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1 Theoretical background

Extinction: Radiance is a flow of photons. Light propagation through the atmosphere is affected by
interaction with air molecules and aerosols (airborne particles). Atmospheric constituents have an
extinction cross section for interaction with each individual photon. Per unit volume, the extinction
coefficient due to aerosols is βaerosol = σaerosoln. Here σaerosol denotes aerosol extinction cross
section and n denotes particle density. The total extinction is a sum of the aerosol and molecular
contributions, β = βaerosol + βair, where βair is modeled as a function of altitude and wavelength
λ [5]. The optical depth along a photon path S is

τ =

∫

S

dτ =

∫

S

(βaerosol + βair)dl =

∫

S

(σaerosoln+ βair)dl = τair +

∫

S

σaerosolndl , (1)

where τair =
∫

βairdl. Through a non-scattering atmosphere, the transmittance exponentially decays
with the optical depth:

t = exp(−τ) . (2)

Scattering: Suppose that a photon interacts with a single particle. The unitless single scattering

albedo ̟ of the particle, determines a probability for scattering. The aerosol single scattering albedo
is ̟aerosol. The scattering coefficient due to aerosols in the volume is αaerosol = ̟aerosolβaerosol =
̟aerosolσaerosoln. For non-isotropic scattering, an angular function defines the probability of photons
to scatter into each direction. Let ω,ψ ∈ S

2 (unit sphere) represent photon or ray directions.
The fraction of energy scattered from direction ψ towards direction ω is determined by a phase

function P (ω · ψ). The phase function is normalized: its integral over all solid angles is unity, and
is often approximated by a parametric expression. Specifically, the Henyey-Greenstein function,
parameterized by an anisotropy parameter −1 ≥ g ≥ 1, can approximate aerosol scattering [5]
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Figure 1: Integral (lightfield) imaging through a volumetric distribution in the atmosphere, using ground-
based cameras.

PHG(ω ·ψ) =
1

4π

1− g2

[

1 + g2 − 2g(ω ·ψ)
]

3
2

. (3)

Scattering by air molecules follows the Rayleigh model

PRay(ω ·ψ) =
3

16π

[

1 + (ω ·ψ)2
]

. (4)

In the visible range, air single scattering albedo is ̟air ≃ 1 and emission is negligible. For simplicity,
wavelength dependency is omitted.

Radiative Transfer Equation: The radiative transfer equation (RTE) describes the flow of radi-
ance I(X,ω) at position X, through a scattering medium [13]

∇ωI(X,ω) = −β(X)I(X,ω) + β(X)J(X,ω). (5)

Here J(X,ω) is the in scattering [13] volumetric field

J(X,ω) = ̟

∫

4π

P (ω,ψ)I(X,ψ)dψ. (6)

Denote the medium boundary by ∂Ω and the boundary radiance as I∂Ω. Let X∂Ω be the intersection
point of the boundary with a ray in direction ω. Integrating Eq. (5) along direction ω defines the
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integral form of the RTE (Fig. 1)

I(X,ω) = I∂Ωexp
[

−

∫

X∂Ω

X

β(r)dr
]

+

∫

X∂Ω

X

J(X′,ω)β(X′)exp
[

−

∫

X
′

X

β(r)dr
]

dX′. (7)

Monte Carlo (MC) is a popular numerical approach to solve Eqs. (5,6,7).

1.1 Monte Carlo Photon Tracking

Monte-Carlo is a stochastic approach that treats scattering and extinction as random phenomena
sampled from probability distributions. An inverse transform [6] samples random events according
to a specified probability density function. Let u be a random number drawn from a uniform
distribution in the unit interval: u ∼ U [0, 1]. The number u can be transformed into a random
variable χ, whose cumulative distribution function (CDF) is F (χ). The transform is defined by
χ = F−1(u), where F−1 denotes the inverse of F . For example consider a photon propagating in the
atmosphere. The photon has high probability of propagating as long as t is high, but the probability
diminishes as t→ 0. Thus Eq. (2) can be viewed as a probability density function, whose CDF is

F (τ) =

∫ τ

0

exp(−τ ′) dτ ′ = 1− exp(−τ). (8)

Each photon then propagates to a random optical depth

τ random = F−1(u) = − ln(1− u). (9)

Let location Xc to be the center of projection of a modeled camera c. Each pixel p collects
radiation flowing from a narrow cone around direction ωp. The raw image is ic(ωp). In order to
derive images ic(ωp), we describe two existing MC approaches [10].

1. Forward Monte Carlo (FMC): photons propagate from the source (sun) to the detector.

2. Backward Monte Carlo (BMC): photons propagate from the detector to the source.

1.1.1 Forward Monte Carlo Photon Tracking

In this approach, photons are generated at the source, illuminating the top of the atmosphere (TOA)
uniformly. Photons propagate from the TOA in direction ωsun. Each photon is traced through the
atmosphere. Photons that happen to reach camera c about direction ωp are counted as a contribution
to ic(ωp). A photon’s life cycle is then defined by the following steps (Fig. 2):

(i) Launch a photon-packet from the TOA in direction ωsun. This is the initial ray, denoted
R0. The packet has initial intensity I0.
Per iteration s:

(ii) Find the distance on ray Rs to which the photon-packet propagates. Eq. (9) yields τ random.
Then using Eq. (1), numerically seek lrandom s.t.

∫ lrandom

0

(σaerosoln+ βair)dl = τ random. (10)

Distance lrandom along Rs yields the 3D position Xs.
(iii) If Xs is outside the domain, the packet is terminated. If Rs passes through Xc, or a small

area around Xc, the packet is counted as contributing to the image pixel.
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Figure 2: [Left] Multi-view FMC with local estimation. [Right] Multi-view BMC with local estimation..

(iv) The type of particle (air molecule or aerosol) that the photon-packet interacts with at
point Xs is randomly determined by the relative extinction coefficients (βair vs. βaerosol) at the
voxel containing Xs.

(v) If the particle is an aerosol, the photon-packet intensity is attenuated to Is+1 = ̟aerosolIs.
If Is+1 is lower than a threshold, the packet is stochastically terminated, following [3].

(vi) The photon-packet is scattered to a new random direction, determined by inverse transform
sampling [14,15], according to the phase function of the particle (Eqs. 3,4). Let Φscatter = arcos(ω ·ψ)
be the off-axis scattering angle, relative to ψ. Given a random sample u ∼ U [0, 1],

Φscatter = arcos

{

1

2g

[

1 + g2 −
( g2 − 1

1 + 2gu− g

)]

}

(11)

for an aerosol particles, and

Φscatter =arcos(γ
1
3 − γ−

1
3 ) with γ = 4u− 2 +

[

(4u− 2)2 + 1
]

1
2

(12)

for molecules. The scattering azimuth angle around ψ is sampled from U [0, 2π]. Following this
scattering event, the photon traces a new ray, denoted Rs+1, and the next iteration of propagation
(ii) proceeds.

1.1.2 Local Estimation In FMC

The quality of FMC increases with the number of photons launched. Photons contributing to any
pixel are accumulated in two ways. One way is step iii above, which is a rare event. The second way
is Local estimation [10] which is used in conjunction to step vi, in every scattering event. The local
estimation contributions Wle expresses the probability that a photon scatters towards the camera
and reaches the camera without interacting again. Let Vs→c be the vector from the scattering point
Xs to Xc. Let ts→c be the transmittance (2) along Vs→c. Let ΦRs,c be the angle between Rs and
Vs→c. Let ̟, P be the respective albedo and phase function of the scattering particle. If a photon
scatters by an aerosol, then ̟ = ̟aerosol, P = PHG. If the photon scatters by a molecule then
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̟ = ̟air, P = PRay. Local estimation then contributes

Wle = ̟IsP (ΦRs,c)
ts→c

|Vs→c|
2 (13)

to pixel p in camera c. The factor |Vs→c|
−2

can be interpreted as consideration of Xs to be a point
radiation source. Due to this factor, FMC is unstable when the camera is in-situ i.e, inside the
scattering medium. Local estimation from scattering points Xs close to Xc lead to a large increase
of image variance. Hence, an infinite number of photons is needed for convergence when |Vs→c| → 0.

1.1.3 Backward Monte Carlo Photon Tracking

Numerically, BMC is very similar to the FMC. But, there are two major difference. First, from
pixel p at camera c a photon is launched in direction −ωp. Then the photon is traced back through
the atmosphere. A photon that happens to back-trace into the Sun, is counted as contribution to
pixel p. The second difference is the local estimation calculation as we detail below. BMC take the
following steps (Fig. 2):

(i) Launch a photon-packet from camera c to direction −ωp. This is the initial ray, denoted
R0. The packet has an initial intensity I0. Per iteration s:

(ii) Do as described in Sec. 1.1.1.
(iii) If Xs is outside the domain, the packet is terminated. If Rs||ωsun, the packet is counted

as contributing to pixel p.
(iv,v,vi) Do as described in Sec. 1.1.1.
Here too, local estimation is preformed in conjunction to step vi. Here local estimation derives

radiance back-traced to the sun, at each scattering event. Local estimation expresses the probability
that a back propagating photon scatters towards the Sun, then reaches the Sun without interacting
again. Let Vs→sun be the vector from the scattering point Xs to the TOA, directed to −ωsun

(Fig. 2[right]). Here ts→sun is the transmittance along Vs→sun, and ΦRs,sun is the angle between Rs

and Vs→sun. Local estimation then contributes

Wle = ̟IsP (ΦRs,sun)ts→sun. (14)

Since the Sun is out of the scattering medium and effectively located at infinity, there is no
|Vs→sun|

−2
factor at all. Hence sky-images simulated by BMC are stable even in-situ. A com-

parison is displayed in Fig. 3: FMC rendering is very noisy compared to BMC.

2 A Proposed Forward Model

As described in Sec. 1, a BMC sky-image simulator has a major stability advantage over FMC.
However BMC has drawbacks. BMC estimates radiance for one camera and one pixel at a time.
In contrast, each single FMC sample trajectory can contribute to multiple viewpoints and pixels
in parallel, using local-estimation (Fig. 2). This is efficient for simulating multiple cameras, which
observe an atmospheric domain from Nviews viewpoints.

We seek to use FMC for several reasons. First, FMC is more efficient for multi-pixel multi-
view simulations. Moreover, a gradient-based recovery, as in [1, 18], requires the volumetric fields
I(X,ω), J(X,ω), not only projected images. Volumetric fields are obtained using FMC without
local estimation, hence, are not prone to instabilities. To enable FMC in-situ, however, we need to
overcome the |Vs→c|

−2
instability. In this section, we describe a solution, disposing the |Vs→c|

−2

factor using voxelization of the field J .
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Figure 3: Comparison of rendering results using 107 initial photons.
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Figure 4: (a) Ray R
ρ

c,p intersects with voxel k creating a line-segment lρc,p(k). The spot size of k on the
image plane depends on the distance of k from camera c (A-B). Line-segment lLOS

c (m|k) is the intersection
between voxel m and line-segment [LOSc, k].

As illustrated in Fig. 1 the volumetric domain is discretized into a grid of Nvoxels rectangular
cuboid voxels, indexed by k or m. As a numerical approximation, assume that within any voxel,
the parameters β(k) ,σaerosol, ̟aerosol, and g are constants, e.g., corresponding to the values at each
voxel center.

Our RT solution has three steps: (i) Pre-calculate the geometry of the cameras-grid setup.
(ii) FMC simulation calculates the radiance scattered from voxel k in the direction of camera c.
(iii) Light attenuation along the LOS from voxel k to camera c.

2.1 Geometry

A camera sensor comprises of Npix pixels. Each pixel collects light from a narrow cone in the
atmosphere (Fig. 4a). The cone either contains or intersects some voxels, while remaining oblivious
to the rest. The radiant power contributed by voxel k to camera c is Rc(k), which we define in
detail in Sec. 2.3. Overall, radiance captured at the pixel from all voxels is a weighted sum of Rc(k)
over all voxels k. This sum is formulated by a sparse Npix × Nvoxels matrix operation Πc, having
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reciprocal area units
ic = ΠcRc . (15)

Here ic is the image, column-stacked to a vectorNpix long, andRc is a column-stacked representation
of Rc(k). The weights of Πc represent the relative portion of the radiant power contributing to
camera c, solely due to geometry.

These weights are pre-calculated as follows: Divide pixel p to Nrays points, from each of which
back-project a ray Rρ

c,p. The intersection length of Rρ
c,p (Fig. 4a) with voxel k is lρc,p(k). Let Vvoxel

be a voxel volume. The weight is then proportional to a normalized average intersection length,

Πc(p, k) =l̄c,p(k) =
1

NraysVvoxel

Nrays
∑

ρ=1

lρc,p(k) . (16)

Eqs. (15,16) express rendering. There is no factor proportional to |Vs→c|
−2

in Eqs. (15,16). This
factor is implicit in the weighted sum matrixΠc: each voxel contributes to several pixels, illuminating
a spot in the image plane. More rays pass through voxels closer to a camera. Thus, if a scattering
event occurs in a voxel for which |Vs→c| is small, the contribution to the image affects more pixels
than if the voxel had a large |Vs→c|. This is expressed by a larger spot in the image (Fig. 4a). Fig. 3
demonstrates our improvement relative to simple FMC (Sec. 1.1.1).

2.2 Scattered Radiance Calculation with FMC

Define the scattered radiance as L(X,ω) = J(X,ω)β(X). Using FMC, L(X,ω) can be estimated
by caching all the scattering events that occurred at X in direction ω. Our situation is simpler for
two reasons. First, we use a voxelized radiance grid. Hence X is discretized to the voxel index k.
Second, as shown below, we only need to store the scattered radiance that contributes to the discrete
set of Nviews cameras c = 1, ..., Nviews. We denote the power scattered from voxel k in the direction
of camera c by Lc(k). For each scattering event in voxel k, update Lc(k) by

Lc(k)← Lc(k) +̟IsP (ΦRs,c). (17)

Hence Lc is discretized in space and the relevant directions. Similarly, a discrete version of J(X,ω)
is

jc(k) =
Lc(k)

β(k)
. (18)

2.3 Optical Transmittance

The transmittance between X and Xc is

t(X,Xc) = exp
[

−

∫

X

Xc

β(r)dr
]

. (19)

Eq. (7) can be re-written as image rendering:

I(Xc,ωp) = A+

∫

X∂Ω

Xc

L(X′,ωp)t(X
′,Xc)dX

′, (20)

where A represents direct solar rays entering the camera. For each camera c, denote by [LOSc, k] a
LOS between camera c and the center of voxel k (Fig. 4b). Suppose this LOS intersects voxel m.
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The geometric length of this intersecting line segment is lLOS
c (m|k). Following Eq. (1), the optical

depth between the center of voxel k to camera c is

τLOSc
(k) =

∑

m∈[LOSc,k]

lLOS
c (m|k)β(m). (21)

Define a Nvoxels ×Nvoxels sparse matrix whose element (k,m) is

Wc(k,m) =

{

lLOS
c (m|k) if m ∈ [LOSc, k]
0 otherwise

. (22)

Let τLOSc
and β be column-stack vector representations of τLOSc

(k) and β(k), respectively. Then,
we can write Eq. (21) using matrix notation

τLOSc
=Wcβ. (23)

The discrete transmittance from the center of voxel k towards camera c is

Tc(k) = exp[−τLOSc
(k)]. (24)

Based on Eqs. (15,17,24)
Rc(k) = Lc(k)Tc(k) . (25)

Let Tc, Lc be the column stack vector representations of Tc(k) and Lc(k) respectively. A column-
stack vector of all voxel contributions to camera c is described by

Rc = Lc ⊙ Tc . (26)

Here ⊙ denotes the Hadamard (element-wise) product.
Let jc be a column-stack vector representation of jc(k). Then from Eqs. (15,18,26), excluding

direct sun light, the image is

ic(β) = Πc(jc ⊙ Yc) = Πc(jc ⊙ β ⊙ Tc) , (27)

where Yc = β ⊙ Tc. The value of pixel p in image c is

ic(p) =
1

NraysVvoxel

Nrays
∑

ρ=1

∑

k∈R
ρ
c,p

lρc,p(k)jc(k)β(k)Tc(k). (28)

Eqs.(15,27,28) are a discrete version of Eq. (20), excluding the direct solar irradiance of the camera.

3 Rendering Simulations

We tested the scenes used in [5], illustrated in Fig. 5. We briefly re-mention them here for clarity.
Geometry: The atmospheric domain is 50km2 × 50km2 wide, 10km thick. We use 80 × 80 × 120
voxels of size 625× 625× 83m. The field β(X) is discretized to a coarser 20× 20× 40 grid. The sun
is at zenith angle ΦSR = 45o. Following [5], the sun’s red-green-blue wavelengths intensity ratios
are 255 : 236 : 224. There are Nviews = 36 ground-based cameras placed uniformly with ∼ 7km
nearest-neighbor separation.
Aerosols: Two aerosols types were used all having ̟aerosol = 1:
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Figure 5: Aerosol distributions [5]. Haze blobs low density distribution. The aerosol density unit is
106 particles/m3.

1. An artificial aerosol having an isotropic phase function. The extinction cross sections are in
the red-green-blue (RGB) channels σaerosol

R = σaerosol
G = σaerosol

B = 17 µm−2.

2. Type 6 from the aerosol list in [7]. The anisotropy parameter per color channel is [gR, gG, gB] =
[0.763, 0.775, 0.786]. The extinction cross sections are [σaerosol

R , σaerosol
G , σaerosol

B ] = [16.5, 16.2, 15.9] µm−2.

Let nsealevel be a density of aerosols at sea level. Here we give a short description of the atmospheres.
More details are found in [5]. We simulated different aerosol distributions:

Atm1 Haze blobs (Fig. 5) of an isotropic aerosol, at low density (nsealevel ≈ 106).

Atm2 Haze blobs of an anisotropic aerosol, at low density (nsealevel ≈ 106).

Atm3 Haze blobs of an anisotropic aerosol, at high density (nsealevel ≈ 107).

All the Nviews imaging systems have a hemispherical field with Npix = 64 × 64. Fig. 6 compares
images rendered using:

1. BMC, initial 104 photons per pixel, i.e, ≈ 1.5 · 109 photons in total.

2. Proposed voxelized FMC, using initial 107 photons on the TOA, and Nrays = 10.

3. Single scattering approximation [5].

Rendering using our method is highly consistent with BMC rendering (Sec. 1.1.3), and similar to
the single-scattering results [5].
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fruitful discussions. We thank Mark Sheinin, Johanan Erez, Ina Talmon, Dani Yagodin for support.
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Figure 6: Image rendering and a middle horizontal line cross-section (green channel). [Top] Atm1, [middle]
Atm2, and [bottom] Atm3.
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