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ABSTRACT

The most demanding tenants of shared clouds require com-

plete isolation from their neighbors, in order to guarantee

that their application performance is not affected by other

tenants. Unfortunately, while shared clouds can offer an op-

tion whereby tenants obtain dedicated servers, they do not

offer any network provisioning service, which would shield

these tenants from network interference.

In this paper, we introduce Links as a Service (LaaS), a

new abstraction for cloud service that provides physical iso-

lation of network links. Each tenant gets an exclusive set of

links forming a virtual fat tree, and is guaranteed to receive

the exact same bandwidth and delay as if it were alone in

the shared cloud. Under simple assumptions, we derive the-

oretical conditions for enabling LaaS without capacity over-

provisioning in fat-trees. New tenants are only admitted in

the network when they can be allocated hosts and links that

maintain these conditions. Using experiments on real clus-

ters as well as simulations with real-life tenant sizes, we

show that LaaS completely avoids the performance degra-

dation caused by traffic from concurrent tenants on shared

links. Compared to mere host isolation, LaaS can improve

the application performance by up to 200%, at the cost of a

10% reduction in the cloud utilization.

1. INTRODUCTION

Many owners of private data centers would like to
move to a shared multi-tenant cloud, which can offer
a reduced cost of ownership and better fault-tolerance.
But it is vital for these tenants that their applications
will will not be affected by other tenants, and will keep
exhibiting the same performance [1–3]. (By perfor-
mance, we refer to the inverse of the total application
run-time, including both the computation and commu-
nication times.)
Unfortunately, distributed applications often suffer

from unpredictable performance when run on a shared
cloud [4, 5]. This unpredictable performance is mainly
caused by two factors: server sharing and network shar-
ing [6–22]. The first factor, server sharing, is easily
addressed by using bare-metal provisioning of servers,
such that each server is allocated to a single tenant [23].

However, the second factor, network sharing, is much
more difficult to address. When network links are
shared by several tenants, network contention can sig-
nificantly worsen the application performance if other
tenant applications consume more network resources,
e.g. if they simply want to benchmark their network or
run a heavy backup [24]. This can of course prove even
worse when other tenants purposely generate adversar-
ial traffic for DoS or side-channel attacks [25].
As detailed in Section 2, current solutions either (a)

require tenants to provide the traffic matrix in ad-
vance, which often proves impractical [11, 21]; (b) pro-
vide enough throughput for any set of admissible traffic
matrices using a hose model, but then fail to provide
a predictable latency that does not depend on other
tenants [4,16]; or (c) attempt to track the current traf-
fic matrix, but then cannot guarantee the same perfor-
mance [14,15,17,19,22].
In Section 3, we establish experimentation and sim-

ulation environments to better understand the impact
of network contention as a function of the number of
tenants and of the cluster size. We show that concur-
rent tenants with similar traffic can degrade MapRe-
duce performance by 25%, and reduce the performance
of scientific computing jobs by up to 65%.
In this paper, we introduce a simple and effective ap-

proach that eliminates any interference in the cloud net-
work. Keeping with the notion that good fences make
good neighbors, we argue that the most demanding ten-
ants should be provided with exclusive access to a sub-
set of the data center links, such that each tenant re-
ceives its own dedicated fat-tree network. We refer to
such a cloud architecture model as Links as a Service
(LaaS). Under the LaaS model, we guarantee that ten-
ants can obtain the exact same bandwidth and delay as
if they were alone in the shared cloud, independently of
the number of additional tenants.
While the LaaS abstraction sounds attractive, Figure

1 illustrates why it can be a challenge to provide it given
any arbitrary set of tenants. First, Fig. 1(a) illustrates
a bare-metal allocation of distinct hosts (servers) to two
tenants that does not satisfy the LaaS abstraction, since
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(a) No LaaS: Shared links (b) No LaaS: Bandwidth loss (c) LaaS: Full isolation

Figure 1: Two tenants hosted on a cloud. (a) Their traffic interferes on many shared links. (b) There
are no shared links, but the second tenant cannot service an admissible traffic from S0 and S1 to D0

and D1. (c) Under LaaS conditions, the network can service any admissible tenant traffic demands.

the tenants share common links. Likewise, the alloca-
tion of hosts and links in Fig. 1(b) also does not satisfy
LaaS, even though there are no common links. This is
because internal traffic of the second tenant from the
two hosts S0 and S1 in the right leaf switch to hosts
D0 and D1 would need to share a common link, and
so some admissible traffic patterns would not be able to
obtain full bandwidth. Interestingly, for this host place-
ment, we find that there is in fact no link allocation that
can provide full bandwidth to all the admissible traffic
patterns of both tenants. Finally, Fig. 1(c) fully satis-
fies the LaaS abstraction. All tenants obtain dedicated
hosts and links, and can service any admissible traf-
fic demands between their nodes, independently of the
traffic of other tenants.
In this paper, we focus on the practical online incre-

mental LaaS allocation problem: We consider a single
incoming tenant at a time, and assign hosts and links
out of the unassigned ones, without any migration of
previously-allocated tenants. We further analyze the
fundamental requirements for providing LaaS guaran-
tees to incoming tenants in 2- and 3-level homogeneous
fat trees. Under minor assumptions, our analysis pro-
vides the necessary and sufficient conditions to guaran-
tee the same bandwidth and delay performance over the
dedicated fat-tree networks as when being alone in the
shared cloud. These conditions are novel and key for
providing an online scalable packing-type allocation al-
gorithm. We further present and implement a practical
algorithm for providing LaaS guarantees (Section 5).
Our evaluations show that LaaS is practical and ef-

ficient, and completely avoids inter-tenant performance
dependence. We contribute our implementation of a
standalone LaaS scheduler that automates tenant place-
ment on top of OpenStack, as well as configures an
InfiniBand SDN controller to provide isolated routing
without interference. Our open-source code is made
available online [27]. We show that using this code, our
LaaS algorithm responds to tenant requests within a
few milliseconds, even on a cloud of 11K nodes, i.e.
several orders of magnitude faster than the machine
provisioning time. In addition, when the average ten-

ant size is smaller than a quarter of the cloud size, we
find that our LaaS algorithm achieves a cloud utiliza-
tion of about 90%, for various tenant-size distributions.
For larger tenant sizes, our LaaS allocation converges to
the maximal utilization obtained by a bare-metal sched-
uler that packs tenants without constraints. Finally,
and most importantly, we show performance improve-
ments of 50%-200% for highly-correlated tenant traffic.
Thus, the performance improvement typically exceeds
the utilization cost for such applications, uncovering an
economic potential (Section 6).
Finally, while we focus on full-bisectional-bandwidth

fat-trees in the provided implementation, our approach
can be easily extended to support oversubscribed trees.
We also describe how LaaS can fit more general cloud
cases, e.g. when mixing highly-demanding jobs with
regular jobs (Section 7).

2. RELATED WORK

Application variability. Several studies about the
variability of cloud services and HPC application per-
formance were presented by [4, 5, 24, 28, 29]. They
show significant variability for such applications, which
strengthens the reasons for using LaaS. We extend these
claims using experiments and simulations (Section 3).
We show that a larger number of tenants causes higher
performance loss, and also show that lossy Ethernet-
based networks suffer from similar issues.
Network isolation. Specific high-dimensional tori
super-computers like IBM BlueGene, Cray XE6, and
the Fujitsu K-computer provide scheduling techniques
to isolate tenants [30–32]. However, they all rely on
forming an isolated cube on 3 out of the 5- or 6-
dimensional torus space, and thus cannot be used in
clouds with fat-tree topologies. They also exhibit a
significantly lower cluster utilization, measured as the
amount of servers used over time, than the 90% utiliza-
tion obtained by LaaS on fat trees.
Tenant resource allocation. Cloud network perfor-
mance has received significant attention over the last
few years. An overview of the different proposals to
allocate tenant network resources is provided by [6].
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Virtual Network Embedding maps tenants’ requested
topologies and traffic matrix over arbitrary clusters [11,
21]. However, tenants must know and declare their ex-
act traffic demands. Also, valid embedding is calculated
by variants of linear programming, which are known not
to scale as the size of the data centers and number of
tenants grow. In addition, as most of these solutions
rely on the tenant traffic matrix, they consider only the
average demands, falling short of representing the dy-
namic nature of the application traffic. For example,
they prove problematic when an application alternates
between several traffic permutations, each utilizing the
full link bandwidth.
Other proposals, such as Topology Switching and

Oktopus [4, 16], propose an abstraction for the topol-
ogy and traffic demands to be allocated to the tenants.
They are similar to the hose model proposed for Virtual
Private Networks in the context of WAN [33]. Unfortu-
nately, these proposals still maintain some level of link
sharing, and therefore do not address our demands. For
instance, when a tenant sends temporary traffic bursts,
these burst may conflict at the network switches with
temporary traffic bursts from another tenant. As a re-
sult, the network latency may be significantly higher
when there are many tenants in the shared cloud.
In addition, many of the above systems rely on

ECMP-based load-balanced forwarding to spread the
allocated tenant bandwidth and avoid the need to al-
locate exact bandwidth on each of the used physical
links [4, 34]. However, while ECMP load-balancing is
able to balance the average bandwidth, it suffers from
a heavy tail of the load distribution. Again, other ten-
ants will affect the application performance, even in the
presence of a slow network feedback.
Proposals that allocate parts of a link bandwidth to

different tenants enforce that allocation using rate lim-
iters that aggregate tenant traffic bandwidth. But such
aggregated bandwidth rate limiters are scarce hardware
resource on the switches. Also, they are known to fail to
relieve the contention caused by incast. Moreover, they
are bound to fail when traffic patterns change rapidly.
For example, if tenant T1 synchronously iterates over
all its hosts as destinations, the temporal incast will
likely fill up some network buffers. Such traffic pat-
tern of T1 is impossible to rate-limit when the average
bandwidth of each flow is lower than the link band-
width, or worst, if the aggregate application bandwidth
is lower than the total tenant requested bandwidth. If
tenant T2 shares some of its links with tenant T1, its
performance will be impacted, contradicting the goal
of this paper. To overcome the limited availability of
switch rate limiters, some proposals use Distributed
Rate Limiting like [22], NetShare [14], ScondNet [17],
Seawall [19], Gatekeeper [15] and Oktopus [4]. The
distributed rate limiting at the network edge requires

tenant-wide coordination to avoid bottlenecks due to
load-imbalance, which results in response times in the
order of milliseconds [34], while the co-flow time char-
acteristics for high-demanding applications are 2 to 3
orders of magnitude shorter.
Time separation. Some systems like Cicade [10] do
not rely on average rate limiters, but suggest handling
the varying nature of tenant traffic by assuming that
it is slow enough to react to. Alternatively, scheduling
the MapReduce shuffle stages was proposed by Orches-
tra [35]. A generalization of this approach that allows a
tenant to describe its changing communication needs is
suggested by Coflow [36]. On the same line of thought,
scheduling at a finer grain was proposed by Hedera [18].
However, since these schemes propose fair share network
bandwidth to the current set of applications, they ac-
tually change the performance of a tenant when new
tenants are introduced. Even though fairness does im-
prove, the tenant performance variability grows.
Fairness. FairCloud provides a generalization of the
required fairness properties of the shared cloud net-
work [37]. LaaS tenant isolation satisfies these require-
ments, and avoids the allocation complexity of the gen-
eral case.
Application-based routing. The above schemes for
network resource allocation ignore the fact that each
tenant application may perform best with a different
routing scheme. Routing algorithm types span through
a wide range. They can be completely static and opti-
mized for MPI applications [38, 39], or rely on traffic-
spreading techniques like ECMP [40], rely on traffic
spray as in RPS or DeTail [41,42], use adaptive routing
as proposed by DAR [43], or even rely on per-packet
synchronized schemes like FastPass [44]. LaaS isolates
the sub-topology of each tenant, and therefore allows
each tenant to use the routing that maximizes its ap-
plication performance.

3. IMPACT OF TENANT INTERFERENCE

This section presents the impact of concurrent tenant
traffic on tenant performance. The presented results are
obtained from measurements on real hardware, as well
as simulations of InfiniBand and Ethernet networks. We
also provide online a full description of the settings and
of our code for the experiments [27].
Tenant interference in cluster experiments. The
experimental topology is a non-blocking two-level fat-
tree with 8 hosts in each of the 4 leaf switches. The
leaf switches are fully connected to 4 spine switches,
with two parallel links per connection. We assume 4
tenants, and randomly assign 8 dedicated hosts to each
of the 4 tenants. The reason for using a random place-
ment is that even a scheduler that follows a bin-packing
algorithm is known to show a large degree of fragmen-
tation in steady state [30]. The tenants independently
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Figure 2: Experimental fat-tree cluster.

alternate between computation and all-to-all communi-
cation, i.e. each node computes new results and sends
different data to the rest of the nodes that belong to the
same tenant, as a sequence of un-synchronized shift per-
mutations. This traffic pattern is representative of the
Shuffle stage of MapReduce, and of scientific-computing
applications such as those based on Fast Fourier Trans-
form. We keep the total computation time constant,
while the communication time changes with the increas-
ing message size. For a single tenant with 32KB mes-
sages, the communication time represents roughly 2/3
of the total time.
Fig. 3 presents the relative application performance

in our cluster, measured for various reasonable message
sizes [45] and for 1–4 parallel tenants. The results show
that even in such a small cluster, the performance of a
tenant may degrade (i.e., its run-time may increase) by
25% for large messages when other tenants run concur-
rently. Larger message sizes degrade the performance
due to the larger buffering needs and larger communi-
cation time.
Since we also want to analyze the performance of the

applications in larger clusters, we further rely on a sim-
ulator based on an InfiniBand model [46]. For sanity
check, we compare our small cluster measurements with
simulated results. The figure illustrates that the sim-
ulation results for 4 tenants are about 3% worse, and
show the same trend as the experiment. The difference
probably results from a lack of accuracy in modeling
the MPI computation time, and therefore it would be
expected to decrease in larger networks with a more
significant network contention.
Tenant interference in scaled-up simulations. We
now evaluate the impact of cloud size. As the number
of tenants and their sizes grow, we would expect an in-
creased inter-tenant friction, and therefore a degraded
application performance in the presence of concurrent
tenants. We simulate the effect of the concurrent tenant
traffic on a cloud of 1,728 hosts for 8 and 32 randomly-
placed tenants, each of 216 and 54 hosts respectively.
We measure the average relative performance of a ten-
ant, defined as the ratio of its performance when run-
ning concurrently with all other tenants by its per-
formance when running alone. We show the impact
of inter-tenant friction on scientific-computing appli-

Figure 3: Relative performance, obtained by ex-
periment and simulation, of an application based
on all-to-all traffic, for 1–4 concurrent tenants of
8 hosts each. The maximal degradation is about
25%, even for this small cluster of 32 nodes. The
full bars on the single tenant runs demonstrate
we normalize each run condition separately.

cations as well as on MapReduce. For the scientific-
computing benchmark, we select stencil codes, which
are parallel programs that break the problem space
(mainly 3-dimensional) into sub-spaces, apply the same
procedure to each sub-space and exchange data mostly
with neighboring sub-spaces. This scheme is common to
many scientific programs, and especially those solving
partial differential equations, such as weather predic-
tion and flow dynamics. The computation time is again
kept constant while the communication time changes
with the increasing message size. For a single tenant
with 32KB messages, the communication time repre-
sents roughly 4/9 of the total time.
Fig. 4 shows how the relative performance of each

tenant decreases as the number of tenants and the mes-
sage size increase. For instance, for 32 concurrent ten-
ants exchanging 32KB messages, the performance de-
grades by 45% compared to a tenant running alone
(equivalently, providing isolation from concurrent ten-
ants would more than double the performance). This
significant loss of performance happens despite a mod-
est message size of 32KB, and presents a large source of
potential run-time variability. Note that the degrada-
tion of performance is clearly a result of network con-
tention, since each job runs on dedicated hosts. MapRe-
duce (simulated at similar conditions) experiences a
smaller impact than stencil applications. Interestingly,
the smaller interference from other tenants is a result
of higher self-contention: due to the Shuffle all-to-all
traffic pattern, there is network contention even when
MapReduce runs alone. Stencil applications suffer less
from self-contention because their traffic matrix is less
dense. Our second set of simulations illustrates ten-
ant interference on a partition-aggregate traffic pattern,
which is characteristic of distributed database queries
run by many Web2.0 services like Facebook [?, 42, 47].
We simulate such a traffic pattern on the same cluster,
assuming each of the 32 tenants splits its hosts equally
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Figure 4: Simulated relative performance for
8 and 32 tenants on a cloud of 1,728 hosts,
with Stencil scientific-computing applications or
MapReduce-based applications. The relative
performance to a single tenant degrades as the
traffic volume and the number of concurrent ten-
ants increase.

Figure 5: Simulated distributed database ten-
ants placed randomly on 1,728 nodes cluster.
The percentage of queries not meeting a 10msec
deadline vs. offered query-rate show steep satu-
ration.

between servers and clients. The query arrivals follow
a Poisson process with a controllable rate. Each query
is sent to all servers in parallel.
Fig. 5 shows the percentage of late queries not meet-

ing a 10-msec deadline. The steep increase of late
queries happens at about 10,450 queries per second for
the 32 concurrent tenants, versus 13,600 queries per sec-
ond for a single tenant. The network link sharing re-
sulted in a degradation of about 30% in the effective
query rate.
We further want to confirm that similar results are

obtained for a lossy Ethernet network. We simulate a
32-node Ethernet cluster employing ECMP routing and
DCTCP [47], using an INET [48] simulator enhanced
with a specially-implemented DCTCP plugin. We simu-
late 32 nodes and not 1,728 nodes because this simulator
is less scalable. There are only two tenants: The first
is a regular 8-node tenant implementing MapReduce,
of random Map and Reduce times and variable Shuffle
data size (producing a similar ratio of communication

Figure 6: Simulated relative performance of an
8-node MapReduce tenant on a 32-node Ether-
net cluster running DCTCP. An adversarial 8-
node tenant degrades the performance by 25%.

Figure 7: Simulated distributed database
queries 99.9 percentile of query latency for single
and 32 tenants. In the presence of other tenants
the query latency at 10Kquery/sec is 10 times
larger if than running alone.

time to total time). The second is an 8-node adversarial
aggressor tenant. Each adversarial node continuously
generates 1MB messages, sent in parallel to all its other
nodes. We intentionally keep half the nodes unused to
illustrate the detrimental impact of other tenants even
in an over-provisioned cluster. Fig. 6 presents the rel-
ative performance of MapReduce in the presence of the
adversarial tenant as compared to its performance when
running alone. The worst relative performance is ob-
tained for messages of 128KB, with a degradation of
25% even in such a small and over-provisioned clus-
ter. We suspect that the increase in the last value with
256KB message results from an artifact of DCTCP.
The first job time to complete 100 com-

pute/communicate iterations is measured. The
jobs start one after the other with some delay, such
that the resulting measurement show a gradual increase
of the first job iteration time due to jobs interference.
The results are plotted in Fig. 8 which shows a
degradation of 20% = 0.18/0.15. Note that on larger
systems where the jb sizes are larger and many more
jobs exist the expected impact on job run-time is
larger.
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Figure 8: MPI app run-time, on a 32 nodes
10GB/s InfiniBand cluster, degrades by 20%
with gradual start of other similar apps.

4. LAAS ARCHITECTURE

A typical cloud architecture consists of (a) a front-
end interface for tenants to register their requests, (b) a
scheduler that decides when and how to service these re-
quests and can allocate hosts to tenants (e.g., an Open-
Stack Nova scheduler and a Heat application setup),
and (c) a network controller that performs the network
setup (e.g., an OpenStack Neutron and an SDN back-
end). In this section, we introduce a LaaS cloud archi-
tecture that enhances this architecture by enabling the
allocation of tenant-exclusive hosts and links.
Specifically, we propose to extend the scheduler with

link allocation functionality (on top of the host alloca-
tion), and enhance the network controller by adding
network routing rules to enforce the link allocation.
Fig. 9 emphasizes these two extensions by bold lines on
an abstract cloud management software architecture.
Scheduler. We require the scheduler to provide each
new tenant with an exclusive set of dedicated hosts and
dedicated links. As in bare-metal allocation, a tenant
may request a given number of dedicated hosts, which
may be further refined by requirements of memory, ac-
celerators or number of cores. In our implementation,
we assume homogeneous hosts. In addition, the sched-
uler provides each new tenant with a set of dedicated
links that form a tenant sub-topology, which will guar-
antee full bandwidth for any admissible traffic matrix
of the tenant, i.e. will provide the tenant with the same
bandwidth as in its own private data center.
In the LaaS architecture, we assume that the sched-

uler employs an online algorithm, by successively pro-
cessing one new tenant request at a time. Each new
tenant may be either accepted to the cloud, or de-
nied due to the unavailability of a sub-network that
can provide enough dedicated hosts and links. In any
case, the scheduler does not migrate already-running
tenants. This could be relaxed if we want to allow
global optimization of host placements, by running ten-
ants over virtual machines (VMs) and allowing migra-

Figure 9: Cloud management system architec-
ture, with LaaS extensions in bold.

tions [49–51]. But then, tenant run-times would be im-
pacted by new tenants, which is precisely what we want
to avoid.
Network controller. As depicted in Fig. 9, we re-
quire the information of the allocated links to be pro-
vided by the scheduler to the network devices. This
information should be used to adjust the network for-
warding and routing to provide tenant isolation. This
task fits SDN networks, but may also be implemented in
other network architectures like TRILL [52]. There are
several different ways to implement such an isolation-
aware network controller. At one extreme, which re-
quires switch-virtualization hardware support, a master
controller may configure the underlying switches to be
split into multiple virtual switches [20]. Then each ten-
ant may incorporate its own SDN controller, which can
then only discover its own isolated sub-topology. The
other extreme approach is to let a single SDN controller
do all the work and enhance all the routing engines to
work on sub-topologies. We rely in our implementation
on an off-the-shelf InfiniBand SDN controller with a ca-
pability of defining sub-topologies and routing packets
in an isolated manner (L2 forwarding). This feature,
known as Routing Chains, is described in [53]. This
isolated-routing feature could also be implemented by
Ethernet SDN controllers like OpenDaylight.

5. LAAS ALGORITHM

In this section we describe online algorithms for ten-
ant placement and link allocation in the LaaS scheduler.
By online, versus offline, placement-algorithms, we re-
quire existing tenant placement to be maintained when
a new job is placed. Similarly we provide online link-
allocation algorithms to avoid any traffic interruption
when a new tenant is introduced. The algorithm we
describe provably guarantee that a tenant will obtain a
dedicated set of hosts and links, with the same band-
width as in its own private data center. The algorithm
relies on the required properties of the placement to
trim the solution space and achieve fast results.
We study 2-level fat trees, and then generalize the re-

sults to 3 levels. We also first present a Simple heuristic
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algorithm, and then extend it with a refined LaaS al-
gorithm that achieves a better cloud utilization.

5.1 Isolation for 2-level Fat Trees

Consider a 2-level full-bisectional-bandwidth fat-tree
topology, i.e. a full bipartite graph between leaf
switches and spine switches, as in Fig. 1 above. It
is composed of r leaf switches, denoted Li for each
i ∈ [1, r], and m spine switches. Each leaf switch is
connected to n ≤ m hosts.
Problem definition. Given a pre-allocation of tenants
(with pre-assigned links and hosts), when a new tenant
arrives with a request for N hosts, we need to find:
(i) Host placement: Find which free hosts to allocate to
the new tenant, i.e. allocate Ni free hosts in each leaf i

such that N =
r
∑

i=1

Ni.

(ii) Link allocation: Find how to support the tenant
traffic, i.e. allocate a set Si of spines for each leaf i, such
that the hosts of the new tenant in leaf i can exclusively
use the links to Si, and the resulting allocation can fully
service any admissible traffic matrix.
We want to fit as many arriving tenants as possible

into the cloud such that their host placement and link
allocation obey the above requirements, and without
changing pre-existing tenant allocations.
Simple heuristic algorithm. We first introduce a
Simple heuristic algorithm, against which we later com-
pare our suggested algorithms. It relies on a property
of fat trees and minimum-hop routing: if a single ten-
ant is placed within a sub-tree, then traffic from other
tenants will not be routed through that sub-tree.
Let N denote the number of tenant hosts, and n the

number of hosts per leaf. The Simple heuristic sim-
ply computes the minimal number s of leaf switches
required for the tenant: s = ⌈N/n⌉. Then, it finds s
empty leaf switches to place the tenant hosts in. Fi-
nally, if s > 1, it allocates all the up-links leaving the s
leaf switches; else, no such links are needed.
Fig. 10 illustrates the Simple algorithm, showing how

tenant T1 obtains a placement for N = 6 hosts. First,
s = ⌈6/4⌉ = 2. Assuming T1 arrives first, the two left
leaves are available when it arrives, and they are used to
host T1. Also, all the up-links of these 2 leaf switches are
allocated to T1. When it arrives, tenant T2 is similarly
allocated the two right leaves and their up-links.
In the general case, any placement obtained by Simple

supports any admissible traffic pattern. This is because
the dedicated sub-network of the tenant is a single leaf
switch if s = 1, and a 2-level fat tree if s > 1, which is a
folded-Clos network with m ≥ n. It is well known that
such a topology supports any admissible traffic pattern,
because it meets the rearrangeable non-blocking crite-
ria and the Birkhoff-von Neumann doubly-stochastic
matrix-decomposition theorem [54].

Figure 10: Two tenants of sizes 6 and 7 hosts
placed by the Simple heuristic, where each ten-
ant fills a number of complete sub-trees.

5.2 Extended Simple Heuristics Single Tenant
Leaving the Sub-Tree

An extension of the simple solution is to allow a sin-
gle tenant with hosts within a sub-tree to span across
multiple sub-trees. The same argument used for the
simple case, only the traffic of the single tenant leaving
the sub-tree is crossing the top level of the sub-tree thus
isolation is maintained. Since the entire set of links at
this layer must match the number of hosts within that
sub-tree the obtained topology supports any admissible
traffic matrix.
For example Fig. ?? show how tenant t4 occupies a

part of 2-level sub-tree which is shared by tenant t3
extending out of that sub-tree. No traffic other that of
t3 would need to leave the same sub-tree and thus all
the top links in that tree are allocated to tenant t3.

5.3 The General Case

The simple heuristic and its extension are extreme
in their constraints, wasting hosts by rounding job size
up. What can we say on the general case of placing
the tenant hosts without restriction? We provide here
some analysis of the resulting capacity loss caused by
the non-blocking requirement.
What are the conditions Link allocation should meet?

Property 1. ∀i ∈ [1, r] : min(Ni, N −Ni) ≤ |Si|.

Proof. There is no need to carry more flows out of
the leaf switch than there are other hosts of the ten-
ant. So the number of flows is the minimum between
local and total remote hosts. The last are by definition
N −Ni. Since every link on the bipartite connects to a
different spine the number of links is the size of Si.

Corollary 2. Corollary of Property 1 is that for
most cases where N ≫ Ni there need to be at least Ni

links allocated on leaf Li. This also means that when
|Si| > Ni some hosts left on that leaf switch cannot
be used for future tenants. We denote this number of
wasted hosts:

Wi = |Si| −Ni (1)
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Property 3. ∀i, j ∈ [1, r] : min(Ni, Nj) ≤ |Si ∩ Sj |.

Proof. Let c = min(Ni, Nj). There are at most c
flows going from Li to Lj (or back). Since each flow
has to use a different link and each link goes to a differ-
ent spine switch we will need at least c common spine
switches in |Si ∩ Sj |.

Without loss of generality we sort the Ni such that
N1 ≤ N2 ≤ · · · ≤ Nr. So Property 1 becomes:

∀i, j ∈ [1, r] : Ni = min(Ni, Nj) ≤ |Si ∩ Sj | (2)

Property 4. ∀i, j, k ∈ [1, r] : min(Ni + Nj , Nk) ≤
|Si ∪ Sj |.

Proof. Let c = min(Ni + Nj , Nk). There are at
most c flows going from Lk to Li or to Lj (or back).
Since each flow has to use a different link and each link
goes to a different spine switch we will need at least c
spines in the union of the two leaves connected spines
|Si ∪ Sj |.

Theorem 5. The total wasted hosts capacity W =
k
∑

i=1

Wi by a host placement Ni is lower bounded by:

W = max(

⌊ r−1

2
⌋

∑

k=1

min(N2k−1, Nr −N2k),

⌊ r−1

2
⌋

∑

k=1

min(Nk, Nr −Nr−k))

(3)

Proof. Apply triangle in-equation to Property 2:

min(Ni +Nj , Nr) ≤ |Si ∪ Sj | = |Si|+ |Sj | − |Si ∩ Sj |
(4)

Or:

|Si ∩ Sj | ≤ |Si|+ |Sj | −min(Ni +Nj , Nr) (5)

Further apply Property 1 and obtain:

Ni ≤ |Si|+ |Sj | −min(Ni +Nj , Nr) (6)

We have two cases:

Ni +Nj < Nr : Ni ≤ |Si|+ |Sj | −Ni −Nj

Ni +Nj ≥ Nr : Ni ≤ |Si|+ |Sj | −Nr

(7)

And further:

Ni < Nr −Nj : Ni ≤ Wi +Wj

Ni ≥ Nr −Nj : Nr −Nj ≤ Wi +Wj

(8)

Finally we can merge the two equations

min(Ni, Nr −Nj) ≤ Wi +Wj (9)

We can now sum the Equation (9) either for all pairs
i, j : j = i+ 1 or for furthest pairs: i, j : j = r − i.

Figure 11: The number of extra links required
for providing RNB network for tenant with Ni =
i. The calculation of lower bound on number of
additional cables, and the communication pat-
tern they are required for is depicted on the
right table showing Wi +Wj

The obtained lower bound is demonstrated by Fig. 11
where 5 leaves are allocated with Ni = i. In order to
calculate a lower bound of number of additional links.
we fill a table of Wi+Wj by evaluation of Equation (9)
for each i, j : j > i pairs. Then select the pairs pro-
ducing the maximal total W . An optional allocation
of the extra cables is denoted on the network diagram
with bold links. LaaS placement analysis. We now
want to present some steps towards a tenant placement
algorithm that could obtain a better performance than
Simple by allowing the placement of more than a single
tenant on the same leaf, and therefore by reaching a
tighter packing. To do so, we first analyze the funda-
mental conditions for providing LaaS.
Consider a single leaf i with Ni tenant hosts. In the

analysis below, we make the following simplifying as-
sumption: on every leaf switch, the number of leaf-to-
spine links (and the corresponding number of spines)
allocated to a tenant equals the number of its allocated
hosts:

|Si| = Ni. (10)

Our simplifying assumption is based on the following
intuition. On the one hand, for tenants occupying sev-
eral leaves, if |Si| < Ni, we may not be able to ser-
vice all admissible traffic demands (since we may have
up to Ni flows that need to exit leaf i, but only |Si|
links to service them). On the other hand, allocating
|Si| > Ni, is wasteful, because the number of remaining
spine switches would then be less than the number of
available hosts, and therefore future tenants spanning
more than one leaf may not be able to obtain enough
links to connect their hosts.
Without loss of generality, we also make a notational

assumption that the Ni’s are sorted such that N1 ≤
N2 ≤ · · · ≤ Nr.
We will now see that our assumptions lead (by a se-

quence of lemmas) to a simple rule that greatly simpli-
fies the possible placements that need to be evaluated

8



by our LaaS scheduling algorithm. Due to space con-
straints, we present the proofs of all results of this paper
an online technical report [27].

Lemma 1. The number of common spines that con-
nect two leaves must at least equal their minimal number
of allocated hosts, i.e.

∀i < j ∈ [1, r] : Ni = min(Ni, Nj) ≤ |Si ∩ Sj | (11)

Proof. Consider a traffic permutation among the
tenant hosts. There are up to Ni full-link-capacity host-
to-host flows going from Li to Lj (or back). Since each
flow has to use a different link and each link goes to a
different spine switch, we will need at least Ni common
spine switches in |Si ∩ Sj |.

Lemma 2. The number of common spines that con-
nect two leaves to a third must at least equal the min-
imal number of allocated hosts, either in the union of
the first two leaves or in the third, i.e. ∀i, j, k ∈ [1, r] :
min(Ni +Nj , Nk) ≤ |Si ∪ Sj |.

Proof. Let c = min(Ni + Nj , Nk). There are at
most c flows going from Lk to either Li or Lj (or back).
Since each flow has to use a different link and each link
goes to a different spine switch, we will need at least c
spines in the union Si ∪ Sj of the spines connected to
the two leaves.

Lemma 3. The number of allocated hosts in any leaf
cannot exceed the number in the union of any two other
leaves, i.e. ∀i 6= j 6= k ∈ [1, r] : Ni, Nj , Nk > 0 →
Ni +Nj ≥ Nk

Proof. Assume the contrary: Ni+Nj < Nk. There
are only two cases: Ni ≤ Nj < Nk or Nj ≤ Ni < Nk.
W.l.o.g., we assume the first. If so, min(Ni+Nj , Nk) =
Ni + Nj . By Lemma 1, to enable connectivity be-
tween Ni and Nj , they must have at least Ni spines
in common: |Si ∩ Sj | ≥ Ni. Substituting the above
into Lemma 2 we obtain: ∀i, j, k ∈ [1, r] : min(Ni +
Nj , Nk) = Ni +Nj ≤ |Si ∪ Sj | = |Si|+ |Sj | − |Si ∩ Sj |.
But since Ni = |Si| and Nj = |Sj | in LaaS by Equa-
tion (10), we get 0 ≤ − |Si ∩ Sj |. But Si ∩ Sj is non-
empty because otherwise traffic from hosts in leaf i to
hosts in j wouldn’t be able to pass. So we get a contra-
diction, thus Ni +Nj ≥ Nk.

Necessary host placement. We will now provide two
theorems showing necessary and sufficient conditions to
get the LaaS conditions of tenant traffic isolation and
support for any admissible traffic matrix. Interestingly,
the first theorem requires necessary conditions on the
host placement, while the second theorem provides suf-
ficient conditions on the link allocation. We continue to
assume throughout the rest of the paper that |Si| = Ni

for all i, and N1 ≤ N2 ≤ · · · ≤ Nr.

Figure 12: A tenant of N = 8 = Q ·D + R hosts.
To implement LaaS, there must be Q leaves of
D hosts and optionally one leaf of R < D hosts.

Theorem 6. A necessary condition for LaaS is

N1 ≤ N2 = N3 = · · · = Nr, (12)

implying that all leaf switches of a tenant should hold
the exact same number of hosts except for a potential
smaller one.

Proof. We show that N2 = Nr. By Lemma 1, L1

and L2 must have at least N1 = |S1| spines in common,
i.e. S1 ⊆ (S1 ∩ S2). Therefore, S1 is a subset of S2, so
|S1 ∪ S2| = |S2| = N2. By Lemma 3, when i = 1, j = 2
and k = r, N1+N2 ≥ Nr thus min(N1+N2, Nr) = Nr.
So, when Nr flows are sent from Lr to L1 and L2, we
must have at leastNr common spines: |S1 ∪ S2| = N2 ≥
Nr. But since N2 ≤ Nr, it follows that N2 = Nr.

Given Theorem 6, the tenant placement should follow
the form: N = D ·Q+R, where Q is the number of re-
peated leaves with D hosts each, and we optionally add
one unique leaf with a smaller number of hosts R. This
notation follows the Divisor, Quotient and Remainder
of N . This result is useful because it greatly simpli-
fies the solution of the host placement problem defined
above.
Fig. 12 demonstrates this result. It shows Q leaf

switches of D hosts each, and optionally another leaf
switch of R < D hosts. We denote by SD the set of
spines connected by allocated links to the Q leaves of D
hosts, and by SR those that connect via allocated links
to the optional leaf of R hosts.
Sufficient link allocation. We can now prove suffi-
cient conditions on the link allocation to satisfy LaaS.

Theorem 7. A sufficient condition for LaaS is that
the link allocation satisfies ∀i ∈ [1, Q] : Si = SD and if
R > 0 : SR ⊂ SD, i.e. all the allocated leaf up-links of a
given tenant go to the exact same set of spine switches
(or a subset of it for the remainder leaf).

Proof. For the case R = 0, the link allocation above
means there is a group of D spine switches that con-
nect to all leaf switches. Thus the tenant sub-topology
reduces to a full bipartite graph with m′ = D spine
switches and n′ = D hosts per leaf, which supports any
admissible traffic matrix as mentioned above.
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(a) Placement (b) Link Allocation

Figure 13: (a) All tenants satisfy the host place-
ment necessary conditions, e.g. the placement
of C is 3 = Q ·D +R = 2 · 1 + 1. A and B support
any admissible traffic matrix by the sufficient
link allocation conditions. (b) However, the link
allocation for C is impossible. There is no way
to find a common set of spines with free ports.

For the case of one additional leaf LjR of R hosts, we
provide a constructive method for routing arbitrary per-
mutations. We consider the full-bipartite sub-topology
formed by the tenant hosts and links, where LjR con-
nects to all SD spines. For this topology m′ = n′ = D
and r′ = Q + 1. It is guaranteed by the rearrangeable
non-blocking theorem that every full permutation, of
n′ · r′ flows is route-able. Routing is symmetric with
respect to the spine switches. Moreover, to avoid con-
gestion, each spine needs to carry exactly 1 flow from
each leaf and 1 flow to each leaf. So any full permu-
tation of our original topology where LjR has only R
flows will be D −R flows short. We extend these flows
with D − R flows going from LjR to LjR . Since these
flows share the same leaf switch they must be routed
through D − R different spines. After completing the
full permutation routing, and since all spines connect
to all leaves, we replace each spine that carries one of
the added D−R flows with a spine that is not included
in SR. As the links allocated to the extra flows are not
needed, any permutation is fully routed by the original
topology.

A necessary host allocation is not sufficient. The
above theorems provide us with guidelines for imple-
menting LaaS. We now show that due to previous ten-
ant allocations, a host placement as in Theorem 6 is not
always sufficient to provide a needed link allocation as
in Theorem 7. This is why Theorem 7 proves essential.

Property 8. A host placement that meets Theo-
rem 6 does not guarantee the existence of a link allo-
cation that meets Theorem 7, and therefore does not
guarantee LaaS.

Proof. We prove Property 8 by the example pro-
vided in Fig. 13. Three tenants are shown placed ac-
cording to the provided heuristic of the previous sec-
tion: A has 8 = 2 · 3 + 2 hosts, B has 5 = 2 · 2 + 1,

and C has 3 = 1 · 2 + 1. We track allocated up-links
of the leaf switches in a matrix where rows represent
the leaf switches and columns represent the spines each
port connects to. As can be observed, there is no pos-
sible link allocation for tenant C, since the leaves it is
placed on do not have free links connected to any com-
mon spine. There is no link allocation possible for C
even though it was placed according to the conditions
of Theorem 6. The online link allocation algorithm for
C (after A and B are placed) cannot allocate the links.
In fact, even an offline version of link allocation - reas-
signing the links of A and B - cannot solve the problem
once the placement of A and B does not change.

According to Property 8, some tenant requests may be
denied because the scheduler cannot find a proper link
allocation. Thus any LaaS algorithm has to validate the
feasibility of a link allocation for each legal host place-
ment. In the sections ahead, we develop such algorithms
for 2- and 3-level fat trees.

5.4 Isolation for 3-level Fat Trees

So far we have discussed the LaaS allocation for 2-
level fat-trees. We now extend the results to 3-level
fat trees, which form the most common cloud topol-
ogy [55, 56]. We use the notation of Extended Gener-
alized Fat Trees (XGFT) [57], which defines fat trees
of h levels and the number of sub-trees at each level:
m1,m2, . . . ,mh. and the number of parent switches at
each level: w1, w2, . . . , wh.
We consider three approaches to this problem: a Sim-

ple heuristics, a Hierarchical decomposition, and an Ap-
proximated scheme. We conclude with a description of
the final LaaS algorithm that we implemented, relying
on the Approximated scheme.
Simple heuristic for 3-level fat trees. The Simple
algorithm described in Section 5.1 is easily extended to
any fat-tree size. For an arbitrary XGFT, first define
the number of hosts Rl under a sub-tree of level l: R0 =
0, and Rl =

∑l
i=1

mi. Given a tenant request for N
hosts, Simple first determines the minimum level lmin

of the tree that can contain all N tenant hosts:

lmin = min {l| (Rl−1 < N) ∧ (Rl ≥ N)} , (13)

and the number s of required sub-trees of level lmin:
s = ⌈N/Rlmin−1⌉. Then, it places the tenant hosts in
s free sub-trees of level lmin. It also allocates to the
tenant all the links internal to these s sub-trees; and if
s > 1, it allocates as well all the links connecting the
sub-trees to the upper level.
It is clear that the Simple heuristic algorithm, by

rounding up the number of nodes, trades off cluster uti-
lization for simplicity, non-fragmentation, and greater
locality with lower hop distances. As we show in the
evaluation section, the utilization obtained by this al-
gorithm is low, making it is potentially unacceptable to
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Figure 14: An example 3-level fat tree match-
ing LaaS requirements. The number of flows
injected from each sub-tree to the top bipartite
graphs is marked in bold below the lvl2 switches.

cloud vendors, so we keep looking for a better one.
Hierarchical decomposition. A hierarchical decom-
position describes 3-level fat trees as collections of 2-
level trees. For a LaaS link allocation to be feasi-
ble, the condition of Theorem 6 needs to hold also for
the top level of the tree. We denote the switches on
the tree by their levels (from bottom up) lvl1, lvl2 and
lvl3. To enable LaaS, within each of the lower levels
of the tree, tenants may only be allocated hosts with
Nlvl2 = Q ·D+R. Note that an allocation that fits in a
single leaf switch also follows this scheme with Q = 1.

Fig. 14 depicts a host allocation that follows the form:
Nlvl2 = Q·D+R of Theorem 6 and Fig. 12 in each level-
2 sub-tree. The two left sub-trees use an allocation of
11 = 2 · 4 + 3 hosts each, while the right sub-tree holds
7 = 2 · 3 + 1 hosts. Now consider one of the bipar-
tite graphs at the top of the tree (emphasized in the
drawing). We show that allocating isolated links while
maintaining support for any admissible traffic matrix
on this bipartite graph is similar to the allocation done
on a single sub-tree.
First, we obtain the number of flows entering/leaving

the top bipartite graph. For instance, in the left sub-
tree of Fig. 14, the tenant uses all the 4 lvl2 spines to
avoid network contention. The number of flows entering
the lvl2 switches of the left sub-tree, i.e. the number of
lvl1 switches with allocated links to these lvl2 switches,
is 3, 3, 3 and 2, respectively. This is because there
are only 2 lvl1 switches that have 4 assigned hosts and
thus need to use all the lvl2 switches; while the 3rd lvl1
switch only has 3 assigned hosts, and thus does not use
the 4th (rightmost) lvl2 switch. Generally, each one of
the R lvl2 switches needs to support Q+1 flows from/to
the Q + 1 lvl1 switches, and D − R lvl2 switches need
to support just Q flows. Thus, each of the top full
bipartite graphs needs to support either Qi + 1 or Qi

flows entering from each of the various sub-trees.
We apply Theorem 6 to each of the full bipartite

graphs made of lvl3 and lvl2 switches (like the bold line

in Fig. 14). Accordingly, in order to fulfill LaaS require-
ments, it is required that the number of flows entering
the bipartite graph from the lvl2 switches should be
equal, except for maybe one lvl2 switch that must carry
fewer flows. Therefore, we should have Q′ repeated sub-
trees of Nlvl2 = Q ·D + R hosts, and possibly one ad-
ditional sub-tree of N̄lvl2 = Q̄ · D̄ + R̄ hosts. There are
exactly Q bipartite graphs with Q′ sub-trees injecting
Q + 1 flows, and D − R with Q′ sub-trees injecting Q
flows. Similarly, the unique remaining sub-tree injects
Q̄ + 1 flows into R̄ bipartite graphs, and Q̄ flows into
D̄ − R̄ bipartite graphs.
Finally, since D̄ may be bigger, smaller or equal to D,

we conclude that the condition of Theorem 6 translates
to: (a) D > R, (b) D̄ > R̄, and (c) if R > R̄ : Q ≥ Q̄,
else Q ≥ Q̄ + 1. Each tenant job of size N hosts may
then be decomposed into: N = Q′(Q·D+R)+Q̄·D̄+R̄.
Approximated algorithm. The general decomposi-
tion approach described in the previous section leads
to a huge space of possible placements and link allo-
cations for any incoming tenant. Instead of treating
this entire space, we propose to simplify the 3-level tree
problem with an Approximated approach. If a tenant
cannot fit within a single sub-tree, we round up its size
to the nearest complete number of hosts contained un-
der a lvl1 switch, i.e. m1 in the XGFT definition. The
host placement can now be performed in complete leaf
switches of m1 hosts. For instance, if each leaf switch
can hold 10 hosts, and a tenant requests N = 267 hosts,
then we effectively allocate it N ′ = m1⌈N/m1⌉ = 270
hosts.
Moreover, since the maximal number m1 of flows

leaving each leaf is identical to the number of lvl2
switches in the sub-tree, all top-level bipartite graphs
have the exact same maximal number of entering flows,
and their solution is symmetrical. This means that we
can represent the 3-level fat tree as a 2-level tree (a sin-
gle top bipartite graph), and solve in the same way we
did in the 2-level case. We have effectively limited the
placement to D = D̄ = m1 and R = R̄ = 0. The tenant
job of size N is first rounded to N ′ = m1⌈N/m1⌉ hosts,
and then placed as: N ′ = m1(Q

′ ·Q+ Q̄).
Final LaaS algorithm. We now want to implement
our final LaaS algorithm for concurrent host placement
and link allocation in fat trees. To do so, we rely on
our Approximated approach, and track the allocated
up-links in a matrix similar to 15(a). The required
set of leaves and links is of the form N = Q · D + R.
As described in Section 5.3, in a general fat tree, this
translates to R spines that connect to all the Q+1 allo-
cated leaves and D −R spines connected just to the Q
repeated leaves. These requirements are equivalent to
finding a set of Q leaves that have D free up-ports to a
common set of spines, and a single leaf that has only R
free up-ports that form a subset of the spines used by
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(a) Link Allocation Table (b) Corresponding Topology

Figure 15: (a) Table of leaf up-links holding the
link assignments of tenants A and B, as well as 2
faulty links X. (b) Corresponding topology. The
new tenant C of 10 hosts, arranged as Q ·R+D =
2 · 4 + 2, can be assigned one of two allocations.
In (a), the first link allocation is shown in solid,
and the second with slanted lines.

the previous Q leaves.
The search for Q leaves with enough common spines

is performed recursively. In the worst case, it may re-
quire examining all

(

m2

Q

)

combinations. Our LaaS al-
gorithm returns the first successful allocation, so try-
ing the most-used leaves first packs the allocations and
achieve the best overall utilization results.
Fig. 15 demonstrates the process of evaluating spe-

cific D,Q,R division. Consider a new tenant C of 10
hosts, arranged as 2 leaves of 4 hosts plus 1 leaf of 2
hosts. We show 2 possible placements: The first would
use 4 hosts on leaves 4 and 5, and 2 hosts on another
leaf 6. The second would use 4 hosts on leaves 3 and 4,
and 2 hosts on another leaf 2. We also illustrate how
we could take into account two faulty links in our link
allocation if needed.
In the following section we describe the algorithm for

mapping free leafs. The extension to L2 allocation is
trivial. The algorithm to perform the above example
is provided in Algorithm 1. The recursive function is
assuming the availability of matrix M [l] of free ports
on each leaf switch. It is given the following constants:
D,R,Q and the start and end leaf switch indexes ls, le.
The recursive function provides its current state on the
recursion using the following variables: l represents the
current leaf index to examine, r the number of Q size
leafs that were already found, {ports} the set of ports
that are possible for this allocation, {rl} the collected
set of, so far, Q size leafs. Eventually the recursion
provides the following results: {DL} set of leafs with Q
hosts, {DPORTS} the set of ports to be used by the Q
size leafs, UL the unique, sized R, leaf and {UPORTS}
the ports on that leaf. The overall algorithm for 3 level
fat trees is provided in Algorithm 2.

6. EVALUATION

Our evaluation is reported in three sub-sections. The

Algorithm 1 FLAP(l, le, r, {ports} , {rl})

1: find next Q size leaf
2: for i = l to le do
3: if |M [i]| >= Q then
4: {nPorts} = {ports} ∩M [i]
5: if |nPorts| ≥ Q then
6: {newRL} = {rl} ∪ i
7: if r = D then
8: found all repeated leafs
9: if findUniqueLeaf(R, ls, le; {nPorts} {rl})

then
10: {DPORTS} = {nPorts}
11: {DL} = {newRL}
12: return true
13: end if
14: else
15: if FLAP(i+1,le,r+1,{nPorts},{newRL})

then
16: return true
17: end if
18: end if
19: end if
20: end if
21: end for
22: return false

Algorithm 2 LAAS(N)

1: Try 2 level allocation first
2: if N < m1 ·m2 then
3: for D = max(N,m1) to 1 do
4: Q = ⌊N

D ⌋
5: R = N −D ·Q
6: if FLAP (0,m1 cotm2 − 1, 0, 1, {} , {}) then
7: return true
8: end if
9: end for

10: end if
11: U = ⌈ N

m1

⌉
12: for D = max(U,m2) to 1 do
13: Q = ⌊U

D ⌋
14: R = U −D ·Q
15: if m3 ≥ Q then
16: if FLAP2(0,m3 − 1, 0, 1, {} , {}) then
17: return true
18: end if
19: end if
20: end for
21: return false
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Figure 16: Utilization is measured after the first
tenant cannot enter the cloud and before the
cloud starts draining out of tenants.

first deals with the different placement algorithms and
compares their resulting cloud utilization. It shows that
our LaaS algorithm reaches a reasonable cloud utiliza-
tion, within about 10% of bare-metal allocation. The
second part describes the system implementation on top
of OpenStack, and the third part shows how the LaaS
architecture improves the performance of a tenant in
the presence of other tenants by completely isolating
the tenants from each other.

6.1 Evaluation of Cloud Utilization

Cloud utilization. We want to study whether our
LaaS network isolation constraints significantly reduce
the number of hosts that can be allocated to tenants.
We define the cloud utilization as the average percent-
age of allocated hosts in steady state. Assuming that
tenants pay a fee proportional to the number of used
hosts and the time used, the cloud utilization is a di-
rect measure of the revenue of the cloud provider.
Scheduling simulator. To evaluate the different
heuristics on large-scale clouds, we developed a schedul-
ing simulator that runs many tenant requests over a
user-defined topology. The simulator is configured to
run any of the above algorithms for host and link al-
location. This algorithm may succeed and place the
tenant, or fail. We use a strict FIFO scheduling, i.e.
when a tenant fails, it blocks the entire queue of up-
coming tenants. Note that this blocking assumption
forms an extremely conservative approach in terms of
cloud utilization. In practice, clouds would typically not
allow a single tenant to block the entire queue. Since
smaller tenants are easier to place, for any tenant size
distribution, not letting smaller tenants bypass those
waiting means that we favor fairness over cloud utiliza-
tion. Thus, the result should be regarded as an intuitive
lower-bound for a real-life cloud utilization.
All host placement heuristics need to eventually select

a possible placement from many valid ones. We follow
a bin-packing approach that considers the most-used
leaf switches first (i.e., those with the least number of
available hosts). This is known to minimize fragmenta-

tion [58]. We also tested other placement-order policies,
like preferring a larger spread of the tenants, but they
produced inferior results.
Simulation settings. We simulate the largest full-
bisectional-bandwidth 3-level fat-tree network that can
be built with 36-port switches, i.e. a cloud of 11,662
hosts. The evaluation uses a randomized sequence of
10,000 tenant requests. A random run-time in the range
of 20 to 3,000 time units is assigned to each tenant.
The variation of run-time makes scheduling harder as
it increases fragmentation.
We evaluate 3 distribution types for the number of

hosts requested by incoming tenants. First, we ran-
domly generate sizes according to a job size distribu-
tion extracted from the Julich JUROPA job scheduler
traces. These previously-unpublished traces represent
1.5 years of activity (Jan. 2010 - June 2011) of a large
high-performance scientific-computing cloud. Second,
an exponential distribution of variable parameter x. It
is truncated between 1 and the cloud size. Last, a
Gaussian distribution of average parameter x and stan-
dard deviation parameter x

5
, truncated again within the

cloud size. The use of x allows a variation that is pro-
portional to the average tenant size.
As a baseline algorithm, we implement an Uncon-

strained placement approach that simply allocates un-
used hosts to the request, as in bare-metal allocation.
Note that some requests may still fail if the tenant re-
quests more hosts than the number of currently-free
cloud hosts. We compare this baseline to the Simple
and LaaS algorithms, as described in Section 5.
Simulation results. We analyzed the scheduling
logs of the Julich JUROPA cluster, a large scientific-
computing cloud of 3,288 hosts, over the period of 2010
and half 2011. Fig. 17(a) illustrates the CDF of the
tenant MPI (message passing interface)-based job sizes
that were run on the cloud over this period. The CDF
shows peaks for numbers of hosts that are powers of 2
(1, 2, 4, 8, 16, and 32). We further generated 10,000 ten-
ants with this job-size probability distribution, and the
same random run-time distribution as above (instead of
the original run-times, since they resulted in a low load,
and therefore in an easy allocation). Fig. 17(b) shows
the tenant allocation results: again, the cost of our LaaS
allocation versus the Unconstrained bare-metal provi-
sioning is about 10% of cloud utilization (88% vs. 98%).

To further test the sensitivity of our algorithm to the
tenant sizes, we use a truncated exponential distribu-
tion for tenant host sizes and modify the exponential
parameter x. The distribution of the JUROPA tenant
sizes is similar to such a truncated exponential distribu-
tion. Fig. 18 illustrates the cloud utilization for Uncon-
strained, Simple, and LaaS, is plotted as a function of
the exponential parameter x, which is close to the aver-
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(a) (b)

Figure 17: (a) Measured job-size CDF for the
Julich JUROPA scientific-computing cloud. (b)
Resulting cloud utilization. LaaS achieves 88%.

Figure 18: Cloud utilization for a truncated ex-
ponential distribution of tenant host sizes in a
cloud of 11,662 hosts.

age tenant host size due to the truncation. The Uncon-
strained line shows how the utilization degrades with
the job size, even without any network isolation. This
is an expected behavior of bin packing. As the job size
grows, so does the probability for more nodes to be left
unassigned when the cloud is almost full. The utiliza-
tion of our LaaS algorithm stays steadily at about 10%
less than the Unconstrained algorithm. Finally, Simple
has the lowest cloud utilization for the entire tenant size
range. Note that it is less steady, since its utilization
is more closely tied to the sizes of the leaves and sub-
trees. Once the tenant size crosses the leaf size (18 in
our case), it is rounded up to a multiple of that number.
Likewise, once it crosses the size of a complete sub-tree
(324 hosts), it is rounded up to the nearest multiple of
that number. These results show that our LaaS algo-
rithm provides an efficient solution for avoiding tenant
variability, as its cost is only about 10% for a wide range
of tenant sizes. Fig. 19 illustrates the cloud utilization
for the truncated Gaussian distribution. This distribu-
tion provides a harder test for the allocation algorithm,
since tenant sizes are made similar, and they may be
just beyond the above-mentioned thresholds of a leaf
size (18 hosts) or a sub-tree size (324 hosts). These
thresholds are where LaaS and the Simple are less effi-
cient when compared to Unconstrained. Simple suffers
from a particularly large fluctuation in utilization. LaaS
is more stable over the entire range, with about 90% uti-

Figure 19: Cloud utilization for a truncated
Gaussian distribution N (x, x/5) of tenant host
sizes in a cloud of 11,662 hosts.

Figure 20: Percentage of links that can be
turned off in the 3-level fat tree as a function
of the cloud utilization.

lization. There are also a few points where the Simple
heuristic provides a better utilization than LaaS. Note
that utilization stability is key to cloud vendors, since
changing the allocation algorithm dynamically would
require predicting the future size distribution, and thus
may produce worse results when the distribution does
not behave as expected.
Another aspect of LaaS is the knowledge of exact

links being used in the network. The calculated per-
centage of links not utilized, that could be turned off,
is provided in Fig. 20 for the LaaS Placement Approxi-
mation run with the Julich distribution of tenant sizes
on the large network. As can be observed, the average
percentage of links that could be turned off is linear
with the cloud utilization. As the utilization decreases
the number of unused links grows accordingly and the
network power can be linearly reduced.

6.2 System Implementation

We implemented the LaaS architecture by extending
the OpenStack Nova scheduler with a new service that
first runs the LaaS host and link allocation algorithm,
and then translates the resulting allocation to an SDN
controller that enforces the link isolation via routing
assignments.
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Figure 21: Average run-time per single tenant
allocation for Gaussian(x,x/5) tenant sizes.

Host and link allocation. The integration of the
LaaS algorithm was done on top of OpenStack (Icecube
release), utilizing filter type: AggregateMultiTenancy-
Isolation. This filter allows limiting tenant placement
to a group of hosts declared as an “aggregate”, which
is allocated to the specific tenant-id. Our automation,
provided as a standalone service on top of OpenStack’s
nova controller, obtains new tenant requests, and then
calls the LaaS allocation algorithm. If the allocation
succeeds, we invoke the command to create a new ag-
gregate that is further marked by the tenant-id. The
allocated hosts are then added to the aggregate. The
filter guarantees that a new host request, conducted by
a user that belongs to a specific tenant, is mapped to a
host that belongs to the tenant aggregate.
Network controller. We further implement a method
to provide the link allocation to the InfiniBand SDN
controller (OpenSM), which allows it to enforce the iso-
lation by changing routing. The controller supports
defining sub-topologies, by providing a file with a list of
the switch ports and hosts that form each sub-topology.
Then each sub-topology may have its own policy file
that determines how it is routed. We ran the SDN con-
troller over the simulated network of 1,728 hosts, as well
as over our 32-host experimental cluster.
Run-time. The LaaS Approximation scans through
all possible placements for valid link allocation. This
involves evaluating all possible combinations. Fig. 21
presents the average run-time per tenant request as
measured on an Intel➤ Xeon➤ CPU X5670 @ 2.93GHz.
The peak in run-time of about 5 msec appears just be-
low the average tenant size of 324, which is the exact
point where our algorithm first scans all possible place-
ments under a single sub-tree and continues with mul-
tiple sub-tree placement.

6.3 Evaluation of Tenant Performance

Given a full LaaS architecture implementation, we
have rerun the same traffic scenarios presented in Sec-
tion 3, and observed that the tenant run-time looks in-
deed independent of other tenants, thus achieving our

Figure 22: Simulated relative performance for
tenants running Stencil scientific-computing ap-
plications on a cloud of 1,728 hosts, either alone
or as 32 concurrent tenants. While tenant per-
formance degrades when placed unconstrained
(without link isolation), the performance of sin-
gle and multiple tenants with LaaS appears iden-
tical, fulfilling the promise of LaaS.

goal of isolation.
Fig. 22 presents the relative performance of single and

multiple tenants running Stencil scientific-computing
applications on a cloud of 1,728 hosts, under either Un-
constrained or LaaS, normalized by the performance of
a single tenant placed without constraints. It is an ex-
tension of Fig. 4. The figure illustrates many effects.
First, as already seen in Fig. 4, the performance of a
single tenant with Unconstrained significantly degrades
when other tenants are active, e.g. to 45% with 32-KB
message sizes. This is because the bare-metal allocation
of Unconstrained does not provide link isolation. Sec-
ond, under our LaaS algorithm, the single-tenant per-
formance is not impacted when the other tenants become
active (the third and fourth sets of columns look identi-
cal). This was the key goal of this work. LaaS prevents
any inter-tenant traffic contention. Finally, we can ob-
serve an additional surprising effect (first vs. third
sets of columns): the tenant performance is slightly im-
proved for small messages under LaaS versus the Un-
constrained allocation. The reason is that LaaS does
not accept tenants unless it can place them with no
contention, and therefore the resulting placement tends
to be tighter, thus improving the run-time performance
with small message sizes when the synchronization time
of the tasks is not negligible. The lower network diam-
eter of LaaS improves the synchronization time, which
is latency-dominated.

7. DISCUSSION

Recursive LaaS. When talking to industry vendors,
they pointed out simple extensions that would easily
generalize the use of LaaS. First, LaaS could be applied
recursively, by having each tenant application or each
sub-tenant reserve its own chunk of the cloud within
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the tenant’s chunk of the cloud. Second, LaaS could
also be applied in private clouds, with cloud chunks be-
ing reserved by applications instead of tenants. Third,
shared-cloud vendors could easily restrict LaaS to a sub-
set of their cloud, while keeping the remainder of their
cloud as it is today. This can be done by reserving
large portions of the topology to a virtual tenant that
is shared between many real tenants. Pre-allocation and
modification of that sub-topology is already supported
by our code. As a result, LaaS offers a smooth and
gradual transition to better service guarantees, enabling
cloud vendors to start only with the tenant owners who
are most ready to pay for it.
Off-the-shelf LaaS. LaaS is implementable today with
no extra hardware cost in existing switches and no host
changes. The algorithm requires only a moderate soft-
ware change in the allocation scheme, which we provide
as open source. It also relies on an isolated-routing fea-
ture of the SDN controller, which is already available in
InfiniBand and could be implemented in Ethernet SDN
controllers like OpenDaylight.
Proportional network power. LaaS eases the use
of an elastic network link power that would be made
proportional to cloud utilization [26]. This is because
it explicitly mentions which links and switches are to
be used, and therefore can turn off other links and
switches.
Heterogeneous LaaS. Host allocation in heteroge-
neous clouds involves allowing tenants to express their
required host features in terms of CPU, memory, disk
and available accelerators. On such systems, the host
allocation algorithm should allow the provider to trade
off the acceptance of a new tenant versus the cost of
the available hosts, which may be higher as their ca-
pabilities may exceed the user needs. Our LaaS algo-
rithm could support these requirements. Although this
requirement complicates the allocation algorithm, it is
feasible to support it in LaaS. First, it should use the
host costs to order the search. Second, it should try
all the possible divisors and select the one with best
accumulated cost. A trade-off between the resulting
fragmentation and the cost difference could extend it.
LaaS with VMs. LaaS could easily support multi-
ple tenants running as virtual machines (VMs) on the
same host. Assuming rate limits can be enforced by
the host (a feature supported by most modern network
cards), LaaS could treat each host as if it were two or
more hosts by a simple change of topology description.
Then each partition of the host can be allocated inde-
pendently.
LaaS with oversubscription. LaaS can also handle
partial-bisectional-bandwidth fat-trees (with a reduced
bisectional bandwidth closer to the roots). Assuming
the bandwidth is reduced by a factor p, each link allo-
cated should carry p flows. As long as the number D of

hosts allocated to the tenant on each leaf is a multiple
of p, we can simply divide D by p and apply the LaaS
algorithm. Note that on most fat trees, p is a divisor of
the number of ports anyway, and the extra constraint
on D only has a small effect on cloud utilization.
Non-FIFO tenant scheduling. We conservatively
evaluated our LaaS allocation algorithm assuming
FIFO scheduling of incoming tenants. To improve the
cloud utilization, we could equally rely on a non-FIFO
policy, e.g. by using back-filling, reservations, or a
jointly-optimal allocation of multiple tenants [30].
Energy Proportionality is another benefit of LaaS.
Since links are explicitly allocated, those links left un-
allocated can be proactively turned off and save power,
as opposed to only partially throttled down [26] when
traffic is load balanced over the network. We show that
with LaaS the number of used links is proportional to
the cloud utilization.

8. CONCLUSIONS

In this paper, we demonstrated that the interference
with other tenants causes a performance degradation in
cloud applications that may exceed 65%. We introduced
LaaS (Links as a Service), a novel cloud allocation and
routing technology that provides each tenant with the
same bandwidth as in its own private data center. We
showed that LaaS completely eliminates the application
performance degradation. We further explained how
LaaS can be used in clouds today without any change
of hardware, and showed how it can rely on open-source
software code that we contributed. Finally, we also used
previously-unpublished tenant-size statistics of a large
scientific-computing cloud, obtained over a long period
of time, to construct a random workload that illustrates
how isolation is possible at the cost of some 10% cloud
utilization loss.
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A. APPENDIX

A. LAAS SOFTWARE RELEASE 1.0

The software is provided in [27] under the directory
laas 1.0/ as well as in a single archive file: laas 1.0.tgz.
In this section, we provide all the information required
to get the LaaS service installed, and instructions to run
a demonstration of the service. We also provide the sim-
ulation setup used for obtaining the cluster utilization,
run-time and correctness.
The simulator and a service of LaaS are coded in

Python and are built on top of the core algorithm coded
in C++. At the heart of the package is the LaaS algo-
rithm coded in isol.cc. It is using facilities specific to
3-level fat-trees provided in ft3.cc and port-mask util-
ity class in portmask.cc used for tracking availability of
links. The laas.cc implements the service API provided
in laas.h and exposed in Python using SWIG which uses
the declarations in laas.i. We provide a scheduling sim-
ulator, to obtain cluster utility, in sim.py and a tenant
allocation service in laas service.py.

The LaaS service provides a RESTful interface and
serves tenant requests [?]. It outputs OpenStack com-
mand files required to control tenant host placement
and also provides SDN configuration files to enforce iso-
lation via packet routing/forwarding.
The scheduling simulator takes a CSV file with tenant

requests (id, size and arrival time) and process them in
a FIFO manner.

A.1 License

Due to the double-blind review this release of the soft-
ware is intended for SIGCOMM reviewers only. Please
do not distribute. Once we can add the copyright, this
software will be provided with a choice of GPLv2 or
BSD license and published on our website.

A.2 Content

The following sub-directories are included in this re-
lease:

• src - The core algorithm c++ and python ser-
vice/simulator

• bin - Random tenants generator and isol.log
checker

• examples - A set of files used by the demo below

Out of the entire set of source files, the one most
interesting for integration is lass.h which provides the
API exposed in Python.

A.3 Software dependency

• Any Linux environment, for example Ubuntu 12.04

• SWIG Version 2.0.11

• Python 2.7

• Python 2.7 Flask 0.7

• Python 2.7 Flask Restful 0.3.1

The Perl code (for utilities only) depends on:

• Perl v5.18.2

• Perl Math::Random 0.71

• Perl Math::Round 0.07

A.4 Installation

tar xvfz laas_1.0.tgz
cd laas_1.0/src
make

A.5 Running LaaS Service

1. Choose your cluster topology:
For ease of review we choose a small 2 level fat
tree. The example topology is XGFT(2; 4,8; 1,4).
Due to limitation of the current implementation
we represent it as if it were a 3 level fat tree with
one top switch: XGFT(3; 4,8,1; 1,4,1) The data
needed to run a larger topology is also included in
the examples directory.

2. Prepare name mapping file:
The LaaS engine eventually needs to configure
OpenStack and an SDN controller that rely on
physical naming and port numbering and not on
general fat-tree indexing. A file that provides map-
ping of the tree level, index within the tree and port
indexing to the actual cluster hardware is thus re-
quired. For this example topology we provide the
mapping file: examples/pgft m4 8 w1 4.csv.
The first line hints at the content of each column:
# lvl,swIdx,name,UP,upPorts,DN,dnPorts

The example line below describes a host, providing
its level is 0 and index is 10, its name is comp-11
and it has a single UP port, number 1, connecting
to L1 switch (on level 1).
0,10,comp-11,UP,1,,,,,,,,,,,,,,,,,,,,,,,,

An example L1 switch line is provided below. See
this is the 4th switch in L1, its name as recognized
by the SDN controller is SW L1 3 and its ports 5-8
are connecting to hosts:
1,3,SW_L1_3,UP,1,2,3,4,DN,5,6,7,8

Note: The file does not include any mapping for
the non existant level 3 switches.

3. Start the service:
Once started the LaaS service reports its address
and port. The Restful API is up and any change in
tenant status will result in updates in the OSCfg/
and SDNCfg/ directories.
|$ python ./src/laas_service.py -m 4,8,1 -w 1,4,1 \

-n examples/pgft_m4_8_w1_4.csv
|-I- Defined 64 up ports and 64 down port mappings
|
|* Running on http://127.0.0.1:12345/
|* Restarting with reloader
|-I- Defined 64 up ports and 64 down port mappings
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4. Run a demo:
We provide here an example sequence of calls to
the service. After each step we discuss the results
and the created files if any.

A.5.1 List tenants:

| $ curl http://localhost:12345/tenants
| {}

As expeted it returns an empty list

A.5.2 Create a tenant of 10 nodes:
(Expecting it will span 2.5 leafs.)
$ curl http://localhost:12345/tenants -d "id=4" -d "n=10" -X POST

| {
| "N": 10,
| "hosts": 10,
| "l1Ports": 10,
| "l2Ports": 0
| }

See how the tenant-id may be any number for which
there is no pre-existing tenant in the system. Let’s
inspect the created files. First see the new file in
the OSCfg:
cmd-1.log:
| #!/bin/bash
| #
| # Adding tenant 4 to OpenStack
| #
| echo Adding tenant 4 to OpenStack > OSCfg/cmd-1.log
| keystone tenant-create --name laas-tenant-4 \
| --description "LaaS Tenant 4" >> OSCfg/cmd-1.log
| tenantId=‘keystone tenant-get laas-tenant-4 | \
| awk ’/ id /{print $4}’‘ >> OSCfg/cmd-1.log
| nova aggregate-create laas-aggr-4 >> OSCfg/cmd-1.log
| nova aggregate-set-metadata laas-aggr-4 \
| filter_tenant_id=$tenantId >> OSCfg/cmd-1.log
| nova aggregate-add-host laas-aggr-4 comp-1 >> cmd-1.log
| nova aggregate-add-host laas-aggr-4 comp-2 >> cmd-1.log
| nova aggregate-add-host laas-aggr-4 comp-3 >> cmd-1.log
| nova aggregate-add-host laas-aggr-4 comp-4 >> cmd-1.log
| nova aggregate-add-host laas-aggr-4 comp-5 >> cmd-1.log
| nova aggregate-add-host laas-aggr-4 comp-6 >> cmd-1.log
| nova aggregate-add-host laas-aggr-4 comp-7 >> cmd-1.log
| nova aggregate-add-host laas-aggr-4 comp-8 >> cmd-1.log
| nova aggregate-add-host laas-aggr-4 comp-9 >> cmd-1.log
| nova aggregate-add-host laas-aggr-4 comp-10 >> cmd-1.log

Similarly, the SDNCfg/ directory now holds a full
set of configuration files required for OpenSM to
configure the network. We will not go through
the full description of these files but focus on the
groups.conf. This file now holds the definition of
the hosts and switch ports used by the first tenant:
| port-group
| name: T4-hcas
| obj_list:
| name=comp-1/U1:P1
| name=comp-2/U1:P1
| name=comp-3/U1:P1
| name=comp-4/U1:P1
| name=comp-5/U1:P1
| name=comp-6/U1:P1
| name=comp-7/U1:P1
| name=comp-8/U1:P1
| name=comp-9/U1:P1
| name=comp-10/U1:P1;
| end-port-group
|
| port-group
| name: T4-switches
| obj_list:
| name=SW_L1_2/U1 pmask=0x6
| name=SW_L1_0/U1 pmask=0x1e
| name=SW_L1_1/U1 pmask=0x1e;
| end-port-group

A.5.3 To fill in the network we create another
10-node tenant:

| $ curl http://localhost:12345/tenants -d "id=1" -d "n=10" -X POST
| {
| "N": 10,
| "hosts": 10,
| "l1Ports": 10,
| "l2Ports": 0
| }

A.5.4 List again the tenants:

| $ curl http://localhost:12345/tenants
| {
| "1": {
| "N": 10,
| "hosts": 10,
| "l1Ports": 10,
| "l2Ports": 0
| },
| "4": {
| "N": 10,
| "hosts": 10,
| "l1Ports": 10,
| "l2Ports": 0
| }
| }

A.5.5 Get the allocated hosts and links for a
specific tenant:

| $ curl http://localhost:12345/tenants/1/hosts
| [
| "comp-11",
| "comp-12",
| "comp-13",
| "comp-14",
| "comp-15",
| "comp-16",
| "comp-17",
| "comp-18",
| "comp-19",
| "comp-20"
| ]

As expected the four spines are going to be used
(all up ports of 2 leafs) and only 2 ports of the leaf
SW L1 2 holding just 2 nodes.
| $ curl http://localhost:12345/tenants/1/l1Ports
| [
| { "pNum": 3, "sName": "SW_L1_2" },
| { "pNum": 4, "sName": "SW_L1_2" },
| { "pNum": 1, "sName": "SW_L1_3" },
| { "pNum": 2, "sName": "SW_L1_3" },
| { "pNum": 3, "sName": "SW_L1_3" },
| { "pNum": 4, "sName": "SW_L1_3" },
| { "pNum": 1, "sName": "SW_L1_4" },
| { "pNum": 2, "sName": "SW_L1_4" },
| { "pNum": 3, "sName": "SW_L1_4" },
| { "pNum": 4, "sName": "SW_L1_4" }
| ]

A.5.6 A bad request example:
Now let’s see what happens if we try to over-
provision the cluster by requesting a tenant of
13 = 32− 20 + 1 hosts:
| $ curl http://localhost:12345/tenants -d "id=2" -d "n=13" -X POST
| {
| "message": "Fail to allocate tenant 2"
| }

A.5.7 Delete tenant 1:

| $ curl http://localhost:12345/tenants/1 -X DELETE

We now have a command file under OSCfg/ that
deletes the OpenStack tenant and aggregate
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| #!/bin/bash
| #
| # Removing tenant 1 from OpenStack
| #
| nova aggregate-remove-host laas-aggr-1 comp-11 >> cmd-3.log
| nova aggregate-remove-host laas-aggr-1 comp-12 >> cmd-3.log
| nova aggregate-remove-host laas-aggr-1 comp-13 >> cmd-3.log
| nova aggregate-remove-host laas-aggr-1 comp-14 >> cmd-3.log
| nova aggregate-remove-host laas-aggr-1 comp-15 >> cmd-3.log
| nova aggregate-remove-host laas-aggr-1 comp-16 >> cmd-3.log
| nova aggregate-remove-host laas-aggr-1 comp-17 >> cmd-3.log
| nova aggregate-remove-host laas-aggr-1 comp-18 >> cmd-3.log
| nova aggregate-remove-host laas-aggr-1 comp-19 >> cmd-3.log
| nova aggregate-remove-host laas-aggr-1 comp-20 >> cmd-3.log
| nova aggregate-delete laas-aggr-1 >> OSCfg/cmd-3.log
| keystone tenant-delete laas-tenant-1 >> OSCfg/cmd-3.log

A.5.8 Retry allocating the 13 nodes tenant:

| $ curl http://localhost:12345/tenants \
| -d "id=2" -d "n=13" -X POST
| {
| "N": 13,
| "hosts": 13,
| "l1Ports": 13,
| "l2Ports": 0
| }

A.6 Running Simulation of LaaS algorithm

In this section we provide instruction for the simula-
tion of a LaaS engine handling a large number of tenant
requests. The procedure provided here is similar to the
one used to obtain the results in the paper. In the
paper, we also used a scheduler that implements the
Simple and the Unconstrained algorithms.

1. Choose your cluster topology:
For example the maximal full bisection 3 level
XGFT with 36 port switches is: XGFT(3; 18,18,36;
1,18,18) It has 11,628 hosts, 648 L1, 648 L2 and 324
L3 switches.

2. Generate a set of tenant requests:
We do that by running the utility
bin/genJobsFlow: For this example we use
an exponential distribution with an average of
8 hosts. The tenant run time is uniformly dis-
tributed in the range [20,3000]. Please try –help
to see other possible options.

| ./bin/genJobsFlow -n 10000 -s 8 -r 20:3000 -a 0 > \
examples/exp=8_tenants=1000_arrival=0.csv

3. Run the simulator
After we have prepared the tenant requests file and
decided about the topology we can run:

| $ python ./src/sim.py -m 18,18,36 -w 1,18,18 \
| -c examples/exp=8_tenants=1000_arrival=0.csv
| -I- Obtained 10000 jobs
| -I- first waiting job at: 20 lastJobPlacementTime 10623
| -I- Total potential hosts * time = 1.23673e+08
| -I- Total considered jobs: 9976 skip first: 0 last: 24
| -I- Total actual hosts * time = 1.17281e+08
| -I- Host Utilization = 94.83 %
| -I- L1 Up Links Utilization = 38.36 %
| -I- L2 Up Links Utilization = 10.70 %
| -I- Total Links Utilization = 48.40 %
| -I- Run Time = 14.2 sec

The details of each allocation/deallocation are pro-
vided in the log file: isol.log. Each line describes
one transaction and contains the total hosts/links
as well as their detailed indices within the topology.

4. Check that the results are legal:
The checker needs to know the topology size. So it
requires this info on the command line:

checkAllocations -n/--hosts-per-leaf n
-k/--num-l1-per-l2 m2
-1/--total-l1s t1
-2/--total-l2s t2
-3/--total-l3s t3
-l/--log log-file

| $ ./bin/checkAllocations -n 18 -k 18 -1 648 -2 648 -3 324 \
| -l isol.log
| -I- Checked 10000 ADD and 8760 REM jobs
| -I- Added/Rem 35573/30117 L1PORTS and 567/482 L2PORTS

B. EXPERIMENTAL SETUP

B.1 Hardware

The experiment was run on the 32-node cluster pre-
sented in Fig. 2. The hosts are of two types:

• 30 hosts are HP ProLiant DL320e G8 E3-1220v2
B120i 2x1Gb 1x8GB 1x500GB HOT PLUG DVD-
RW 350W 3Y. Each containing 4-core Intel Xeon
CPU E3-1220 V2 at 3.10GHz.

• 2 hosts are IBM System x3450 servers featuring
Intel Xeon processors 2.80 GHz and 3.0 GHz/1600
MHz, with 12 MB L2, and 3.4 GHz/1600 MHz,
with 6 MB L2.

The InfiniBand NICs are: MHQH19-XTC Single 4X
IB QDR Port, PCIe Gen2 x8, Tall Bracket, RoHS-R5
HCA Card, QSFP Connector. The InfiniBand switches
are: MIS5024Q-1BFR 36-port non-blocking 40Gb/s un-
managed Switch System.

B.2 Software

The machines run Scientific Linux release 6.5 (Car-
bon). The MPI used is mvapich2-2.0rc2. Our ex-
periment uses a simple MPI program that executes
an MPI AllToAll collectives or 2 dimensional sten-
cil communications using ISend/IRecv followed by
MPI Barrier. The programs are provided under the
sub-directory mpi experiment. This directory also
holds the RUN script that was used to invoke each of
the 4 tenants MPI applications with a delay after invok-
ing the previous. The host files used are also included.

C. ETHERNET SIMULATIONS

For simulation of an Ethernet-based topology
we used an enhanced iNET framework. We
base our code on iNET 2.2 and extend it with
DCTCP modules. The switch forwarding is
also enhanced with ECMP-like forwarding with a
hash function that works modulo (SrcHostIndex +
DstHostIndex,NumberOfUpPorts). The parameters
used by the simulator are described in the following Ta-
ble 1.
The application used to generate the MapReduce

Shuffle stage is an application that runs Scatter and
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Parameter Value Description
MACRelayUnitPP.bufferSize 65,536 Per port buffer size, meaning total

buffer size = bufferSize*numRealPorts
MACRelayUnitPP.processingTime 3.00E-07 Switch processing delay
TCP.advertisedWindow 65,535 Receiver window of TCP
TCP.delayedAcksEnabled false No delayed ACKS
TCP.minRexmitTimeout 0.3 Minimal retransmission timeout
TCP.mss 1452 TCP MSS
TCP.nagleEnabled true TCP parameter
TCP.tcpAlgorithmClass DCTCPNewReno DCTCP based on NewReno is used
TCPScatterGatterClientApp.idleInterval exponential(200us) Time between successive Shuffles

(computation time)
TCPScatterGatterClientApp.reconnectInterval 1.00E-06 Time to setup the new connection
TCPScatterGatterClientApp.replyLength 2 Resolver reply just ACK
TCPScatterGatterClientApp.requestLength 65,536 Example data size of 64KiB from Map-

per to Resolver

Table 1: Ethernet model (iNET) parameters and their values

then Gather from a list of nodes. To mimic the Shuffle,
the Scatter provides parallel send of the Mapper data
size and the Gather is of size 2 bytes only.
The tenants are placed on hosts numbered:

Tenant 1: 7, 3, 25, 18, 0, 13, 24, 12
Tenant 2: 8, 9, 20, 29, 6, 1, 28, 5
Tenant 3: 11, 4, 16, 21, 2, 17, 22, 14
Tenant 4: 19, 15, 10, 27, 31, 26, 23, 30

D. INFINIBAND SIMULATIONS

The InfiniBand simulation utilizes Mellanox pub-
lished model [?]. We have enhanced this model with
an application that relies on MPI semantics and is able
to replay MPI traces. The parameters used for our sim-
ulation are provided in Table 2.
The tenants that are placed on the 1,728-node cluster

are of the sizes:

• Two tenants: the two are 810 and 834.

• Eight tenants: all are 216 nodes.

• Thirty two tenants: all are 54 nodes.

The tenants execute cycles of computation and com-
munication. The computation time is of uniform distri-
bution in the range [5, 15]µsec. So the traffic to com-
putation ratio for Stencil application exchanging 32KB
of data on each dimension is: Calculation = 10µsec.
Communication = 32KB

4GB/sec = 8µsec. So the ratio of

ideal computation to communication is 10/8 for 32KB
exchanges. For all-to-all shuffles we increase the compu-
tation time to be uniform in the range [20, 80]µsec, but
the data is sent to each other node in the tenant. So for
a 32KB exchange on an 8-node tenant, the ratio of com-
putation to ideal communication time is 50

7∗8 = 50/56.
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Module.Parameter Value Description
IBGenerator.flit2FlitGap 0.001 A gap inserted between flits [nsec]
IBGenerator.flitSize 64 The flit size (IB credit is 64 bytes)
IBGenerator.genDlyPerByte 2.5e-10 Speed of generating bytes [sec/B]
IBGenerator.maxContPkts 10 Maximum number of continuous packets of same application
IBGenerator.pkt2PktGap 0.001 Gap inserted between packets [nsec]
IBGenerator.popDlyPerByte 2e-10 speed of popping up data to next layer [sec/B]
IBInBuf.maxBeingSent 3 Switch speedup - number of parallel packets being drained from

input buffer
IBInBuf.maxStatic0 800 Buffer size [credits]
IBInBuf.maxVL 0 Maximal VL simulated
IBInBuf.width 4 Link withs is 4 lanes
IBOutBuf.credMinTime 0.256 Maximal time between credit updates [usec]
IBOutBuf.maxVL 0 Maximal VL simulated
IBOutBuf.size 66 Host output buffer size [B]
IBOutBuf.size 78 Switch port output buffer size [B]
IBSink.flitSize 64 The flit size (IB credit is 64 bytes)
IBSink.hiccupDelay 1e+06 The receiver may hiccup for 1usec
IBSink.hiccupDuration 0.0001 Length of a hiccup
IBSink.maxVL 0 Maximal VL simulated
IBSink.popDlyPerByte 2.5e-10 Speed of removing Bytes to the PCIe
IBVLArb.busWidth 24 Input bus width of the switch arbiter
IBVLArb.coreFreq 250,000,000 Switch core frequency
cModule.ISWDelay 50 Intrinsic latency of the switch input buffer [nsec]
cModule.VSWDelay 50 Intrinsic latency of the switch arbiter [nsec]

Table 2: InfiniBand model parameters and their values
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