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Abstract

The likelihood decoder is a stochastic decoder that selects the decoded message at random, using
the posterior distribution of the true underlying message given the channel output. In this work,
we study a generalized version of this decoder where the posterior is proportional to a general func-
tion that depends only on the joint empirical distribution of the output vector and the codeword.
This framework allows both mismatched versions and universal (MMI) versions of the likelihood
decoder, as well as the corresponding ordinary deterministic decoders, among many others. We
provide a direct analysis method that yields the exact random coding exponent (as opposed to
separate upper bounds and lower bounds that turn out to be compatible, which were derived ear-
lier by Scarlett et al.). We also extend the result from pure channel coding to combined source
and channel coding (random binning followed by random channel coding) with side information
available to the decoder. Finally, returning to pure channel coding, we derive also an expurgated
exponent for the stochastic likelihood decoder, which turns out to be at least as tight (and in some
cases, strictly so) as the classical expurgated exponent of the maximum likelihood decoder, even
though the stochastic likelihood decoder is suboptimal.

Index Terms Stochastic decoder, likelihood decoder, random coding exponent, expurgated
exponent, random binning, source–channel coding.

∗This research is partially supported by the Israel Science Foundation (ISF), grant no. 412/12.

1

lesley
CCIT Report #891  December 2015



1 Introduction

The likelihood decoder for channel coding is a stochastic decoder that selects the decoded message

at random under the posterior distribution of the correct message given the received channel output

vector. The likelihood decoder has recently received some attention, with the primary motivation

that it lends itself to considerably simpler derivations of asymptotic upper bounds on the error

probability in a variety of problems of network information theory [17]. Owing to the duality

between source encoding and channel decoding, the likelihood encoder was also studied in the

context of rate–distortion coding [16].

More recently, in [15] exact error exponents have been derived for a mismatched version of the

likelihood decoder, assuming a discrete memoryless channel (DMC) and using the ensembles i.i.d.

and constant composition codes. It was shown in [15], among many other results, that in the

special case of the (matched) likelihood decoder, the random coding error exponents achieved, in

both ensembles, are exactly the same as the corresponding random coding error exponents of the

optimal maximum likelihood (ML) decoder.

The focus of this work is on further developments concerning the exact error exponent analysis

of [15], as well as on extensions and refinements of this analysis in several directions. In particular,

the main contributions of this work are the following.

1. Allowing a more general family of stochastic likelihood decoders, according to which the

probability of deciding on a given message is proportional to a general exponential function

of the joint empirical distribution of the codeword and the received channel output vector.

This is more general than the mismatched likelihood decoder of [15].

2. Providing a direct, exponentially tight derivation of the random coding exponent in a single

analysis, instead of the separate upper and lower bounds of [15] (which turn out to coincide).

Hence we believe that this analysis is somewhat simpler, at least conceptually.

3. Extending the scope to a situation of source–channel coding with side information at the

decoder, where the source coding part is based on random binning (similarly as in [11]),

thus covering a variety of settings of theoretical and practical interest, including joint source–

channel coding with side information.

4. Returning to pure channel coding, we derive also an expurgated bound. We point out that

when this result is applied to the ordinary likelihood decoder (which uses the real posterior

probability of each message), the resulting expurgated bound is guaranteed to be at least as

tight as the classical expurgated bound due to Csiszár, Körner and Marton [2], [3], which in

turn is at least as tight as Gallager’s expurgated bound [5]. This is in spite of the fact that

the likelihood decoder analyzed is suboptimal. We also demonstrate that the new expurgated

bound may strictly improve on the classical expurgated bound at least at high rates.

Finally, a few comments are in order regarding the error exponent analysis. The analysis tech-

nique used is primarily the type class enumeration method [7, Chap. 6], which has already proved

quite useful as a tool for obtaining exponentially tight random coding bounds in various contexts

(see, e.g., [8], [9], [10], for a sample). When it comes to the extension of the setup to source–channel

coding with side information, the ensemble of codes in our setting combines random binning (for
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the source coding part) and random coding (for the channel coding part), which is somewhat more

involved than ordinary error exponent analyses that involve either one but not both. This requires

quite a careful analysis, which similarly as in [11], is carried out in two steps: first, we take the

average probability of error over the ensemble of random binning codes, for a given channel code,

and at the second step, we average over the ensemble of channel codes.

The remaining part of the paper is organized as follows. In Section 2, we establish notation

conventions, provide some background, and define the objectives of this paper more accurately. In

Section 3, we re-derive the exact random coding exponent of [15] in an alternative way, as described

above. Section 4 is devoted to the extension to source–channel coding with side information, and

finally, Section 5 is about the expurgated bound.

2 Notation Conventions, Background and Objectives

2.1 Notation Conventions

Throughout the paper, random variables will be denoted by capital letters, specific values they may

take will be denoted by the corresponding lower case letters, and their alphabets will be denoted by

calligraphic letters. Random vectors and their realizations will be denoted, respectively, by capital

letters and the corresponding lower case letters, both in the bold face font. Their alphabets will be

superscripted by their dimensions. For example, the random vector X = (X1, . . . ,Xn), (n – positive

integer) may take a specific vector value x = (x1, . . . , xn) in X n, the n–th order Cartesian power of

X , which is the alphabet of each component of this vector. Sources and channels will be denoted

by the letters P , Q, and W , subscripted by the names of the relevant random variables/vectors and

their conditionings, if applicable, following the standard notation conventions, e.g., QX , QY |X , and

so on. For example, the joint distribution of (X,Y ), induced by QX and QY |X , will be denoted

by QXY and the corresponding marginal of Y will be denoted by QY . When there is no room for

ambiguity, the subscripts will be omitted. When we wish to refer to the joint distribution induced

by the input assignment QX and a conditional distribution other than QY |X , say WY |X , we denote

it by QX × W , or simply Q × W . In this case, the marginal of Y , that is induced by Q × W ,

will be denoted by (Q × W )Y . The probability of an event E will be denoted by Pr{E}, and the

expectation operator with respect to (w.r.t.) a probability distribution Q × P will be denoted

by EQ{·}. Again, the subscript will be omitted if the underlying probability distribution is clear

from the context. Concerning the notation of information measures, the entropy of a random

variable X, with a distribution Q, will be denoted by HQ(X). Similarly, for a joint distribution

Q of (X,Y ), the conditional entropy will be denoted by HQ(X|Y ), the mutual information will be

denoted by IQ(X;Y ), and so on. When we wish to focus our emphasis on the dependence of the

mutual information only upon the underlying joint distribution, we denote it instead by I(Q). The

relative entropy (or the Kullback–Leibler divergence) between two conditional distributions, QY |X
and WY |X (or simply W ), weighted by the input assignment QX , will be denoted and defined by

D(QY |X‖W |QX) = D(QXY ‖QX × W ) =
∑

x∈X
Q(x)

∑

y∈Y
Q(y|x) log

Q(y|x)

W (y|x)
, (1)

where here and throughout the sequel, logarithms will be understood to be defined with respect to

the natural basis.
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For two positive sequences an and bn, the notation an
·
= bn will stand for equality in the expo-

nential scale, that is, limn→∞
1
n log an

bn
= 0. Similarly, an

·
≤ bn means that lim supn→∞

1
n log an

bn
≤ 0,

and so on. The indicator function of an event E will be denoted by I{E}. The notation [x]+ will

stand for max{0, x}.

The empirical distribution of a sequence x ∈ X n, which will be denoted by P̂x, is the vector

of relative frequencies P̂x(x) of each symbol x ∈ X in x. The type class of x ∈ X n, denoted

T (x), is the set of all vectors x′ with P̂x′ = P̂x. When we wish to emphasize the dependence of

the type class on the empirical distribution P̂ , we will denote it by T (P̂ ). Information measures

associated with empirical distributions will be denoted with ‘hats’ and will be subscripted by the

sequences from which they are induced. For example, the entropy associated with P̂x, which is

the empirical entropy of x, will be denoted by Ĥx(X). An alternative notation, following the

conventions described in the previous paragraph, is H(P̂x). Similar conventions will apply to

the joint empirical distribution, the joint type class, the conditional empirical distributions and the

conditional type classes associated with pairs (and multiples) of sequences of length n. Accordingly,

P̂xy would be the joint empirical distribution of (x,y) = {(xi, yi)}
n
i=1, T (x,y) or T (P̂xy), will

denote the joint type class of (x,y), T (x|y) or T (P̂x|y|y), will stand for the conditional type

class of x given y, Ĥxy(X,Y ) or H(P̂xy), will designate the empirical joint entropy of x and y,

Ĥxy(X|Y ) will be the empirical conditional entropy, and Îxy(X;Y ) (or alternatively, I(P̂xy))

will denote empirical mutual information, etc.

2.2 Background – The Generalized Likelihood Decoder

Consider a DMC, designated by a matrix of single–letter input–output transition probabilities

{W (y|x), x ∈ X , y ∈ Y}. Here the channel input symbol x takes on values in a finite input

alphabet X , and the channel output symbol y takes on values in a finite output alphabet Y. When

the channel is fed by a vector x = (x1, . . . , xn) ∈ X n, it outputs a vector y = (y1, . . . , yn) ∈ Yn

according to

W (y|x) =
n

∏

t=1

W (yt|xt). (2)

A code Cn ⊆ X n is a collection of M = enR channel input vectors, {x0,x1, . . . ,xM−1}, R being

the coding rate in nats per channel use. It is assumed that all messages, m = 0, 1, . . . .M − 1, are

equally likely.

As is very common in the information theory literature, we will consider, throughout most of this

work, the random coding regime. The random coding ensemble considered (here, as well as as in

[15]) is the ensemble of constant composition codes, where each codeword is drawn independently

under the uniform distribution within a given type class T (QX). Once the code has been randomly

selected, it is revealed to both the encoder and the decoder.

When the transmitter wishes to convey a message m, it transmits the corresponding code-vector

xm via the channel, which in turn, stochastically maps it into an n–vector y according to (2). Upon

receiving y, the stochastic likelihood decoder randomly selects the estimated message m̂ according

to the induced posterior distribution of the transmitted message, i.e.,

Pr{m̂ = m0|y} = Pr{m = m0|y} =
W (y|xm0

)
∑M−1

m=0 W (y|xm)
. (3)

4



Inspired by earlier work on mismatched decoding (see, e.g., [4], [6], [13]), Scarlett et al. [15] studied

a mismatched version of the likelihood decoder, which is defined similarly as in (3), but with a

mismatched DMC W ′ replacing the true one, W . The main results of [15] are single–letter formulae

for the exact random coding error exponent of the mismatched likelihood decoder. Specifically, the

random coding exponent derived in [15] (see Lemma 1 therein) is given by

E(R) = min
QY |X

min
{Q′

Y |X
: (QX×Q′

Y |X
)Y =QY }

{

D(QY |X‖W |QX)+

[I(QX × Q′
Y |X) + [EQ log W ′(Y |X) − EQX×Q′

Y |X
log W ′(Y |X)]+ − R]+

}

. (4)

One of the interesting conclusions in [15] is that in the special case of the regular matched likelihood

decoder (W ′ = W ), this expression of the random coding error exponent coincides with that of the

classical ML decoder.

2.3 Objectives and Main Contributions

The generalized likelihood decoder (GLD) to be considered in this work, is defined according to

Pr{m̂ = m0|y} =
exp{ng(P̂xm0

y)}
∑M−1

m=0 exp{ng(P̂xmy)}
, (5)

where P̂xmy is the empirical distribution of (xm,y) (whose X-marginal, P̂x, coincides with Q)

and g is a given continuous, real valued functional of this empirical distribution.

This generalized likelihood decoder covers several important special cases. Obviously, the choice

g(P̂xmy) =
∑

x,y

P̂xmy(x, y) log W (y|x) (6)

corresponds to the ordinary likelihood decoder. Slightly more generally, one may introduce a

parameter β ≥ 0 and define

g(P̂xmy) = β
∑

x,y

P̂xmy(x, y) log W (y|x). (7)

Here, β controls the degree of skewedness of the distribution (5), in the spirit of the notion of finite–

temperature decoding [14]: while β = 1 corresponds to the usual stochastic likelihood decoder,

β → ∞ leads to the traditional (deterministic) ML decoder. Likewise,

g(P̂xmy) = β
∑

x,y

P̂xmy(x, y) log W ′(y|x) (8)

defines a family of mismatched likelihood decoders, bridging between the mismatched likelihood

decoder of [15] and the ordinary, deterministic mismatched decoder (although the parameter β

might as well be absorbed in W ′ in the form of a power of W ′). Yet another important example is

g(P̂xmy) = βI(P̂xmy), (9)

which is a parametric family of stochastic maximum mutual information (MMI) decoders, where

once again, β → ∞ yields the ordinary MMI universal decoder [2].

The main contributions in this paper are the following.
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1. Allowing the above described more general family of stochastic likelihood decoders (5) with a

general function g. While technically, this extension is quite straightforward,1 it is important

to allow g to be a general (not necessarily linear) functional of the joint empirical distribution,

as it covers, for example, the important class of MMI likelihood decoders with g defined as

in (9).

2. While in [15] eq. (4) is derived by separate analyses of an upper bound and a matching

lower bound, here we provide directly an exponentially tight derivation of the random coding

exponent in a single analysis. We believe that this analysis is somewhat simpler, at least

conceptually.

3. Extending the scope to a situation of source–channel coding with side information at the

decoder, where the source coding part is based on random binning (similarly as in [11]),

thus covering a variety of settings of theoretical and practical interest, including pure source

coding, pure channel coding, joint/separate source–channel coding with and without side

information, systematic coding, etc. Here, the distribution of the decoded source message

given the channel output y is assumed to be proportional to the product of two functions,

the first depending on the joint type of the source vector u and the side information v, and

the second one depends on the corresponding code word x(u) and the channel output y.

4. Returning to pure channel coding, we derive also an expurgated error exponent. An interesting

point to consider is that when this is applied to the ordinary likelihood decoder (3), the

resulting expurgated bound is guaranteed to be at least as tight as the classical expurgated

bound due to Csiszár, Körner and Marton [2], [3], and this is in spite of the fact that the

likelihood decoder analyzed is suboptimal. In this context, we study the example of the z–

channel and demonstrate that the new expurgated bound strictly improves on the classical

expurgated bound at high rates.

3 Another Derivation of the Random Coding Exponent

In this section, we provide an alternative derivation of E(R), given in (4), which is different from

the one in [15], as described in item no. 1 above.

Assuming, without loss of generality, that message m = 0 was transmitted, the average proba-

bility of error of the GLD is given by

P̄e = E

{

∑M−1
m=1 exp{ng(P̂XmY )}

∑M−1
m=0 exp{ng(P̂XmY )}

}

= E

[

E

{

∑M−1
m=1 exp{ng(P̂XmY )}

∑M−1
m=0 exp{ng(P̂XmY )}

∣

∣

∣

∣

X0,Y

}]

, (10)

where the inner expectation is taken w.r.t. the randomness of the incorrect codewords, X1, . . . ,XM−1,

and the outer expectation is taken w.r.t. the randomness of the transmitted codeword X0 and the

channel output Y . We first address the inner expectation for given realizations (X0,Y ) = (x0,y).

1Just replace EQ log W ′(Y |X) and EQX×Q′
Y |X

log W ′(Y |X), of (4), by g(Q) and g(QX × Q′
Y |X), respectively,
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Let Ny(Q′) denote the number of codewords, other than x0, whose joint empirical distribution

with y is given by Q′. Then,

P̄e(x0,y) = E

{ ∑M−1
m=1 exp{ng(P̂Xmy)}

exp{ng(P̂x0y)} +
∑M−1

m=1 exp{ng(P̂Xmy)}

}

=

∫ 1

0
Pr

{ ∑M−1
m=1 exp{ng(P̂Xmy)}

exp{ng(P̂x0y)} +
∑M−1

m=1 exp{ng(P̂Xmy)}
≥ t

}

dt

= n ·

∫ ∞

0
e−nθPr

{ ∑M−1
m=1 exp{ng(P̂Xmy)}

exp{ng(P̂x0y)} +
∑M−1

m=1 exp{ng(P̂Xmy)}
≥ e−nθ

}

dθ

= n ·

∫ ∞

0
e−nθPr

{

(1 − e−nθ)

M−1
∑

m=1

exp{ng(P̂Xmy)} ≥ e−nθ exp{ng(P̂x0y)}

}

dθ

·
=

∫ ∞

0
e−nθPr

{

M−1
∑

m=1

exp{ng(P̂Xmy)} ≥ exp{n[g(P̂x0y) − θ]}

}

dθ

·
=

∫ ∞

0
e−nθPr







∑

Q′

Ny(Q′)eng(Q′) ≥ exp{n[g(P̂x0y) − θ]}







dθ

·
=

∫ ∞

0
e−nθPr

{

max
Q′

Ny(Q′)eng(Q′) ≥ exp{n[g(P̂x0y) − θ]}

}

dθ

·
=

∫ ∞

0
e−nθPr

⋃

Q′

{

Ny(Q′)eng(Q′) ≥ exp{n[g(P̂x0y) − θ]}
}

dθ

·
=

∑

Q′

∫ ∞

0
e−nθPr

{

Ny(Q′)eng(Q′) ≥ exp{n[g(P̂x0y) − θ]}
}

dθ

·
= max

Q′

∫ ∞

0
e−nθPr

{

Ny(Q′)eng(Q′) ≥ exp{n[g(P̂x0y) − θ]}
}

dθ

·
= max

Q′

∫ ∞

0
e−nθPr

{

Ny(Q′) ≥ exp{n[g(P̂x0y) − g(Q′) − θ]}
}

dθ

∆
= max

Q′
P̄e(x0,y, Q′), (11)

where the unions, summations and the maximizations over {Q′} are understood to be taken over

all possible empirical distributions of sequence pairs of length n, whose X-marginals coincide with

QX . Henceforth, for the sake of simplicity and consistency with the earlier defined notation, we

replace the notation P̂x0y by Q. Now, given y, Ny(Q′) is a binomial random variable with enR

trials and success rate of the exponential order of e−nI(Q′). Therefore, using the techniques of [7,

Section 6.3]

Pr
{

Ny(Q′) ≥ exp{n[g(Q) − g(Q′) − θ]}
} ·

= e−nE1(θ,Q,Q′,R) (12)

where

E1(θ,Q,Q′, R) =

{

[I(Q′) − R]+ g(Q) − g(Q′) − θ ≤ [R − I(Q′)]+
∞ elsewhere

=

{

[I(Q′) − R]+ θ ≥ g(Q) − g(Q′) − [R − I(Q′)]+
∞ elsewhere

(13)
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and so,

P̄e(x0,y, Q) =

∫ ∞

0
e−nθPr

{

Ny(Q′) ≥ exp{n[g(Q) − g(Q′) − θ]}
}

dθ

·
=

∫ ∞

[g(Q)−g(Q′)−[R−I(Q′)]+]+

e−nθ · e−n[I(Q′)−R]+dθ

·
= exp

{

−n([I(Q′) − R]+ + [g(Q) − g(Q′) − [R − I(Q′)]+]+)
}

∆
= e−nE2(Q,Q′,R) (14)

where E2(Q,Q′, R) can also be written as

E2(Q,Q′, R) =

{

[I(Q′) − R + g(Q) − g(Q′)]+ R ≥ I(Q′)
I(Q′) − R + [g(Q) − g(Q′)]+ R < I(Q′)

(15)

As explained briefly in [15], this expression can be simplified as follows. First, for a given a ∈ IR

and b ∈ IR+, consider the identity2 [a − b]+ = [[a]+ − b]+, and applying it to the first line of (15)

with a = g(Q) − g(Q′) and b = R − I(Q′). Then, the first line of (15) can also be expressed as

[I(Q′) − R + [g(Q) − g(Q′)]+]+. Now, since the second line of (15) is non–negative, it can also be

expressed as [I(Q′) − R + [g(Q) − g(Q′)]+]+. Therefore

E2(Q,Q′, R) = [I(Q′) − R + [g(Q) − g(Q′)]+]+ (16)

regardless of whether R ≥ I(Q′) or R < I(Q′). Next, define

E3(Q,R) = min
Q′

E2(Q,Q′, R), (17)

where the minimization is over all joint distributions {Q′} whose X–marginal is consistent with

QX and whose Y –marginal agrees with QY . Finally, the error exponent of the GLD is given by

E(R) = min
Q

[D(Q‖QX × W ) + E3(Q,R)], (18)

where the minimization is over all joint distributions {Q} whose X-marginal is QX . This recovers

the expression (4) derived in [15].

Several comments are now in order.

1. First, observe that for g(Q) = I(Q), we have

E2(Q,Q′, R) = [I(Q′) − R + [I(Q) − I(Q′)]+]+ = [max{I(Q), I(Q′)} − R]+ ≥ [I(Q) − R]+ (19)

yielding

E(R) ≥ min
Q

{D(Q‖QX × W ) + [I(Q) − R]+}, (20)

which is exactly the random coding error exponent of the ML decoder [2]. This holds true also

for g(Q) = βI(Q), provided that β ≥ 1, since the exponent is monotonically increasing in β, but

on the other hand, cannot exceed the exponent of the ML decoder. This is in analogy to the case

2To see why this identity is true, observe that if a > b, then a > 0, which means a = [a]+ and the identity obviously
holds. Otherwise, if a ≤ b, then [a]+ ≤ b as well (again, due to the positivity of b), in which case both a − b and
[a]+ − b are non–positive, and so [a − b]+ = [[a]+ − b]+ = 0.
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g(Q) = β
∑

x,y Q(x, y) ln W (y|x), which was shown in [15] to achieve the same exponent as the ML

decoder even for β = 1, and therefore also for every β ≥ 1.

2. The highest achievable rate is calculated as follows: we seek a condition on R such that E(R) > 0,

namely, for all Q and all Q′ (consistent with Q),

D(Q‖QX × W ) + [I(Q′) − R + [g(Q) − g(Q′)]+]+ > 0 (21)

or, equivalently,

max
s,t∈[0,1]

{

D(Q‖QX × W ) + s[I(Q′) − R + t[g(Q) − g(Q′)]]
}

> 0. (22)

In other words, we need that for every Q and Q′, there exists s and t, both in [0, 1], such that

D(Q‖QX × W ) + s[I(Q′) − R + t[g(Q) − g(Q′)]] > 0. (23)

i.e.,

∀Q,Q′ ∃ s, t ∈ [0, 1]2 : R < I(Q′) + t[g(Q) − g(Q′)] +
D(Q‖QX × W )

s
(24)

which means

R < R0
∆
= min

Q
min
Q′

max
s,t∈[0,1]

{

I(Q′) + t[g(Q) − g(Q′)] +
D(Q‖QX × W )

s

}

= min
Q′

min
Q

{

I(Q′) + [g(QX × W ) − g(Q′)]+ QY |X = W

∞ QY |X 6= W

= min
Q′

{I(Q′) + t[g(QX × W ) − g(Q′)]+}. (25)

where it should be kept in mind that the minimization is over all {Q′} whose X–marginal is QX

and whose Y -marginal is consistent with QX × W . Obviously,

R0 ≤ min
Q

{I(Q)+ t[g(QX ×W )−g(Q)]+} = min{I(Q) : g(Q) ≤ g(QX ×W )} ≤ I(QX ×W ). (26)

A lower on the achievable rate bound can be obtained by

R0 ≥ max
t∈[0,1]

min
Q

{I(Q) − tg(Q) + tg(QX × W )}, (27)

which is tight when I(Q) − tg(Q) is convex in Q for every t ∈ [0, 1], as is the case when g is linear

in Q and when g(Q) = I(Q).

4 Extension to Source–Channel Coding With Side Information

Consider the communication system depicted in Fig. 1. Let (U ,V ) = {(Ut, Vt)}
n
t=1 be n indepen-

dent copies of a pair of random variables, (U, V ) ∼ PUV , taking on values in finite alphabets, U and

V, respectively. The vector U will designate the source vector to be encoded, whereas the vector

V will serve as correlated side information, available to the decoder. When a given realization

u = (u1, . . . , un) ∈ Un, of the finite alphabet source vector U , is fed into the system, it is encoded

into one out of M = enR bins, selected independently at random for every member of Un. Here,

R > 0 is referred to as the binning rate. The bin index j = b(u) is mapped into a channel input

9



vector x(j) ∈ X n, which in turn is transmitted across the channel W . The decoder estimates u

based on the channel output y and the side information sequence v, which is a realization of V . As

before, the various codewords {x(j)}M
j=1 are selected independently at random under the uniform

distribution across a given type class T (QX). With a slight abuse of notation, we will sometimes

denote x(j) = x[f(u)] by x[u].

decoderSI channel

channelchannel encoder

(random binning)

source encoderu j x

y

v

û

Figure 1: Slepian–Wolf source coding, followed by channel coding. The source u is source–channel encoded,
whereas the correlated SI v (described as being generated by a DMC fed by u) is available at the
decoder.

The stochastic likelihood decoder estimates u, using the channel output y = (y1, . . . , yn) and the

SI vector v = (v1, . . . , vn), according to

Pr{û = u0|v,y} =
P (u0,v)W (y|x[u0])

∑

u P (u,v)W (y|x[u])
. (28)

Accordingly, let us define the GLD for the source–channel coding system as

Pr{û = u0|v,y} =
exp{n[f(P̂u0v) + g(P̂x(u0)y)]}

∑

u exp{n[f(P̂uv) + g(P̂x(u)y)]}
, (29)

where g is as before and similarly, f is a continuous function of the joint empirical distribution of

u and v, P̂uv. The average probability of error of the GLD in this setting is taken w.r.t. the joint

ensemble of the random binning codes and the random channel codes described above. We refer

to the asymptotic exponential rate of this average error probability as the random binning–coding

error exponent of the GLD.

In order to characterize the random binning–coding error exponent of this GLD, we define the

following functions. For given joint distributions QU ′V and QX′Y of the pairs of random variables

(U ′, V ) and (X ′, Y ), respectively, we first define

h(QU ′V , QX′Y ) = f(QU ′V ) + g(QX′Y ). (30)
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Next define

E1(R,QUV ) = min
QU′V

[[f(QUV ) − f(QU ′V )]+ + R − H(U ′|V )]+, (31)

where H(U ′|V ) is the conditional entropy of U ′ given V induced by QU ′V , and

E2(R) = min
QUV

{D(QUV ‖PUV ) + E1(R,QUV )}. (32)

Now, for given joint distributions QUV , QXY , QU ′V and QX′Y , define

E3(QUV , QXY , QU ′V , QX′Y ) = [[h(QUV , QXY ) − h(QU ′V , QX′Y )]+ + I(X ′;Y ) − H(U ′|V )]+, (33)

where I(X ′;Y ) is the mutual information between X ′ given Y induced by QX′Y , and

E4(QUV , QXY ) = min
QU′V ,QX′Y

E3(QUV , QXY , QU ′V , QX′Y ). (34)

Finally, define

E5 = min
QUV ,QXY

[D(QUV ‖PUV ) + D(QY |X‖W |QX) + E4(QUV , QXY )]. (35)

The following theorem is proved in Appendix A.

Theorem 1 The random binning–coding error exponent of the GLD (29) is given by

E(R) = min{E2(R), E5}. (36)

Discussion

The term E2(R) corresponds to an error that occurs in the source coding stage, namely, in the

random binning. It is associated with confusion of the true source vector u with another possible

source vector u′, which is assigned to the same bin, that is, b(u′) = b(u). The other term stems from

the channel coding part. Here, the terms E3 and E4 play roles that are parallel to those of E2 and

E3 of Section 3. In other words, every conditional type of {u′} given v can thought of as a message

set that is effectively mapped into a channel sub-code at rate H(U ′|V ), which is the exponential

rate of the cardinality of a conditional type class. This conditional type of source vectors competes

with the true source vector u. When the binning rate R is small, the source coding exponent

E2(R) dominates, as the low binning rate is the primary obstacle to reliable communication, not

the channel noise. In the other extreme, when R is very large, the binning encoder becomes a one–

to–one mapping (with high probability) and we actually pass from separate source- and channel

coding to joint source–channel coding. Consequently, the dependence on R disappears.

The system considered in this section was also studied in [11], in the context of universal de-

coding, with the motivation that it provides a common umbrella to many relevant special cases,

including: separate/joint source–channel coding with/without side information, pure source coding

with decoder side information (Slepian–Wolf model), pure channel coding, and systematic coding

(see motivating discussion in [11]). The generality of the functions f and g in (29) adds consider-

ably many additional degrees of freedom to the model discussed, in each of the above mentioned

special cases. The various interesting choices of g have already been discussed before. Parallel

choices can be considered also for f , e.g., f(Q) = βEQ log P ′(U, V ) for a mismatched source met-

ric, f(Q) = −βHQ(U |V ) for a stochastic version of the universal minimum conditional entropy
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decoder, and so on. In particular, the choice f(Q)+ g(Q′) = β[IQ′(X;Y )−HQ(U |V )] is associated

with a stochastic version of the universal source–channel decoder considered in [11] (which is in

turn an extension of the one in [1]). It is not difficult to verify that the universal stochastic decoder

(29), with this choice of f(Q) + g(Q′), achieves the random binning–coding error exponent of the

optimal MAP decoder, for every β ≥ 1. This extends the main result of [11], which associated with

the corresponding deterministic decoder (β → ∞).

5 Expurgated Bound

In this section, we return to the pure channel coding setting of Section 3 and derive an expurgated

bound on the error probability of the GLD. For a given code Cn, the probability of error given that

message m was transmitted is given by

Pe|m(Cn) =
∑

m′ 6=m

∑

y

W (y|xm) ·
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)} +
∑

m′ 6=m exp{ng(P̂xm′y)}
. (37)

In order to characterize the expurgated exponent, we define first a few quantities. Let

α(R,QY ) = sup
{QX|Y : I(QXY )≤R}

[g(QXY ) − I(QXY )] + R, (38)

and

Γ(QXX′ , R) = inf
QY |XX′

{

D(QY |X‖W |QX) + IQ(X ′;Y |X)+

[max{g(QXY ), α(R,QY )} − g(QX′Y )]+} (39)

≡ inf
QY |XX′

{

EQ log[1/W (Y |X)] − H(Y |X,X ′)+

[max{g(QXY ), α(R,QY )} − g(QX′Y )]+} (40)

Our main result in this section is the following.

Theorem 2 There exists a sequence of constant composition codes, {Cn, n = 1, 2, . . .}, with com-

position QX , such that

lim inf
n→∞

[

−
log Pe|m(Cn)

n

]

≥ Egld

ex (R,QX), (41)

where

Egld

ex
(R,QX) = inf

{QXX′ : IQ(X;X′)≤R, QX′=QX}
[Γ(QXX′ , R) + IQ(X;X ′)] − R. (42)

Note that the expression of eq. (42) has the same structure as the Csiszár–Körner-Marton (CKM)

expurgated bound [3], [2], except that here the functional Γ(QXX′ , R) replaces the expected Bhat-

tacharyya distance (under QXX′) that appears in the CKM expurgated bound. The difference,

however, is that unlike the expected Bhattacharyya distance, Γ(QXX′ , R) depends, in general, on

R. As a consequence, the behavior of Egld
ex (R,QX) at high rates is not necessarily affine as the

CKM expurgated exponent, We will return to this point later on.

Proof of Theorem 2. Consider first the expression

Zm(y)
∆
=

∑

m′ 6=m

exp{ng(P̂xm′y)}. (43)
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Let ǫ > 0 be arbitrary small, and for every y ∈ Yn, define the set

Bǫ(m,y) =
{

Cn : Zm(y) ≤ exp{nα(R − ǫ, P̂y)}
}

. (44)

In Appendix B, we show that the vast majority of constant composition codes {Cn} (whose compo-

sition is QX), are outside Bǫ(m,y), simultaneously for all m and all y. More precisely, it is shown

in Appendix B that, considering the ensemble of randomly selected constant codes of type QX ,

Pr{Bǫ(m,y)} ≤ exp{−enǫ + nǫ + 1}, (45)

for every m and y, and so, by the union bound, this means that

Pr







⋃

m

⋃

y∈Yn

Bǫ(m,y)







∆
= Pr{Bǫ} ≤ enR|Y|n exp{−enǫ + nǫ + 1}, (46)

which still decays double–exponentially. Thus, for all codes in Gǫ = Bc
ǫ , which is the vast majority of

constant composition codes codes {Cn} with composition QX , we have Zm(y) ≥ exp{nα(R−ǫ, Q̂y)}

simultaneously for all m = 0, 1, . . . ,M − 1 and y ∈ Yn. Now, trivially,

exp{ng(P̂xm′y)}

exp{ng(P̂xmy)} +
∑

m′ 6=m exp{ng(P̂xm′y)}
≤ 1, (47)

and for a code in Gǫ
∆
= Bc

ǫ , we also have

exp{ng(P̂xm′y)}

exp{ng(P̂xmy)} +
∑

m′ 6=m exp{ng(Q̂xm′y)}
≤

exp{ng(P̂xm′y)}

exp{ng(P̂xmy)} + exp{nα(R − ǫ, P̂y)}
. (48)

Thus, for such a code

exp{ng(P̂xm′y)}

exp{ng(P̂xmy)} +
∑

m′ 6=m exp{ng(P̂xm′y)}
≤ min

{

1,
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)} + exp{nα(R − ǫ, P̂y)}

}

.

(49)

It follows that for every Cn ∈ Gǫ,

Pe|m(Cn) ≤
∑

m′ 6=m

∑

y

W (y|xm) · min

{

1,
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)} + exp{nα(R − ǫ, P̂y)}

}

·
=

∑

m′ 6=m

∑

y

W (y|xm) exp{−n[max{g(P̂xmy), α(R − ǫ, P̂y)} − g(P̂xm′y)]+}

·
=

∑

m′ 6=m

exp{−nΓ(P̂xmxm′ , R − ǫ)}

=
∑

QX′|X : QX′=QX

Nm(QXX′) exp{−nΓ(QXX′ , R − ǫ)} (50)

where Nm(QXX′) is the number of codewords {xm′} whose joint type with xm is exactly QXX′ ,

and where

∑

y

W (y|xm) exp{−n[max{g(Q̂xmy), α(R − ǫ, Q̂y)} − g(Q̂xm′y)]+}
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·
= max

QY |XX′

exp{n(HQ(Y |X,X ′) − HQ(Y |X) − D(Q̂Y |X‖W |P ) −

[max{g(QXY ), α(R − ǫ,QY )} − g(QX′Y )]+)}

= exp

{

−n min
QY |XX′

[

D(Q̂Y |X‖W |P ) + IQ(X ′;Y |X)+

[max{g(QXY ), α(R − ǫ,QY )} − g(QX′Y )]+]}

= exp{−nΓ(QXX′ , R − ǫ)}. (51)

Now, as is shown in Appendix C, for most codes in Gǫ,

Nm(QXX′) ≤

{

exp{n[R − IQ(X;X ′)]} R ≥ IQ(X;X ′)
0 R < IQ(X;X ′)

(52)

for all m and all QXX′ , and so, considering the arbitrariness of ǫ, the expurgated error exponent is

given by

Egld

ex (R,QX) = min
{QXX′ : IQ(X;X′)≤,QX′=QX}

[Γ(QXX′ , R) + IQ(X;X ′)] − R (53)

This completes the proof of Theorem 2. �

It is interesting to note an important difference between the first steps in the derivation in the

proof of Theorem 2 above, and the first steps in the derivation of the ordinary expurgated bound.

While for the ordinary expurgated bound, the starting point is the inequality

Pe|m(Cn) =
∑

m′ 6=m

∑

y

W (y|xm) ·

√

W (y|xm′)

W (y|xm)
(54)

or, more generally,

Pe|m(Cn) =
∑

m′ 6=m

∑

y

W (y|xm) ·





e
ng(P̂x

m′y)

eng(P̂xmy)





γ

, γ ≥ 0, (55)

the above derivation in the proof of Theorem 2 begins from from the inequality

Pe|m(Cn) =
∑

m′ 6=m

∑

y

W (y|xm) · min

{

1,
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)} + exp{nα(R − ǫ, P̂y)}

}

. (56)

It is easy to argue that for γ ∈ [0, 1] (and in particular, γ = 1/2, used at least when g(Q) =
∑

x,y Q(x, y) ln W (y|x)):

min

{

1,
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)} + exp{nα(R − ǫ, P̂y)}

}

≤





e
ng(P̂x

m′y )

eng(P̂xmy)





γ

. (57)

To see why this is true, let us distinguish between the cases g(P̂xm′y) ≤ g(P̂xmy) and g(P̂xm′y) >

g(P̂xmy). In the former case,

min

{

1,
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)} + exp{nα(R − ǫ, P̂y)}

}

(58)

≤
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)}
(59)

14



≤

[

exp{ng(P̂xm′y)}

exp{ng(P̂xmy)}

]γ

. (60)

In the latter case, the right–hand side of (57) exceeds unity, whereas the left–hand side is always

less than unity. Since all the subsequent derivations in the proof of Theorem 2 are exponentially

tight (by the method of types), the conclusion from this observation is that at least for the choice

g(Q) =
∑

x,y Q(x, y) log W (y|x), the new expurgated bound, Egld

ex
(R,QX), is at least as tight as

the CKM expurgated bound. In the next example, we demonstrate that it may indeed be strictly

tighter than the CKM expurgated bound at least at relatively high rates.

Example – the Z-Channel. Consider the z–channel with X = Y = {0, 1}, which is parametrized by

w ∈ [0, 1] as follows:

W (y|x) =















w x = y = 0
1 − w x = 0, y = 1
0 x = 1, y = 0
1 x = y = 1

(61)

and let the input assignment be QX(0) = QX(1) = 1/2. Let g(Q) = EQ log W (Y |X). In the case

of the z–channel, any joint empirical distribution QXY for which g(QXY ) > −∞, must also be of

the z–form:

QXY (x, y) =















q/2 x = y = 0
(1 − q)/2 x = 0, y = 1
0 x = 1, y = 0
1/2 x = y = 1

(62)

where q ∈ [0, 1] designates the associated empirical transition probability from X = 0 to Y = 0.

Thus,

QY (y) =

{

q/2 y = 0
1 − q/2 y = 1

(63)

Now,

g(QXY ) = g(q)
∆
=

{ q
2 log w + 1−q

2 log(1 − w) QXY (0, 1) = 0
−∞ QXY (0, 1) > 0

(64)

We begin from the calculation of α(R,QY ), which will be denoted by α(R, q). We observe that for

a given QY , which means actually, a given q, there is only one empirical channel, so here, the set

{QX|Y : I(QXY ) ≤ R} is either a singleton or an empty set, depending on q and R. The mutual

information for a given q is

I(QXY ) = I(q) = h
(q

2

)

−
1

2
h(q), (65)

where h(·) is the binary entropy function. Thus,

α(R, q) =

{ q
2 log w + 1−q

2 log(1 − w) − I(q) + R I(q) ≤ R
−∞ I(q) > R

(66)

and so,

max{g(QXY ), α(R,QY )} = max{g(q), α(R, q)} = g(q) + [R − I(q)]+. (67)

which yields

[max{g(QXY ), α(R,QY )} − g(QX′Y )]+ = [g(q) + [R − I(q)]+ − g(q)]+ = [R − I(q)]+. (68)
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For a given q, which is actually a given P̂y , and a given pair of codewords {xm,xm′}, with a joint

empirical distribution Q̂XX′ . we are summing in (51) the expression eng(q) · e−n[R−I(q)]+ over all

y, but the summand is positive only for y for which both P̂xmy and P̂xm′y agree with QXY as

defined above (with q). This can be the case only if q ≤ 2QXX′(0, 0) and

QY |XX′(0|0, 0) =
q

2QXX′(0, 0)
(69)

QY |XX′(1|0, 0) = 1 −
q

2QXX′(0, 0)
(70)

QY |XX′(0|0, 1) = QY |XX′(0|1, 0) = QY |XX′(0|1, 1) = 0. (71)

The above–mentioned sum is therefore of the exponential order of

exp

{

n

[

QXX′(0, 0)h2

(

q

2QXX′(0, 0)

)

+ g(q) − [R − I(q)]+

]}

.

and so,

Γ(QXX′ , R) = [R − I(q)]+ − g(q) − QXX′(0, 0) · h

(

q

2QXX′(0, 0)

)

. (72)

Let us denote θ = QXX′(0, 0) (θ ≤ 1/2), so

Γ(θ) = [R − I(q)]+ − g(q) − θh
( q

2θ

)

. (73)

Note that since both marginals of QXX′ are binary symmetric sources, then QXX′(1, 0) = QXX′(0, 1) =

1/2 − θ and QXX′(1, 1) = θ. Now,

I(QXX′) = I(θ)
∆
= 2θ log

θ

1/4
+ 2

(

1

2
− θ

)

log
1/2 − θ

1/4
= log 2 − h(2θ). (74)

It follows that QXX′(1, 0) = QXX′(0, 1) = 1/2 − θ and QXX′(1, 1) = θ. Now,

I(QXX′) = I(θ)
∆
= 2θ log

θ

1/4
+ 2

(

1

2
− θ

)

log
1/2 − θ

1/4
= log 2 − h(2θ). (75)

It follows that

Egld

ex
(R,QX) = min

{θ: log 2−h(2θ)≤R, θ≤1/2}
min
q≤2θ

{

[R − I(q)]+ − g(q) − h(2θ) − θh
( q

2θ

)}

+ log 2 − R.

(76)

The ordinary expurgated bound (CKM), on the other hand, is given by

Eex(R,QX) =







−1
2h−1(log 2 − R) log(1 − w) R ≤ log 2 − h

(

1
1+

√
1−w

)

log 2
1+

√
1−w

− R R > log 2 − h
(

1
1+

√
1−w

) (77)

Interestingly, if the non–negative term [R − I(q)]+ is discarded from (76), which results in a lower

bound to Egld
ex (R,QX), then the minimization of the remaining expression can easily be carried out

analytically, and it turns out to yield exactly the same expression as that of the CKM expurgated

exponent in eq. (77). Thus, it is the term [R − I(q)]+ that has the potential to improve on the

CKM expurgated exponent, at least at relatively high rates. Indeed, in Fig. 2, we see comparative

plots of the CKM expurgated exponent (in blue) and the new expurgated exponent (in green) as

well as the random coding error exponent (in red), all for w = 0.9. As can be seen, while the

CKM expurgated exponent descends linearly for high rates (as is well known), the new expurgated
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exponent departs from it in the high rate region, and it seems to follow the curve of the random

coding exponent. In other words, at least in this example, the new expurgated exponent seems to

follow the maximum between the random coding exponent and the CKM exponent, and therefore

to improve on the CKM expurgated exponent at high rates. This is in spite of the fact that the new

expurgated exponent was developed for a sub-optimal decoder. We believe that one of the reasons

for this improvement is that the new expurgated bound is not based on the union bound, which is

inherently the starting point of the classic expurgated bound, and also its weakness at high rates.

In future research, it would be interesting to explore the new expurgated bound in additional

examples and see if it may improve on existing lower bounds to the reliability function, and thereby

shrink the gap between the well known lower bounds and upper bounds to this function.
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Figure 2: Various exponents for the z–channel with parameter w = 0.9. The red (solid) curve is
the random coding bound, the blue (dashed) one is the classical expurgated bound, and
the green (dashed) curve is the new expurgated bound. The latter seems to behave as
the maximum between the first two.

Appendix A

Proof of Theorem 1. The proof is based on the same technique as in the derivation in Section 3, as

well as in [11]. The probability of error is given by

P̄e = E

{
∑

u′ 6=U exp{n[f(Q̂u′V ) + g(Q̂X(u′)Y )]}
∑

u′ exp{n[f(Q̂u′V ) + g(Q̂X(u′)Y )]}

}

. (A.1)

Let us condition first on (U = u0,V = v, b(u0) = j0,X(j0) = x0,Y = y) and take the expectation

only w.r.t. the random binning of source vectors other than u0 and codewords other than X(j0).

Using the same technique as before, we assess the conditional probability of error as

P̄e(u0,v, j0,x0,y)
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·
=

∫ ∞

0
e−nθ · Pr

{

∑

u′

exp{n[f(Q̂u′v) + g(Q̂X(u′)y)]} ≥

exp{n[f(Q̂u0v) + g(Q̂X(u0)y) − θ]}
}

dθ. (A.2)

We first condition on the channel code Cn = {x0,x1, . . . ,xM−1}, M = enR, and calculate the

probability only w.r.t. the randomness of the binning. Consider the following decomposition:
∑

u′

exp{n[f(P̂u′v) + g(P̂x(u′)y)]}

=
∑

u′:b(u′)=b(u)

exp{n[f(P̂u′v) + g(P̂x(u′)y)]} +
∑

u′:b(u′)6=b(u)

exp{n[f(P̂u′v) + g(P̂x(u′)y)]}

= exp{ng(P̂x(u)y)} ·
∑

u′:b(u′)=b(u)

exp{nf(P̂u′v)} +
∑

u′:b(u′)6=b(u)

exp{n[f(P̂u′v) + g(P̂x(u′)y)]}

∆
= Z1 + Z2. (A.3)

Then, obviously,

Pr

{

∑

u′

exp{n[f(P̂u′v) + g(P̂x(u′)y)]} ≥ exp{n[f(P̂u0v) + g(P̂x0y) − θ]}

}

·
= Pr

{

Z1 ≥ exp{n[f(P̂u0v) + g(P̂x0y) − θ]}
}

+

Pr
{

Z2 ≥ exp{n[f(P̂u0v) + g(P̂x0y) − θ]}
}

. (A.4)

Let us begin with the first term,

Pr
{

Z1 ≥ exp{n[f(P̂uv) + g(P̂x(u)y) − θ]}
}

= Pr







∑

u′:b(u′)=b(u)

exp{nf(P̂u′v)} ≥ exp{n[f(P̂u0v) − θ]}







. (A.5)

Denote Cn(u) = {u′ : b(u′) = b(u)}, and for a given conditional type QU ′|V of u′ given v, let

N(QU ′|V ) = |Cn(u′)
⋂

T (QU ′|V |v)|. (A.6)

Obviously, N(QU ′|V ) is a binomial random variable with |T (QU ′|V |v)|
·
= enH(U ′|V ) trials and prob-

ability of success e−nR. Therefore,

Pr







∑

u′:x(u′)=x(u)

exp{nf(P̂u′v)} ≥ exp{n[f(P̂u0v) − θ]}







= Pr







∑

QU′V

N(QU ′V )enf(QU′V ) ≥ en[f(P̂u0v)−θ]







·
= max

QU′V

Pr
{

N(QU ′V ) ≥ en[f(P̂u0v)−f(QU′V )−θ]
}

= exp{−nF1(R, P̂u0v, θ)} (A.7)

where

F1(R, P̂u0v, θ) = min
QU′V

{[R − H(U ′|V )]+ : f(P̂u0v) − f(QU ′V ) − θ ≤ [H(U ′|V ) − R]+}
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= min
QU′V

{[R − H(U ′|V )]+ : θ ≥ f(P̂u0v) − f(QU ′V ) − [H(U ′|V ) − R]+}(A.8)

where the minimum over {QU ′V } is subject to the constraint that its V –marginal coincides with

P̂v. Consequently, the contribution of Z1 to the conditional probability of error, which we denote

by P̄e1(u0,v, j0,x0,y), is the following:

P̄e1(u0,v, j0,x0,y)

·
=

∫ ∞

0
e−nθ exp{−nF1(R, P̂u0v, θ)}dθ

·
=

∫ ∞

[f(P̂u0v)−f(QU′V )−[H(U ′|V )−R]+]+

e−nθ exp{−n[R − H(U ′|V )]+}dθ

·
= e−nE1(R,P̂u0v) (A.9)

with

E1(R, P̂u0v) = min
QU′V

{

[R − H(U ′|V )]+ + [f(P̂u0v) − f(QU ′V ) − [H(U ′|V ) − R]+]+

}

= min
QU′V

{

[f(P̂u0v) − f(QU ′V ) + R − H(U ′|V )]+ R < H(U ′|V )

R − H(U ′|V ) + [f(P̂u0v) − f(QU ′V )]+ R ≥ H(U ′|V )

= min
QU′V

[[f(P̂u0v) − f(QU ′V )]+ + R − H(U ′|V )]+ (A.10)

The overall contribution of Z1 to the (unconditional) probability of error is therefore

P̄e1
·
= e−nE2(R) (A.11)

where

E2(R) = min
QUV

{D(QUV ‖PUV ) + E1(R,QUV )}, (A.12)

as defined also in Section 4.

We next move on to handle Z2, which we have defined as

Z2 =
∑

u′: b(u′)6=b(u)

exp{n[f(P̂u′v) + g(P̂x(u′)y)]}

=
∑

T (QU′|V |v)

enf(QU′V )
∑

T (QX′|Y |y)

eng(QX′Y )
∑

u′∈T (QU′|V |v)

I[b(u′) 6= b(u)] · I[X(u′) ∈ T (QX′|Y |y)]

∆
=

∑

T (QU′|V |v)

enf(QU′V )
∑

T (QX′|Y |y)

eng(QX′Y )N(QU ′V , QX′Y ). (A.13)

Now, for a given channel code Cn, N(QU ′V , QX′Y ) is a binomial random variable with exponentially

enH(U ′|V ) trials and probability of success (1− e−nR)|(Cn \ {x0})∩T (x′|y)|/(|Cn| − 1)
·
= e−nR|(Cn \

{x0}) ∩ T (x′|y)|
∆
= e−nS(QX′Y ). Thus,

Pr







∑

T (QU′|V |v)

enf(QU′V )
∑

T (QX′|Y |y)

eng(QX′Y )N(QU ′V , QX′Y ) ≥ exp{n[f(P̂u0v) + g(P̂x0y) − θ]}







·
= max

QU′V ,QX′Y

Pr
{

N(QU ′V , QX′Y ) ≥ exp{n[f(P̂u0v) + g(P̂x0y) − f(QU ′V ) − g(QX′Y ) − θ]}
}

. (A.14)
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We henceforth use the shorthand notation h(QU ′V , QX′Y ) = f(QU ′V ) + g(QX′Y ), as defined in

Section 4. The exponential order of the last probability is given by

F2(QUV , QXY , θ) = min
QU′V ,QX′Y

{

[S(QX′Y ) − H(U ′|V )]+ : θ ≥ h(QUV , QXY )−

h(QU ′V , QX′Y ) − [H(U ′|V ) − S(QX′Y )]+
}

(A.15)

Now,

max
QU′V ,QX′Y

∫ ∞

0
e−nθ exp{−nF2(QUV , QXY , θ)}dθ

·
= max

QU′V ,QX′Y

∫ ∞

[h(QUV ,(QXY )−h(QU′V ,(QX′Y )−[H(U ′|V )−S(QX′Y )]+]+

e−nθ exp{−n[S(QX′Y ) − H(U ′|V )]+}dθ

·
= exp{−n min

QU′V ,QX′Y

E3(QUV , QXY , QU ′V , QX′Y , S(QX′Y ))} (A.16)

where for a given S,

E3(QUV , QXY , QU ′V , QX′Y , S)
∆
=

{

[S − H(U ′|V )]+ + [h(QUV , QXY ) − h(QU ′V , QX′Y ) − [H(U ′|V ) − S]+]+
}

= min
QU′V ,QX′Y

{

[h(QUV , QXY ) − h(QU ′V , QX′Y ) + S − H(U ′|V )]+ S < H(U ′|V )
S − H(U ′|V ) + [h(QUV , QXY ) − h(QU ′V , QX′Y )]+ S ≥ H(U ′|V )

= [[h(QUV , QXY ) − h(QU ′V , QX′Y )]+ + S − H(U ′|V )]+ (A.17)

It remains to average this expression w.r.t. the randomness of the channel code Cn. For a given

QX′Y , it follows from the definition of S(QX′Y ) that S(QX′Y ) = R− 1
n log N(QX′Y ) where N(QX′Y )

is the number of codewords in Cn \ {x0} whose joint type with y is QX′Y . Now, N(QX′Y ) is a

binomial random variable with enR trials and probability of success of the exponential order of

e−nI(X′;Y ). Therefore, the expectation of exp{−nE3(QUV , QXY , QU ′V , QX′Y , S(QX′Y ))} w.r.t. the

randomness of the code is assessed as follows. Let ǫ > 0 be arbitrarily small. Then the desired

average is upper bounded by
∑

i≥0

Pr
{

eniǫ ≤ N(QX′Y ) < en(i+1)ǫ
}

· exp{−nE3(QUV , QXY , QU ′V , QX′Y , R − (i + 1)ǫ)}

·
= max

0≤i≤[R−I(X′;Y )]+/ǫ
exp{−n[I(X ′;Y ) − R]+} · exp{−nE3(QUV , QXY , QU ′V , QX′Y , R − (i + 1)ǫ)}

·
= exp{−n[I(X ′;Y ) − R]+} · exp{−nE3(QUV , QXY , QU ′V , QX′Y , R − [R − I(X ′;Y )]+) − ǫ}

= exp{−nE3(QUV , QXY , QU ′V , QX′Y , I(X ′;Y ) − ǫ)}, (A.18)

but since ǫ > 0 is arbitrary, E3(QUV , QXY , QU ′V , QX′Y , I(X ′;Y )) can be approached as closely as

desired. We henceforth omit the term ǫ in E3 and denote

E4(QUV , QXY ) = min
QU′V ,QX′Y

E3(QUV , QXY , QU ′V , QX′Y , I(X ′;Y )), (A.19)

the overall contribution of Z2 to the average probability of error is of the exponential order of

e−nE5, where

E5 = min
QUV ,QXY

[D(QUV ‖PUV ) + D(QY |X‖W |P ) + E4(QUV , QXY )]. (A.20)

Finally, the overall exponent is

E(R) = min{E2(R), E5}, (A.21)

which completes the proof of Theorem 1.
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Appendix B

Proof of Eq. (45).

We show that the vast majority of codes have Zm(y) ≥ exp{nα(R − ǫ, P̂y)} for all m and y.

First, observe that

Zm(y) =
∑

m′ 6=m

exp{ng(P̂xm′y)} =
∑

Q

Ny(Q)eng(Q). (B.1)

Thus, considering the randomness of {Xm′},

Pr
{

Zm(y) ≤ exp{nα(R − ǫ, P̂y)}
}

= Pr







∑

Q

Ny(Q)eng(Q) ≤ exp{nα(R − ǫ, P̂y)}







≤ Pr

{

max
Q

Ny(Q)eng(Q) ≤ exp{nα(R − ǫ, P̂y)}

}

= Pr
⋂

Q

{

Ny(Q)eng(Q) ≤ exp{nα(R − ǫ, P̂y)}
}

= Pr
⋂

Q

{

Ny(Q) ≤ exp{n[α(R − ǫ, P̂y) − g(Q)]}
}

. (B.2)

Now, Ny(Q) is a binomial random variable with enR trials and success rate of the exponential

order of e−nI(Q). We now argue that by the very definition of α(R − ǫ, P̂y), there must exist some

Q∗
X|Y such that for Q∗ = P̂y ×Q∗

X|Y , I(Q∗) ≤ R− ǫ and R− ǫ− I(Q∗) ≥ α(R− ǫ, P̂y)− g(Q∗). To

see why this is true, assume conversely, that for every QX|Y , which defines Q = P̂y ×QX|Y , either

I(Q) > R − ǫ or R − I(Q) − ǫ < α(R − ǫ, P̂y) − g(Q), which means that for every Q

R − ǫ < max{I(Q), I(Q) + α(R − ǫ, Q̂y) − g(Q)} = I(Q) + [α(R − ǫ, Q̂y) − g(Q)]+ (B.3)

which implies in turn that for every QX|Y there exists t ∈ [0, 1] such that

R − ǫ < I(Q) + t[α(R − ǫ, Q̂y) − g(Q)] (B.4)

or equivalently,

α(R − ǫ, P̂y) > max
QX|Y

min
0≤t≤1

g(Q) +
R − I(Q) − ǫ

t

= max
QX|Y

{

g(Q) + R − I(Q) − ǫ I(Q) ≤ R − ǫ
−∞ I(Q) > R − ǫ

= max
{QX|Y : I(Q)≤R−ǫ}

[g(Q) − I(Q)] + R − ǫ

≡ α(R − ǫ, P̂y), (B.5)

which is a contradiction. Let then Q∗
X|Y be as defined above. Then,

Pr
⋂

Q

{

Ny(Q) ≤ exp{n[α(R − ǫ, P̂y) − g(Q)]}
}

21



≤ Pr
{

Ny(Q∗) ≤ exp{n[α(R − ǫ, P̂y) − g(Q∗)]}
}

. (B.6)

Now, we know that I(Q∗) ≤ R − ǫ and R − I(Q∗) − ǫ ≥ α(R − ǫ, P̂y) − g(Q∗). By the Chernoff

bound, the probability in question is upper bounded by

exp
{

−enRD(e−an‖e−bn)
}

, (B.7)

where a = R + g(Q∗) − α(R − ǫ, P̂y) and b = I(Q∗). Noting that a − b ≥ ǫ, we can easily lower

bound the binary divergence as follows (see [7, Section 6.3]):

D(e−an‖e−bn) ≥ e−bn{1 − e−(a−b)n[1 + n(a − b)]}

≥ e−nI(Q∗)[1 − e−nǫ(1 + nǫ)], (B.8)

where in the last passage, we have used the decreasing monotonicity of the function f(t) = (1+t)e−t

for t ≥ 0. Thus,

Pr
{

Ny(Q∗) ≤ exp{n[α(R, P̂y) − g(Q∗) − ǫ]}
}

≤ exp
{

−enR · e−nI(Q)[1 − e−nǫ(1 + nǫ)]
}

≤ exp
{

−enǫ[1 − e−nǫ(1 + nǫ)]
}

= exp {−enǫ + nǫ + 1} , (B.9)

which completes the proof of eq. (45).

Appendix C

Proof of Eq. (52). The proof is very similar to the proof of Theorem 2 in [12], but there is a

small twist due to the limitation to codes in Gǫ herein. Consider the uniform random selection of

codebooks {Cn} in Gǫ. For every given code Cn ∈ Gǫ and a given message m, let Nm(QXX′ , Cn) be

the number of {m′}, all different from m, for which (xm,xm′) has a given joint empirical distribution

QXX′ of a pair of random variables taking on values in X 2, whose single–letter marginals (which

are the individual empirical distributions of the various codewords) all coincide with QX . Our goal

here is to show that for every ǫ > 0 and sufficiently large n, there exists a code Cn ∈ Gǫ of rate

(essentially) R, that satisfies, for every message m and every QXX′ , eq. (52), namely,

Nm(QXX′ , Cn) ≤ N∗(QXX′)

∆
=

{

exp{n[R − IQ(X;X ′) + ǫ]} R ≥ IQ(X;X ′) − ǫ
0 R < IQ(X;X ′) − ǫ

(C.1)

To see why this is true, consider a random selection of the code Cn within Gǫ. Then, obviously,

N(QXX′)
∆
=

1

M

M−1
∑

m=0

E{Nm(QXX′ , Cn)|Gǫ} (C.2)

≤
1

M

M−1
∑

m=0

E{Nm(QXX′ , Cn)}

Pr{Gǫ}
(C.3)

·
= E{N0(QXX′ , Cn)} (C.4)

= M · Pr{(X ,X ′) ∈ T (QXX′)} (C.5)
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= M ·
|T (QXX′)|

|T (QX)|2
(C.6)

·
= M ·

exp{nHQ(X,X ′)}

e2nHQ(X)
(C.7)

= exp{n[R − IQ(X;X ′)]}, (C.8)

where the unconditional expectation in the second and third lines corresponds to uniform random

selection across the whole class of fixed composition codes, not just to Gǫ. It follows then that in

the ensemble of all randomly selected codes within Gǫ:

Pr
⋃

QXX′

{

Cn :
1

M

M−1
∑

m=0

Nm(QXX′ , Cn) > exp{n[R − IQ(X;X ′) + ǫ/2]}

∣

∣

∣

∣

Cn ∈ Gǫ

}

≤
∑

QXX′

Pr

{

Cn :
1

M

M−1
∑

m=0

Nm(QXX′ , Cn) > exp{n[R − IQ(X;X ′) + ǫ/2]}

∣

∣

∣

∣

Cn ∈ Gǫ

}

·
≤

∑

QXX′

N(QXX′)

exp{n[R − IQ(X;X ′) + ǫ/2]}

·
≤

∑

QXX′

e−nǫ/2

≤ (n + 1)|X |2 · e−nǫ/2 → 0, (C.9)

which means that there exists a code in Gǫ (and in fact, for almost every such code),

1

M

M−1
∑

m=0

Nm(QXX′ , Cn) ≤ exp{n[R − IQ(X;X ′) + ǫ/2]} ∀QXX′ . (C.10)

For a given such code and every given QXX′ , there must then exist at least (1− e−nǫ/2) ·M values

of m such that

Nm(QXX′ , Cn) ≤ exp{n[R − IQ(X;X ′) + ǫ]}. (C.11)

Upon eliminating the exceptional codewords from the code, for all QXX′ , one ends up with at least

[1 − (n + 1)|X |2e−nǫ/2] · M for which

Nm(QXX′ , Cn) ≤ exp{n[R − IQ(X;X ′) + ǫ]} ∀QXX′ . (C.12)

Let C′
n denote the sub–code formed by these [1− (n+1)|X |2e−nǫ/2] ·M remaining codewords. Since

Nm(QXX′ , C′
n) ≤ Nm(QXX′ , Cn), then the sub–code C′

n certainly satisfies

Nm(QXX′ , C′
n) ≤ exp{n[R − IQ(X;X ′) + ǫ]} ∀m,QXX′ . (C.13)

Finally, observe that since Nm(QXX′ , C′
n) is a non–negative integer, then for QXX′ with R −

IQ(X;X ′) + ǫ < 0, the last inequality means Nm(QXX′ , C′
n) = 0, in which case the r.h.s. of

the last equation becomes N∗(QXX′). Thus, we have shown that there exists a code C′
n of size

M ′ = [1 − (n + 1)|X |2e−nǫ/2] · enR for which all codewords satisfy Nm(QXX′ , C′
n) ≤ N∗(QXX′) for

all joint types QXX′ .
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