) is bounded as

{

M
∑

m=1

M
∑

k=1

E

[

W
(1−s)/ρ(y|Xm)V

s/ρ(y|Xk)
]

}ρ

= {MΨs,ρ(y) +M(M − 1)Γs,ρ(y)}
ρ

(C.15)

≤ 2ρmax
{

MρΨρ
s,ρ(y),M

2ρΓρ
s,ρ(y)

}

, (C.16)

using {c+ d}ρ ≤ [2max{c, d}]ρ for any c, d ≥ 0. Thus, we may continue the bound of (C.5) as

PFA(Cn, φ
′) ≤ e−n(αs+R)2ρmax







∑

y∈Yn

MρΨρ
s,ρ(y),

∑

y∈Yn

M2ρΓρ
s,ρ(y)







. (C.17)
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The first term in the above maximization is given by

e−n(αs−(ρ−1)R− ρ log 2

n
)
∑

y∈Yn

n
∏

i=1

(

∑

x∈X

PX(x)W
(1−s)/ρ(yi|x)V

s/ρ(yi|x)

)ρ

(C.18)

=e−n(αs−(ρ−1)R− ρ log 2

n
)

n
∏

i=1

∑

y∈Y

(

∑

x∈X

PX(x)W
(1−s)/ρ(y|x)V

s/ρ(y|x)

)ρ

(C.19)

=e−n(αs−(ρ−1)R− ρ log 2

n
)





∑

y∈Y

(

∑

x∈X

PX(x)W
(1−s)/ρ(y|x)V

s/ρ(y|x)

)ρ




n

(C.20)

=exp

[

−n ·

(

αs+ E′
0(s, ρ)− (ρ− 1)R−

ρ log 2

n

)]

(C.21)

where E′
0(s, ρ) was defined in (138). In a similar manner, the second term in the maximization is given by

e−n(αs−(2ρ−1)R− ρ log 2

n
)
∑

y∈Yn

n
∏

i=1

(

∑

x∈X

PX(x)W
(1−s)/ρ(yi|x)

)ρ(
∑

x∈X

PX(x)V
s/ρ(yi|x)

)ρ

(C.22)

≤ e−n(αs−(2ρ−1)R− ρ log 2

n
)
∑

y∈Yn

n
∏

i=1

(

∑

x∈X

PX(x)W
(1−s)/ρ(yi|x)

)ρ(
∑

x∈X

PX(x)V
s/ρ(yi|x)

)ρ

(C.23)

= e−n(αs−(2ρ−1)R− ρ log 2

n
)





∑

y∈Y

(

∑

x∈X

PX(x)W
(1−s)/ρ(y|x)

)ρ(
∑

x∈X

PX(x)V
s/ρ(y|x)

)ρ




n

(C.24)

= exp

[

−n ·

(

αs+ E′′
0 (s, ρ)− (2ρ− 1)R−

ρ log 2

n

)]

(C.25)

where E′′
0 (s, ρ) was defined in (139). Definition (140) then implies the achievability in (141).

APPENDIX D

PROOF OF THEOREM 21

Proof of Theorem 21: Let us begin with the FA probability. We start again from the bound (A.4) and restrict

s ≤ 1

PFA(Cn, φ
′) ≤ e−nαs 1

M

∑

y∈Yn

[

M
∑

m=1

W (y|xm)

]1−s [ M
∑

m=1

V (y|xm)

]s

(D.1)

(a)

≤ e−nαs 1

M

M
∑

m=1

M
∑

k=1

∑

y∈Yn

W 1−s(y|xm)V s(y|xk) (D.2)

where (a) follows from
∑

i a
ν
i ≥ (

∑

i ai)
ν

for ν ≤ 1. Let us denote the random variable

Zm ,

M
∑

k=1

∑

y∈Yn

W 1−s(y|Xm)V s(y|Xk) (D.3)
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over a random choice of codewords from i.i.d. distribution PX . Introducing a parameter ρ ≥ 1, for any given

B > 0, we may use the classical variation of the Markov inequality, as e.g. in [17, Eqs. (96)-(98)],

P (Zm ≥ B) ≤ E







M
∑

k=1

[

∑

y∈Yn W 1−s(y|Xm)V s(y|Xk)
]1/ρ

B1/ρ






(D.4)

= B−1/ρ
M
∑

k=1

E















∑

y∈Yn

W 1−s(y|Xm)V s(y|Xk)





1/ρ










(D.5)

(a)

≤ B−1/ρ
M
∑

k=1







∑

y∈Yn

E
[

W 1−s(y|Xm)V s(y|Xk)
]







1/ρ

(D.6)

= B−1/ρ















∑

y∈Yn

Ψs,1(y)





1/ρ

+ (M − 1)





∑

y∈Yn

Γs,1(y)





1/ρ










(D.7)

< B−1/ρ2 ·max















∑

y∈Yn

Ψs,1(y)





1/ρ

,M





∑

y∈Yn

Γs,1(y)





1/ρ










, (D.8)

where (a) follows from Jensen inequality, and we have used the definitions of Γs,ρ(y) and Ψs,ρ(y) from (C.14)

and (C.9). Now, as

∑

y∈Yn

Ψs,1(y) =
∑

y∈Yn

n
∏

i=1

(

∑

x∈X

PX(x)W 1−s(yi|x)V
s(yi|x)

)

(D.9)

=





∑

x∈X

PX(x)
∑

y∈Y

W 1−s(y|x)V s(y|x)





n

, (D.10)

and

∑

y∈Yn

Γs,1(y) =
∑

y∈Yn

n
∏

i=1

(

∑

x∈X

PX(x)W 1−s(yi|x)

)(

∑

x∈X

PX(x)V s(yi|x)

)

(D.11)

=





∑

y∈Y

(

∑

x∈X

PX(x)W 1−s(y|x)

)(

∑

x∈X

PX(x)V s(y|x)

)





n

, (D.12)

then using the definition of E′
x(s) and E′′

x(s) in (143) and (144), respectively, as well as

Fx(s, ρ, α, PX) , min

{

1

ρ
E′

x(s),
1

ρ
E′′

x(s)−R

}

, (D.13)

we get that (D.8) is

P (Zm ≥ B) ≤ 2B−1/ρ · exp [−n · Fx(s, ρ, α)] . (D.14)

For any given δ > 0 let us choose

B∗ = e
nδ/24ρ exp [−n · ρFx(s, ρ, α)] (D.15)
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we obtain

P (Zm ≥ B∗) <
1

2
e−

nδ/2ρ. (D.16)

So, if we expurgate 1
2 of the bad codewords in a randomly chosen codebook, then

P

(

M
⋃

m=1

{Zm ≥ B∗}

)

< e−
nδ/2ρ (D.17)

where the probability is over the random codebooks (note also that this expurgation only causes the sum over k in

(D.3) to decrease). Indeed, to see this, define Cn as the set of ‘bad’ codes which have {Zm > B∗} for more than

half of the codewords. Assume by contradiction, that the probability of a ‘bad’ code is larger than e−
nδ

2ρ . Hence,

from the symmetry of the codewords

P (Zm ≥ B∗) =
∑

Cn

P (Cn) I {Zm > B∗} (D.18)

=
∑

Cn

P (Cn)
1

M

m
∑

m=1

I {Zm > B∗} (D.19)

≥
∑

Cn∈Cn

P (C)
1

2
(D.20)

≥
1

2
e−

nδ/2ρ, (D.21)

which contradicts (D.16). Namely, if we expurgate 1
2 of the bad codewords of each codebook, then

PFA(Cn, φ
′) ≤ exp [−n · (EEX

GF (R,α, PX ,W, V )− δ)] (D.22)

for all sufficiently large n, with probability tending exponentially fast to 1 (over the random ensemble). Then,

Proposition 4 implies that also

PMD(Cn, φ
′) ≤ exp [−n · (EEX

GF (R,α, PX ,W, V )− α− δ)] . (D.23)

Thus, one can find a single sequence of codebooks, of size larger than M
2 which simultaneously achieves both

upper bounds above.

APPENDIX E

SIMPLIFIED EXPRESSIONS FOR BSC

In Subsection V-A (respectively, V-C), the exponents (47) and (52) (respectively, (126) and (129)) are given as

minimization problems over the joint types Q̃,Q, and also over Q, via s(Q̃Y , γ) (respectively, t(Q̃Y , γ)). These

joint types are constrained to Q̃X = QX = QX = PX and Q̃Y = QY = QY . To obtain simplified expressions,

we will show that the optimal joint types are symmetric, to wit, they result from an input distributed according to

PX which undergoes a BSC. Thus, as both the input and output distributions for such symmetric joint types are

uniform, it is only remains to optimize over the crossover probabilities q̃, q, q.
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To prove the above claim, we introduce some new notation of previously defined quantities, but specified for the

binary symmetric case. For q, q1, q2 ∈ [0, 1], the binary normalized log likelihood ratio is defined as

fw,B(q) ,
1

n
log
[

wqn(1− w)(1−q)n
]

(E.1)

= log(1− w)− qρw, (E.2)

where ρw , log 1−w
w , the binary entropy is denoted by

hB(q) , −q log q − (1− q) log(1− q), (E.3)

and the binary information divergence is denoted by

DB(q1||q2) , q1 log
q1
q2

+ (1− q1) log
(1− q1)

(1− q2)
. (E.4)

For a given type Q, let us define the average crossover probability

q̂(Q) ,
1

2
[QY |X(0|1) +QY |X(1|0)], (E.5)

and let Q be a set of joint types, for which the inclusion of Q in Q depends on Q only via q̂(Q). It is easy to

verify the following facts:

1) The information divergence satisfies

min
QY |X∈Q

D(QY |X ||W |PX) = min
0≤q≤1

DB(q||w). (E.6)

from the convexity of the information divergence in QY |X and symmetry of PX and W .

2) The normalized log likelihood ratio fW (Q) depends on Q only via q̂(Q), and so

fW (Q) =
∑

x∈X ,y∈Y

Q(x, y) logW (y|x) (E.7)

= (1− q̂(Q)) log(1− w) + q̂(Q) log(w) (E.8)

= fw,B (q̂(Q)) . (E.9)

3) Let L(q) be a linear function of q. Then

max
Q̃Y

min
Q:QY =Q̃Y

{I(Q) + L [q̂(Q)]} = min
0≤q≤1

{log 2− hB(q) + L(q)} . (E.10)

To see this, note that I(Q) is concave in Q̃Y (as the input distribution to the reverse channel QX|Y ), and L [q̂(Q)]

is linear in Q̃Y . So,

min
Q:QY =Q̃Y

{I(Q) + L(q̂(Q))} = min
QX|Y

{

I(Q̃Y ×QX|Y ) + L
[

q̂(Q̃Y ×QX|Y )
]}

(E.11)
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is a pointwise minimum of concave functions in Q̃Y and thus a concave function. Moreover, it is symmetric in

the sense that if Q̃Y (0) is replaced with Q̃Y (1), and QX|Y (·|0) is replaced with QX|Y (·|1), then the same value

for the objective function is obtained. This fact along with convexity implies that the maximizing Q̃Y is uniform.

Since PX is also uniform, the minimizing QX|Y is also symmetric.

We are now ready to provide the various bounds for detection of two BSCs under uniform input using the facts

above.

A. Exact Random Coding Exponents

Let us begin with EA of (47). Assume by contradiction that the optimal Q̃∗ is not symmetric. Fact 1 implies

that if the inputs are permuted, Q̃∗(·|0) ↔ Q̃∗(·|1) and this joint type is averaged with Q̃∗ with weight 1
2 to result

a new type Q̃∗∗ then

D(Q̃∗∗
Y |X ||W |PX) ≤ D(Q̃∗

Y |X ||W |PX). (E.12)

Also, Fact 2 implies that Q̃∗∗ ∈ J1. In addition, since the function J(Q) , −α + fV (Q̃) − fW (Q) is linear in

Q and depends on Q only via q̂(Q), then Remark 11 and Fact 3 above implies that Q̃∗∗ ∈ J2. Consequently, the

optimal Q̃∗ must be symmetric, and the minimization problem involved in computing EA (47) may be reduced to

optimizing only over crossover probabilities, rather than joint types. The result is as follows. Let γwv , log 1−v
1−w .

Then,

J1,B , {q̃ : fw,B(q̃) + α− fv,B(q̃) ≤ 0} (E.13)

= {q̃ : q̃(ρv − ρw) ≤ −α+ γwv} (E.14)

and

J2,B ,

{

q̃ : max
0≤λ≤1

min
0≤q≤1

{log 2− hB(q) + λ [−α+ fv,B(q̃)− fw,B(q)]} > R

}

(E.15)

(a)
=

{

q̃ : max
0≤λ≤1

{log 2− hB(q
∗) + λ [−α+ fv,B(q̃)− fw,B(q

∗)]} > R

}

(E.16)

where (a) is obtained by simple differentiation and q∗ = wλ

(1−w)λ+wλ . Then,

EA,B , min
q̃∈∩2

i=1Ji,B

DB(q̃‖w). (E.17)

Let us now inspect EB of (52). The same reasoning as above shows that the optimal (Q̃,Q) must be symmetric.

Now, let

K2,B , {(q̃, q) : q(ρv − ρw) ≤ −α+ γwv} (E.18)

K3,B ,
{

(q̃, q) : fv,B(q) ≥ α+ fw,B(q̃)− [R− log 2 + hB(q)]+
}

(E.19)
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and

K4,B ,

{

(q̃, q) : max
0≤λ≤1

min
0≤q≤1

{

log 2− hB(q) + λ
[

−α+ fv,B(q)− fw,B(q) + [R− log 2 + hB(q)]+
]}

> R

}

(E.20)

=

{

(q̃, q) : max
0≤λ≤1

{

log 2− hB(q
∗) + λ

[

−α+ fv,B(q)− fw,B(q
∗) + [R− log 2 + hB(q)]+

]}

> R

}

(E.21)

we obtain

EB,B , min
(q̃,q)∈∩4

i=2Ki,B

DB(q̃‖w) + [log 2− hB(q)−R]+ . (E.22)

The most difficult optimization problem to solve, namely EB,B, is only two-dimensional.

B. Expurgated Exponents

The Chernoff distance (119) for a pair of BSCs with crossover probabilities w and v is

ds(x, x̃) =











− log
[

(1− w)sv1−s + ws(1− v)1−s
]

, x 6= x̃

− log
[

(1− w)s(1− v)1−s + wsv1−s
]

, x = x̃

. (E.23)

Now, let us analyze (121). Since PX is uniform, then the definition of the set L in (120) implies that PXX̃ is

symmetric. So,

EEX

TE (R,α, PX ,W, V ) = max
0≤s≤1

min
q: log 2−hB(q)≤R

{αs+ (1− q)ds(1, 0) + qds(0, 0) + log 2− hB(q)−R} (E.24)

= max
0≤s≤1

{αs+ (1− q∗)ds(1, 0) + q∗ds(0, 0) + log 2− hB(q
∗)−R} (E.25)

where

q∗ =
exp

[

1
µ (ds(1, 0)− ds(0, 0))

]

1 + exp
[

1
µ (ds(1, 0)− ds(0, 0))

] (E.26)

and µ ≥ 1 is either chosen to satisfy hB(q
∗) = log 2−R or µ = 1.

C. Exact Random Coding Exponents of Simplified Detectors/Decoders

As was previously mentioned, the simplified detector/decoder for high rates is useless in this case. For the

simplified detector/decoder for low rates, we may use the same reasoning as for the optimal detector/decoder. Let

J1,L,B , J1,B and

J2,L,B ,

{

q̃ : max
λ≥0

min
0≤q≤1

{log 2− hB(q) + λ [−α+ fv,B(q̃)− fw,B(q)]} > R

}

(E.27)

=

{

q̃ : max
λ≥0

{log 2− hB(q
∗) + λ [−α+ fv,B(q̃)− fw,B(q

∗)]} > R

}

(E.28)
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where q∗ = wλ

(1−w)λ+wλ . Then,

EA,L,B , min
q̃∈∩2

i=1Ji,L,B

DB(q̃‖w). (E.29)

Let K2,L,B , K2,B and

K3,L,B , {(q̃, q) : fv,B(q) ≥ α+ fw,B(q̃)} , (E.30)

and

K4,L,B ,

{

(q̃, q) : max
λ≥0

min
0≤q≤1

{log 2− hB(q) + λ [−α+ fv,B(q)− fw,B(q)]} > R

}

(E.31)

=

{

(q̃, q) : max
λ≥0

{log 2− hB(q
∗) + λ [−α+ fv,B(q)− fw,B(q

∗)]} > R

}

, (E.32)

then

EB,L,B , min
(q̃,q)∈∩4

i=2Ki,L,B

DB(q̃‖w) + [log 2− hB(q)−R]+ . (E.33)
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