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Abstract—It is well known that cooperation between users in
a communication network can lead to significant performance
gains. A common assumption in past works is that all the users
are aware of the resources available for cooperation, and know
exactly to what extent these resources can be used. In this work
a family of models is suggested where the cooperation links may
or may not be present. Coding schemes are devised that exploit
the cooperation links if they are present, and can still operate
(although at reduced rates) if cooperation is not possible.

Index Terms—Broadcast channel, conferencing decoders, co-
operation, cribbing, multiple access channel.

I. I NTRODUCTION

Communication techniques that employ cooperation be-
tween users in a network have been an extensive area of
research in recent years. The interest in such schemes stems
from the potential increase in the network performance. The
employment of cooperative schemes require the use of system
resources - bandwidth, time slots, energy, etc - that shouldbe
allocated for the cooperation to take place. Due to the dynamic
nature of modern, wireless ad-hoc communication systems, the
availability of these resources is not guaranteed a priori,and
the coding schemes are required to work also in the absence
of the cooperation links, although possibly achieving lower
communication rates.

In this work we study channels with cooperation links that
may or may not be present. We focus on two cases - the
physically degraded broadcast channel (BC) with conferencing
decoders, and the multiple access channel (MAC) with crib-
bing encoders. The BC with conferencing decoders was first
studied by Dabora and Servetto [2], [3], and independently
by Liang and Veeravalli [6], [7], who studied also the more
general setting of relay-broadcast channels (RBC). In the
model of Dabora and Servetto, a two-users BC is considered,
where the decoders can exchange information via noiseless
communication links of limited capacitiesC1,2 and C2,1.
When the broadcast channel is physically degraded, informa-
tion sent from the weaker (degraded) user to the stronger is
redundant, and only the capacity of the link from the stronger
user to the weaker (sayC1,2) increases the communication
rates. For this case, Dabora and Servetto characterized the
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capacity region. Their result coincides with the results ofLiang
and Veeravalli when the relay link of [6] is replaced with a
constant rate bit pipe.

The MAC with cribbing encoders was introduced by
Willems and Van Der Meulen in [9]. Here there is no dedicated
communication link that can be used explicitly for cooperation.
Instead, one of the encoders can crib, or listen, to the channel
input of the other user. This model describes a situation in
which users in a cellular system are located physically close to
each other, enabling part of them to listen to the transmission
of the others with high reliability - i.e., the channel between
the transmitters that are located in close vicinity is almost
noiseless. Willems and Van Der Meulen considered in [9] all
consistent scenarios of cribbing (strictly causal, causal, non-
causal, and symmetric or asymmetric), and characterized the
capacity region of these models.

In the next sections, we propose and study extensions of
the two models described above, when the cooperation links
(C1,2 of the physically degraded BC, and the cribbing link of
the MAC) may or may not be present. For the MAC models,
we first propose achievable rate regions which are based on
the combination of superposition coding and block-Markov
coding. Here, we consider the unreliable strictly causal, causal,
and non-causal cribbing. Then, we propose a general outer
bound, which is tight for some interesting special cases where
some constraints on the rates of the users are added. For the
physically degraded BC, the results are conclusive.

It should be noted that multi-user communication systems
with uncertainty in part of the network links have been
extensively studied in the literature - see, e.g., [8] and [5],
and references therein. The models suggested here, of the BC
and MAC with uncertainty in the cooperation links, have not
been studied before.

The outline of the rest of the paper is as follows. In Section
III, we consider the physically degraded BC with cooperating
decoders. In Section IV, we consider the MAC with cribbing
encoders,, and in Section V, we provide proofs for all our
results.

II. N OTATION CONVENTIONS

We useH(·) to denote the entropy of a discrete random
variable (RV), andI(·; ·) to denote the mutual information
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between two discrete RVs. Calligraphic letters denote (discrete
and finite) sets, e.g.,X , the complement ofX is denoted by
X c, while |X | stands for its cardinality. Then-fold Cartesian
product ofX is denoted byXn. An element ofXn is denoted
by xn = (x1, x2, . . . , xn); whenever the dimensionn is
clear from the context, vectors (or sequences) are denoted by
boldface letters, e.g.,x. We denote RVs with capital letters-
X, etc. We denote byTn

ǫ (X) the weakly typical set for the
(possibly vector) RVX, see [1] for the definition of this set.
Finally, we denote the probability distribution of the RVX
over X with PX and the conditional distribution ofY given
X with PY |X .

III. T HE PHYSICALLY DEGRADED BROADCAST CHANNEL

WITH COOPERATINGDECODERS

Let X , Y1, Y2 be finite sets. A broadcast channel (BC)
(X ,Y1,Y2, PY1,Y2|X) is a channel with input alphabetX ,
two output alphabetsY1 andY2, and a transition probability
PY1,Y2|X from X to Y1×Y2. The BC is said to be physically
degraded if for any input distributionPX , the Markov chain
X−◦ Y1−◦ Y2 holds, i.e.,

PX,Y1,Y2
= PXPY1,Y2|X = PXPY1|XPY2|Y1

. (1)

We will refer to Y1 (resp.Y2) as the stronger (resp. weaker,
or degraded) user. We assume throughout that the channel is
memoryless and that no feedback is present, implying that the
transition probability ofn-sequences is given by

PY1,Y2|X(yn1 , y
n
2 |x

n) =
n
∏

i=1

PY1,Y2|X(y1,i, y2,i|xi). (2)

Fix the transmission length,n, and an integerν1,2. LetN1,2 =
{1, 2, . . . , ν1,2} be the index set of the conference message.
Denote the sets of messages byNk = {1, 2, . . . , νk}, k = 1, 2,
andN ′

2 = {1, 2, . . . , ν′2} whereν1, ν2 andν′2 are integers. A
code for the BC with unreliable conference link, that may or
may not be present, operates as follows. Three messagesM1,
M2, and M ′

2 are drawn uniformly and independently from
the setsN1, N2, andN ′

2, respectively. The encoder maps this
triplet to a channel input sequence,x(M1,M2,M

′
2). At the

channel output, Decoderk has the output sequenceY n
k , k =

1, 2, at hand. Decoder 1 (resp. Decoder 2) is required to decode
the messageM1 (resp.M2), whether or not the conference link
is present. If the conference link is present, Decoder 1 sends a
messagec ∈ N1,2 to Decoder 2, based on the output sequence
Y n
1 . I.e.,c = c(Y n

1 ). Finally, Decoder 2 decodesM ′
2 based on

his outputY n
2 and the conference messagec(Y n

1 ). The setting
of the problem is depicted in Fig. 1.

Observe that only Decoder 2 benefits when the conference
link is present. Indeed, since there is only a link from Decoder
1 to Decoder 2, whatever Decoder 1 can do with the link,
he can also do without it. Therefore the rate to User 1 is
independent of whether the link is present or not. Only User
2 can benefit from its existence, and thus there are two sets
of messages intended to User 2 -N2 andN ′

2.
In the following, we give a more formal description of the

above described structure.

M1

(M2,M
′
2)

Encoder Xn
P (Y1, Y2|X)

Y n
1

Y n
2

Decoder 1
M̂1

Decoder 2
M̂2/(M̂2, M̂

′
2)

C1,2

Broadcast Channel

Fig. 1. Broadcast channel with unreliable cooperating decoders.

Definition 1: An (n, ν1, ν2, ν
′
2, ν1,2, ǫ) code for the BC

PY1,Y2|X with an unreliable conference link is an encoder
mapping

f : M1 ×M2 ×M′
2 → Xn,

a conference mapping

h : Yn
1 → N1,2,

and three decoding maps:

g1 : Yn
1 → N1, (3a)

g2 : Yn
2 → N2, (3b)

g′2 : Yn
2 ×N1,2 → N ′

2, (3c)

such that the average probabilities of errorPe andP ′
e do not

exceedǫ. Here,

Pe =
1

ν1ν2ν′2

∑

m1,m2,m′

2

PY1,Y2|X(Se|f(m1,m2,m
′
2)) (4a)

P ′
e =

1

ν1ν2ν′2

∑

m1,m2,m′

2

PY1,Y2|X(S′
e|f(m1,m2,m

′
2)) (4b)

where the setsSe andS′
e are defined as

Se(m1,m2) = {(y1,y2) : g1(y1) 6= m1 or g2(y2) 6= m2}

S′
e(m1,m2,m

′
2) = Se(m1,m2)∪

{(y1,y2) : g
′
2(y2, h(y1)) 6= m′

2} , (5)

and for notational convenience, the dependence ofSe andS′
e

on the messages is dropped in (4).
The conference rateC1,2 and the communications rates
(R1, R2, R

′
2) are defined as usual:

C1,2 =
log ν1,2

n
, Rk =

log νk
n

, k = 1, 2, R′
2 =

log ν′2
n

.

The interpretation of the rates is as follows:C1,2 is the
conference rate in case that it is present. The rateRk is
intended to Userk, k = 1, 2, to be decoded whether or not
the conference is present. The rateR′

2 is intended to User 2
and is the extra rate gained if the conference link is present.

A rate quadruple (R1, R2, R
′
2, C1,2) is said to be

achievable with unreliable conference if for anyǫ >
0, γ > 0, and sufficiently largen there exists an
(n, en(R1−γ), en(R2−γ), en(R

′

2−γ), en(C1,2+γ), ǫ) code for the
BC with unreliable conference link. The capacity region
is the closure of the set of all achievable quadruples
(R1, R2, R

′
2, C1,2) and is denoted byC. For a given conference

rate C1,2, C(C1,2) stands for the section ofC at C1,2. Our
interest is to characterizeC(C1,2).



Let R(C1,2) be the convex hull of all rate triples
(R1, R2, R

′
2) satisfying

R2 ≤ I(U ;Y2), (6a)

R′
2 ≤ min {I(V ;Y2|U) + C1,2, I(V ;Y1|U)} , (6b)

R1 ≤ I(X;Y1|U, V ), (6c)

for some joint distribution of the form

PU,V,X,Y1,Y2
= PU,V PX|U,V PY1,Y2|X (6d)

where|U| ≤ |X |+3, and|V| ≤ (|X |+2)(|X |+3). Our main
result on the physical degraded BC with unreliable conference
is the following

Theorem 1:For any physically degraded BC with unreli-
able conference of rateC1,2,

C(C1,2) = R(C1,2).

The proof is given in Section V. Given the last result, we note
to the following observations:

• Let us examine the regionR(C1,2) in the following inter-
esting extreme case. Assume thatC1,2 = 0, that is, the case
where even if the conference link is present, its rate is 0, and
so there is no benefit from the conference link. Due to (6d) the
Markov condition(U, V )−◦ Y1−◦ Y2 holds, implying, of course,
also thatV−◦ (U, Y1)−◦ Y2 holds. Therefore, whenC1,2 = 0, it
is readily seen that the bounds in (6) reduce to

R2 ≤ I(U ;Y2), (7a)

R′
2 ≤ I(V ;Y2|U), (7b)

R1 ≤ I(X;Y1|U, V ). (7c)

The total rate to User 2 isR2 +R′
2. Now, it is easy to verify

that after optimization over(U, V ), the rates guaranteed by (7)
coincide with the capacity region of the degraded BC, as one
should expect. Indeed, we have:

R′
2 +R2 ≤ I(U, V ;Y2), (8a)

R1 ≤ I(X;Y1|U, V ), (8b)

and so, by letting Ũ , (U, V ) where PŨ,X,Y1,Y2
=

PŨPX|ŨPY1,Y2|X , we obtain the capacity region of the de-
graded BC.
• Another case of interest is whenR2 = 0. Here, User 2 will
not get any rate if the conference link is absent. ChoosingU
to be a null RV, the region of rates(R1, R

′
2) guaranteed by (6)

reduces to

R′
2 ≤ min {I(V ;Y2) + C1,2, I(V ;Y1)} , (9a)

R1 ≤ I(X;Y1|V ), (9b)

which coincides with the result in [3, Theorem 1].
• Theorem 1 can be easily generalized to encounter
cases in which there is an input constraint of the form
E [

∑n
i=1 Γ(Xi)] ≤ nP . In this case the achievable region is

given by Theorem 1 where the additional constraintE [X1] ≤
P is needed. The achievability proof of the Theorem 1 with
the input constraint is the same since by the law of large

numbers the constraints are satisfied with high probability.
The Converse is also similar just adding a step of introducing
a “time sharing” RVQ, uniformly distributed over the set
{1, 2, . . . , n}, and independent of the other RVs. Finally, define
U = (Q,UQ) and V = (Q,UQ), and everything goes along
without any problem.

IV. T HE MULTIPLE ACCESSCHANNEL WITH CRIBBING

ENCODERS

A multiple access channel (MAC) is a quadruple
(X1,X2,Y, PY |X1,X2

), whereXk is the input alphabet of User
k, k = 1, 2, Y is the output alphabet, andPY |X1,X2

is the
transition probability matrix fromX1 ×X2 to Y. The channel
is memoryless without feedback.

In this section we present achievable rates for the MAC with
an unreliable cribbing - that may or may not be present - from
Encoder 1 to Encoder 2. The basic assumptions are as follows.
Since Encoder 2 listens to Encoder 1, he knows whether the
cribbing link is present. Similarly, the decoder knows it since
Encoder 2 can convey to him this message, as it is only one bit
of information to transmit. Encoder 1, on the other hand, does
not know whether the cribbing link is present, since he cannot
be informed about it. He is only aware that cribbing could
occur. LetN ′

1 = {1, 2, . . . , ν′1} andN ′′
2 = {1, 2, . . . , ν′′2 } be

two message sets. A coding scheme operates as follows. Four
messagesM1, M ′

1, M2, and M ′′
2 are drawn uniformly and

independently from the setsN1, N ′
1, N2, N ′′

2 , respectively.
Encoder 1 maps the pair(M1,M

′
1) to an input sequencex1 =

x1(M1,M
′
1). If the cribbing link is absent, Encoder 2 maps

the messageM2 to to an input sequencex2 = x2(M2). If the
cribbing link is present, Encoder 2 knowsx1 strictly causally,
thus maps the pair(M ′′

2 ,x1) to an input sequencex2
′′, in a

strictly causal manner:

x′′
2(m

′′
2 ,x1) = (x′′

2,1(m
′′
2), x

′′
2,2(m

′′
2 , x1,1),

. . . , x′′
2,n(m

′′
2 , x

n−1
1 )). (10)

At the output, the decoder decodes(M1,M2) if cribbing is
absent, and(M1,M

′
1,M

′′
2 ) if cribbing is present.

Note that there is a slight difference in the interpretation
of the message sets, compared to the message sets of the BC
model studied in Section III. The pair(M1,M

′
1) is encoded

by User 1, whereM1 is always decoded, andM ′
1 is decoded

only if cribbing is present. For User 2, if cribbing is absent,
M2 is encoded, whereas if cribbing is present,M ′′

2 is encoded.
Therefore User 2 can reduce his rate in case of cribbing, in
favor of increasing the rate of User 1. Due to this structure,
the joint distribution ofM2 and M ′′

2 is immaterial, as they
never appear together in the coding scheme. The setting of
the problem is depicted in Fig. 2.

Following is a formal definition of the scheme described
above.

Definition 2: An (n, ν1, ν
′
1, ν2, ν

′′
2 , ǫ) code for the MAC

PY |X1,X2
with unreliable strictly causal cribbing link consist



Xn
1

P (Y |X1, X2) Y n

Encoder 1

Encoder 2

(M̂1,M2)

Multiple Access Channel

Xn
2

Decoder
(M̂1, M̂

′
1,M

′′
2 )

Fig. 2. MAC with unreliable cribbing encoders.

of n+ 2 encoding maps

f1 : N1 ×N ′
1 → Xn

1 , (11a)

f2 : N2 → Xn
2 , (11b)

f ′′
2,i : N

′′
2 ×X i−1

1 → X2,i, i = 1, 2, . . . , n, (11c)

and a pair of decoding maps

g : Yn → N1 ×N2, (12a)

g′ : Yn → N1 ×N ′
1 ×N ′′

2 , (12b)

such that the average probabilities of errorPe andP ′
e do not

exceedǫ. Here

Pe =
1

ν1ν′1ν2

∑

m1,m′

1,m2

PY |X1,X2
(Qe|f1(m1,m

′
1), f2(m2))

(13a)

P ′
e =

1

ν1ν′1ν
′′
2

∑

m1,m′

1,m
′′

2

PY |X1,X2
(Q′

e|f1(m1,m
′
1),f

′′
2(m

′′
2 , f1(m1,m

′
1)))(13b)

where f ′′
2(m

′′
2 , f1(m1,m

′
1)) is the sequence of mapsf ′′

2,i

in (11c), the setsQe andQ′
e are defined as

Qe(m1,m2) = {y : g(y) 6= (m1,m2)} (14a)

Q′
e(m1,m

′
1,m

′′
2) = {y : g′(y) 6= (m1,m

′
1,m

′′
2)} (14b)

and the dependence of the setsQe, Q′
e on the messages is

dropped in (13), for notational convenience.
The rates(R1, R

′
1, R2, R

′′
2 ), and achievability of a given

quadruple, are defined as usual. The capacity region of the
MAC with unreliable strictly causal cribbing is the closureof
the collection of all achievable quadruples(R1, R

′
1, R2, R

′′
2 ),

and is denoted byCstrict
mac . Our interest is in characterizingCstrict

mac .
Let U andV, be finite sets, and letPstrict be the collection

of all joint distributionsPU,V,X1,X2,X′′

2 ,Y,Y ′′ of the form

PUPV PX1|U,V PX2
PY |X1,X2

PX′′

2 |UPY ′′|X1,X′′

2
(15)

where PY ′′|X1,X′′

2
is our MAC with X ′′

2 at the input of
Encoder 2. LetIstrict

mac be the collection of all quadruples
(R1, R

′
1, R2, R

′′
2 ) satisfying

R1 ≤ I(V ;Y |X2), (16a)

R2 ≤ I(X2;Y |V ), (16b)

R1 +R2 ≤ I(V,X2;Y ), (16c)

R′
1 ≤ H(X1|U, V ), (16d)

R′′
2 ≤ I(X ′′

2 ;Y
′′|U, V,X1), (16e)

R′
1 +R′′

2 ≤ I(X1, X
′′
2 ;Y

′′|V ), (16f)

R1 +R′
1 +R′′

2 ≤ I(X1, X
′′
2 ;Y

′′), (16g)

for somePU,V,X1,X2,X′′

2 ,Y,Y ′′ ∈ Pstrict where

|U| ≤ min {|X1| · |X2|+ 1, |Y|+ 2} (17)

|V| ≤ min {|X1| · |X2|+ 4, |Y|+ 5} . (18)

We start with the following result, which is proved in Subsec-
tion V-B.

Theorem 2 (Inner bound - strictly causal case):For any
MAC with unreliable strictly causal cribbing

Istrict
mac ⊆ Cstrict

mac .

Next, consider the case where causal cribbing, for the
second user, is allowed, that is,

x′′
2(m

′′
2 ,x1) = (x′′

2,1(m
′′
2 , x1,1), . . . , x

′′
2,n(m

′′
2 , x

n
1 )), (19)

or, equivalently, replace (11c) with:

f ′′
2,i : N

′′
2 ×X i

1 → X2,i, i = 1, 2, . . . , n. (20)

The capacityCmac of the MAC with unreliable causal cribbing
is defined similarly to the strictly causal case, but with (19)
and (20), replacing (10) and (11c), respectively.

Let P be the collection of all joint distributions
PV,X1,X2,X′′

2 ,Y,Y ′′ of the form

PV,X1
PX2

PY |X1,X2
PX′′

2 |X1
PY ′′|X1,X′′

2
. (21)

The interpretation of this joint distribution is as follows. The
pair (V,X1) are the coding RVs of User 1. These are fixed,
regardless of whether cribbing is present or not. The inputX2

is the coding variable of User 2 if cribbing is absent, therefore
it is independent of(V,X1), andY is the MAC output due
to inputsX1, X2. When cribbing is present, User 2 encodes
with X ′′

2 which can depend onX1. The output of the channel
due to inputsX1 andX ′′

2 is denoted byY ′′.
Let Imac be the collection of all quadruples

(R1, R
′
1, R2, R

′′
2 ) satisfying

R1 ≤ I(V ;Y |X2), (22a)

R2 ≤ I(X2;Y |V ), (22b)

R1 +R2 ≤ I(V,X2;Y ), (22c)

R′
1 ≤ H(X1|V ), (22d)

R′′
2 ≤ I(X ′′

2 ;Y
′′|V,X1), (22e)

R′
1 +R′′

2 ≤ I(X1, X
′′
2 ;Y

′′|V ), (22f)

R1 +R′
1 +R′′

2 ≤ I(X1, X
′′
2 ;Y

′′), (22g)

for somePV,X1,X2,X′′

2 ,Y,Y ′′ ∈ P where

|V| ≤ min {|X1| · |X2|+ 4, |Y|+ 5} . (23)

We have the following result, proved in Subsection V-C.
Theorem 3 (Inner bound - causal cribbing):For any MAC

with unreliable causal cribbing

Imac⊆ Cmac.

We shall make several remarks on this result.
• The bounds on the cardinalities ofU , andV , are derived
in a similar manner as in [9, Appendix B], and is based on
Fenchel-Eggleston-Carathéodry Theorem.



• The proof of Theorem 2 is based on the combination of
superposition coding and block-Markov coding. The transmis-
sion is always performed inB sub-blocks, of lengthn each.
In each sub-block, the messages of User 1 are encoded in
two layers. First, the “resolution” information of User 1 are
encoded withU , which depend on both messagesM1 andM ′

1.
Then, the fresh information of messageM1 is encoded withV ,
and finally, the fresh information ofM1 is encoded withX1,
using superposition coding around the cloud centersV andU .
If the cribbing link is absent, Encoder 2 encodes his messages
independently of Encoder 1. The decoder can then decode only
the messages ofV , that is,M1, andX2. If the cribbing link
is present, block Markov coding is employed, similarly to the
scheme used in [9] for one sided causal cribbing.
• Note that the main important observation in the achievabil-
ity, is that User 1 must employ a universal encoding scheme, in
the sense of being independent of the cribbing. User 2 and the
decoder, however, can employ different encoding and decoding
schemes, in accordance to existence or absence of the cribbing.
• When cribbing is absent, the ratesR′

1 and R′′
2 are not

decoded. Thus, settingV = X1 in the regionImac yields the
capacity region of the MAC without cribbing, as expected.
• The r.h.s. of (16e) is smaller than that of (22e). Indeed,

I(X ′′
2 ;Y

′′|U, V,X1) = H(Y ′′|U, V,X1)

−H(Y ′′|U, V,X1, X
′′
2 )

≤ H(Y ′′|V,X1)

−H(Y ′′|V,X1, X
′′
2 )

= I(X ′′
2 ;Y

′′|V,X1) (24)

where the inequality follows from the fact that conditioning
reduce entropy, and the Markov chain(U, V )−◦ (X1, X

′′
2 )−◦ Y ′′.

Unfortunately, we were not able to show the converse part
in general, but only for some special cases, described in
the forthcoming subsection. In the following, we provide an
outer bound to the capacity region, assuming unreliable causal
cribbing. Let IO

mac be the convex hull of all rate quadruples
(R1, R

′
1, R2, R

′′
2 ) satisfying

R1 ≤ I(V ;Y |X2), (25a)

R2 ≤ I(X2;Y |X1), (25b)

R1 +R2 ≤ I(V,X2;Y ), (25c)

R′
1 ≤ H(X1|V ), (25d)

R′′
2 ≤ I(X ′′

2 ;Y
′′|V,X1), (25e)

R1 +R′
1 +R′′

2 ≤ I(X1, X
′′
2 ;Y

′′), (25f)

for somePV,X1,X2,X′′

2 ,Y,Y ′′ ∈ P. The following result is true
also for the non-causal cribbing case, namely,

x′′
2(m

′′
2 ,x1) = (x′′

2,1(m
′′
2 , x

n
1 ), . . . , x

′′
2,n(m

′′
2 , x

n
1 )), (26)

or, equivalently, replace (11c) with:

f ′′
2,i : N

′′
2 ×Xn

1 → X2,i, i = 1, 2, . . . , n. (27)

The following is proved in Subsection V-D.

Theorem 4 (Outer bound - causal (non-causal) case):For
any MAC with unreliable causal (non-causal) cribbing

IO
mac⊇ Cmac.

Next, we consider a case in which we were able to derive the
capacity region.

A. User #1 is always fully decoded

Consider the case whereR′
1 = 0, which means that there is

no extra rate sent by User 1 to be decoded when cribbing is
present. In this case, the first user is fully decoded no matter
whether cribbing is present or not. Then, according to Theorem
3, it is easy to verify that an achievable region is given by:

R1 ≤ I(V ;Y |X2), (28a)

R2 ≤ I(X2;Y |V ), (28b)

R1 +R2 ≤ I(V,X2;Y ), (28c)

R′′
2 ≤ I(X ′′

2 ;Y
′′|X1), (28d)

R1 +R′′
2 ≤ I(X1, X

′′
2 ;Y

′′), (28e)

for somePV,X1,X2,X′′

2 ,Y,Y ′′ ∈ P of the form

PV,X1
PX2

PY |X1,X2
PX′′

2 |X1
PY ′′|X1,X′′

2
. (29)

Let ĨA
mac be the collection of all quadruples(R1, R2, R

′′
2 )

satisfying (28) and (29). In this stage, one may realize thatfor
R′

1 = 0, the auxiliary RVV should be superfluous, and we can
actually substituteX1 instead. This is indeed reasonable due
to the fact thatV is used to convey the messageM1, and the
extra messages from the first user, that isM ′

1, is encoded by
X1. Accordingly, letIA

mac be the collection of all quadruples
(R1, R2, R

′′
2 ) satisfying:

R1 ≤ I(X1;Y |X2), (30a)

R2 ≤ I(X2;Y |X1), (30b)

R1 +R2 ≤ I(X1, X2;Y ), (30c)

R′′
2 ≤ I(X ′′

2 ;Y
′′|X1), (30d)

R1 +R′′
2 ≤ I(X1, X

′′
2 ;Y

′′), (30e)

for somePX1,X2,X′′

2 ,Y,Y ′′ of the form

PX1
PX2

PY |X1,X2
PX′′

2 |X1
PY ′′|X1,X′′

2
. (31)

The following lemma is proved in Appendix B.
Lemma 1:The following relation holds:

ĨA
mac= IA

mac. (32)

Using Lemma 1, we obtain the following result.
Theorem 5:For any MAC with unreliable causal (non-

causal) cribbing, ifR′
1 = 0, thenIA

mac is the capacity region.
Proof: The result follows directly by substitutingR′

1 = 0 in
the outer bound (25), and noticing that it coincides with the
achievable region in (30).

According to (30), if the first user is fully decoded no matter
whether cribbing is present or not, then there is no bound on
the individual rate of the first user when cribbing is present
(we have only bounds on the rate of the second user (30d) and



on the sum rate (30e)). Instead, as can be seen from (30d)-
(30e), it is assumed thatX1 is already known to the receiver
when cribbing is present. The reason is that since cribbing can
only help in recoveringX1, the bound on the individual rate
of the first user when cribbing is absent dominates (or, more
strict). To illustrate the result in Theorem 5, we consider the
following example.

Example 1:Consider the example where the channel out-
put, Y , is given by:

Y = X1 ⊕X2 ⊕ Z1 ⊕ Z2 (33)

where X1, X2, N1, and N2, are binary RVs, whereZ1 is
Bernoulli withPr {Z1 = 0} = p1, Z2 = 0 if X1 = 0, and it is
Bernoulli with Pr {Z2 = 0} = p2, otherwise (i.e., ifX1 = 1).
Here,X1, X2, Z1 andZ2, are independent. When cribbing is
present, the channel output,Y ′′, is given by:

Y ′′ = X1 ⊕X ′′
2 ⊕ Z1 ⊕ Z2 (34)

where nowX1 may depend onX ′′
2 . Let Pr {Xi = 0} ,

PXi
, for i = 1, 2, Pr {X ′′

2 = 0|X1 = 0} = µ1, and
Pr {X ′′

2 = 0|X1 = 1} = µ2. Also, for two real numbers
0 ≤ a, b ≤ 1, definea∗ b , a · b̄+ ā · b, anda⋆b , a · b+ ā · b̄,
whereā , 1− a. Finally, let:

α , (p1 ⋆ p2) · PX2
+ (p1 ∗ p2) · P̄X2

, (35)

β , (p1 ⋆ p2) · µ2 + (p1 ∗ p2) · µ̄2. (36)

Then, using the above definition, it is a simple exercise to
check that

R1 ≤ h2(PX1
p1 + P̄X1

(p1 ⋆ p2))− PX1
h2(p1)

− P̄X1
h2(p1 ∗ p2),

R2 ≤ PX1
h2(p1 ⋆ PX2

) + P̄X1
h2(α)− PX1

h2(p1)

− P̄X1
h2(p1 ∗ p2),

R1 +R2 ≤ h2(PX1
(p1 ⋆ PX2

) + P̄X1
ᾱ)− PX1

h2(p1)

− P̄X1
h2(p1 ∗ p2),

R′′
2 ≤ PX1

h2(p1 ⋆ µ1) + P̄X1
h2(β)− PX1

h2(p1)

− P̄X1
h2(p1 ∗ p2),

R1 +R′′
2 ≤ h2(PX1

(p1 ⋆ µ1) + P̄X1
β̄)− PX1

h2(p1)

− P̄X1
h2(p1 ∗ p2). (37)

whereh2 (·) is the binary entropy. Fig. 3 depicts the capacity
region for the case wherep1 = 0.01 and p2 = 0.1. The
capacity region was numerically evaluated using (37). In the
figure, we present two curves corresponding to the constraints
related to the rates(R1, R2) which refer to the case where
cribbing is absent (the blue curve), and the constraints related
to the rates(R1, R

′′
2 ) which refer to the case where cribbing

is present (the red curve). It is evident that higher rates can
be achieved for the second user due to the cribbing.

V. PROOFS

A. Proof of Theorem 1

In this subsection, we prove Theorem 1. The direct part uses
random selection and strong typicality arguments.
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Fig. 3. The capacity region forp1 = 0.01 andp2 = 0.1.

Direct Part. We use the binning approach suggested in [4].
We will start with the code construction.

Codebook construction:Fix a joint distributionPU,V,X .
1) GenerateenR2 codewordsu(j), j = 1, 2, . . . enR2 , i.i.d.,

according toPU .
2) For every u(j), generate enR

′

2 codewords v(k|j),
k = 1, 2, . . . enR

′

2 , independently according to
∏n

i=1 PV |U (vi|ui(j)).
3) For everyj, distribute theenR

′

2 codewordsv(k|j), k =
1, 2, . . . , enR

′

2 , into enC1,2 bins, evenly and independently
of each other. Thus, in every bin there areen(R

′

2−C1,2)

codewordsv(k|j) with a fixed indexj. Denote byb(k|j)
the bin number to whichv(k|j) belongs. Note that

1 ≤ b(k|j) ≤ enC1,2 . (38)

4) For every pair(u(j),v(k|j)), j = 1, 2, . . . , enR2 , k =
1, 2, . . . , enR

′

2 , generateenR1 vectors x(l|j, k), l =
1, 2, . . . , enR1 , independently of each other, according to
∏n

i=1 PX|U,V (xi|ui(j), vi(k|j)).
These codewords form the codebook, which is revealed to the
encoder and the decoders.

Encoding:Given a triple(j, k, l), wherej = 1, 2, . . . , enR2 ,
k = 1, 2, . . . , enR

′

2 , l = 1, 2, . . . , enR1 , the encoder sends via
the channel the codewordx(l|j, k).

Decoding: We assume first that the conference link is
absent. Decoder 2 hasy2 at hand. He looks for the unique
index ĵ in {1, 2, . . . , exp(nR2)} such that

(u(ĵ),y2) ∈ T (n)
ǫ (UY2).

If such ĵ does not exist, or there is more than one such index,
an error is declared. By classical results, if

R2 < I(U ;Y2), (39)

the indexj is decoded correctly with high probability.

Decoder 1 hasy1 at hand. He looks for the unique indexˆ̂j
in {1, 2, . . . , exp(nR2)} such that

(u(ˆ̂j),y1) ∈ T (n)
ǫ (UY1).



If such ˆ̂j does not exist, or there is more than one such index,
an error is declared. By classical results, if

R2 < I(U ;Y1), (40)

Decoder 1 succeeds to decode correctly the indexj with high
probability. Since the channel is degraded, if (39) holds, it

implies (40). Next, Decoder 1 looks for the unique indexˆ̂
k in

{1, 2, . . . , exp(nR′
2)} such that

(u(ˆ̂j),v(
ˆ̂
k|ˆ̂j),y1) ∈ T (n)

ǫ (V Y1|U). (41)

If such ˆ̂
k does not exist, or there is more than one such,

an error is declared. By classical results, the indexk ∈
{1, 2, . . . , exp(nR′

2)} is decoded correctly with high proba-
bility if

R′
2 < I(V ;Y1|U). (42)

Having the pair(ˆ̂j, ˆ̂k) at hand, Decoder 1 looks for the unique

index ˆ̂l ∈ {1, 2, . . . , exp(nR1)} satisfying

(u(ˆ̂j),v(
ˆ̂
k|ˆ̂j),x(

ˆ̂
l|
ˆ̂
k, ˆ̂j),y1) ∈ T (n)

ǫ (XY1|UV ). (43)

By classical results, this step succeeds if the rateR1 satisfies

R1 < I(X;Y1|U, V ). (44)

This concludes the decoding process when the conference link
is absent. By (39), (42) and (44), the conditions for correct
decoding when there is no conferencing are

R2 ≤ I(U ;Y2), (45a)

R′
2 ≤ I(V ;Y1|U), (45b)

R1 ≤ I(X;Y1|U, V ). (45c)

Observe that, although the rateR′
2 is decoded by Decoder 1

(if (45b) is satisfied), it does not arrive to User 2, since the
conferencing link is absent. The bound (45b) is still needed
in order to guarantee that Decoder 1 can proceed and decode
the indexl (the message intended to him).

We turn now to the case where the conference link is
present. Decoder 1 operates exactly as in the case of no

conference, and decodes the indicesˆ̂j, ˆ̂k, and ˆ̂l. If (45) hold,
these steps succeed with high probability. He then sends

b(
ˆ̂
k|ˆ̂j), the index of the bin to whichv(ˆ̂k|ˆ̂j) belongs, via the

conference link. Due to (38), the link capacity suffices, and

Decoder 2 receivesb(ˆ̂k|ˆ̂j) without an error.
Decoder 2 decodes the index̂j as in the case of no

conference. After receiving from Decoder 1 the bin index

b(
ˆ̂
k|ˆ̂j), he looks in this bin for the unique index̂k such that

(v(k̂|ĵ),u(ĵ),y2) ∈ T (n)
ǫ (V Y2|U). (46)

If such an index does not exist, or there is more than one such,
an error is declared. From the code construction, every bin
contains approximatelyen(R

′

2−C1,2) codewordsv. Assuming

that the previous decoding steps were successful (i.e.,ˆ̂j, ˆ̂
k,

ĵ are the correct indices forj, k, and j, respectively), by
classical resultŝk is correct with high probability if

R′
2 − C1,2 ≤ I(V ;Y2|U). (47)

The region defined by (45) and (47) coincides withR(C1,2).
This concludes the proof of the achievability part.

Converse Part. We start with a sequence of codes
(n, enR1 , enR2 , enR

′

2 , enC1,2 , ǫn) with increasing blocklength
n, satisfyinglimn→∞ ǫn = 0. We denote byMk the random
message fromNk, k = 1, 2, and byM ′

2 the message from
N ′

2. The conference message is denoted byM1,2. By Fano’s
inequality we can bound the rateR2 as

nR2 − nδn ≤ I(M2;Y
n
2 ) (48)

(a)
=

n
∑

i=1

I(M2;Y2,i|Y
i−1
2 )

≤
n
∑

i=1

I(M2, Y
i−1
2 ;Y2,i), (49)

where limn→∞ δn = 0, due to limn→∞ ǫn = 0, and (a)
follows from the chain rule. We now bound the rateR′

2 as
follows. If the conference link is present, then the messages
M ′

2 can be decoded by Decoder 2 based onY n
2 and the

message transmitted via the conference link,M1,2. Therefore

nR′
2 − nδn ≤ I(M ′

2;Y
n
2 ,M1,2|M2) (50)

= I(M ′
2;Y

n
2 |M2) + I(M ′

2;M1,2|M2, Y
n
2 )

≤ I(M ′
2;Y

n
2 |M2) +H(M1,2)

=

n
∑

i=1

I(M ′
2;Y2,i|M2, Y

i−1
2 ) +H(M1,2)

≤
n
∑

i=1

I(M ′
2, Y

i−1
1 ;Y2,i|M2, Y

i−1
2 ) +H(M1,2).

Moreover, the messageM ′
2 can be decoded by Decoder 1,

regardless of the conference link. Hence:

nR′
2 − nδn ≤ I(M ′

2;Y
n
1 |M2)

=
n
∑

i=1

I(M ′
2;Y1,i|M2, Y

i−1
1 )

(a)
=

n
∑

i=1

I(M ′
2;Y1,i|M2, Y

i−1
1 , Y i−1

2 )

≤
n
∑

i=1

I(M ′
2, Y

i−1
1 ;Y1,i|M2, Y

i−1
2 ), (51)

where(a) is true because the channel is physically degraded.
The rateR1 can be bounded by

nR1 − nδn ≤ I(M1;Y
n
1 |M2,M

′
2)

=

n
∑

i=1

I(M1;Y1,i|M2,M
′
2, Y

i−1
1 )

(a)
=

n
∑

i=1

I(M1;Y1,i|M2,M
′
2, Y

i−1
1 , Y i−1

2 )



(b)
=

n
∑

i=1

I(Xi;Y1,i|M2,M
′
2, Y

i−1
1 , Y i−1

2 ), (52)

where (a) is true since the channel is physically degraded.
Equality (b) holds sinceXi is a deterministic function of the
messagesM1, M2, andM ′

2, and sinceY1,i is independent of
(M2,M

′
2, Y

i−1
2 , Y i−1

1 ,M1) when conditioned onXi. Defining
Ui = (M2, Y

i−1
2 ), Vi = (M ′

2, Y
i−1
1 ) and using the fact that

1

n
H(M1,2) ≤ C1,2, (53)

we obtain from (49), (50), (51), and (52) the bounds

n(R2 − δn) ≤
n
∑

i=1

I(Ui;Y2,i), (54a)

n(R′
2 − δn) ≤

n
∑

i=1

I(Vi;Y2,i|Ui) + nC1,2, (54b)

n(R′
2 − δn) ≤

n
∑

i=1

I(Ui;Y1,i|Vi), (54c)

n(R1 − δn) ≤
n
∑

i=1

I(Xi;Y1,i|Ui, Vi). (54d)

Using the standard time-sharing argument as in [13, Ch. 14.3],
one can rewrite (54) by introducing an appropriate time-
sharing random variable. Therefore, ifǫn → 0 as n → ∞,
the convex hull of this region can be shown to be equivalent
to the convex hull of the region in (6).

Finally, the bounds on the cardinalities ofU andV follow
from Fenchel-Eggleston-Carathéodry Theorem, similarly as
used for the 3-receiver degraded BC [12, Appendix C].

B. Proof of Theorem 2

The proof of Theorem 2 is based on the combination of
superposition coding and block-Markov coding. The transmis-
sion is always performed inB sub-blocks, of lengthn each.
In each sub-block, the messages of User 1 are encoded in two
layers. First the messageM1 is encoded withV , and then the
messageM ′

1 is encoded withX1, using superposition coding
around the cloud centersV . If the cribbing link is absent,
Encoder 2 encodes his messages independently of Encoder 1.
The decoder can then decode only the messages ofV and
X2. If the cribbing link is present, block Markov coding is
employed, similarly to the scheme used in [9] for one sided
strictly causal cribbing.

It is important to emphasize that User 1 must employ a
universal encoding scheme, in the sense of beingindependent
of the cribbing. User 2 and the decoder, however, can employ
different encoding and decoding schemes, in accordance to
existence or absence of the cribbing. Accordingly, in the
sequel, we describe the encoding scheme for the first user
separately.

We use a random coding argument to demonstrate the
achievability part. The messagesM1,b ∈ {1, 2, . . . , exp(nR1)}
and M ′

1,b ∈ {1, 2, . . . , exp(nR′
1)}, for b = 1, 2, . . . , B − 1,

which are uniformly distributed and independent of each

other, will be sent over the MAC inB blocks, each ofn
transmissions. Note that ifB → ∞, the overall rates are
R1(B− 1)/B → R1 andR′

1(B− 1)/B → R′
1. In each of the

B blocks the same codebook is used, and is constructed, for
the first user, as follows.

Codebook construction for User 1:Fix a joint distribution
PUPV PX1|U,V , and a sufficiently smallǫ > 0.

1) Generate en(R1+R1) codewords v, i.i.d., according
to PV . Label them v(m0,m1), for m0,m1 ∈
{1, 2, . . . , exp(nR1)}.

2) Generateen(R1+R′

1) codewordsu, independently ac-
cording to PU . Label them u(m0,m

′
0), for m0 ∈

{1, 2, . . . , exp(nR1)} andm′
0 ∈ {1, 2, . . . , exp(nR′

1)}.
3) For every v(m0,m1) and u(m0,m

′
0), generate

enR
′

1 codewords x1, independently according
to

∏n
i=1 PX1|U,V (x1,i|ui(m0,m

′
0), vi(m0,m1)).

Label them x1(m
′
1,u(m0,m

′
0),v(m0,m1)), for

m′
1 ∈ {1, 2, . . . , exp(nR′

1)}.
We now present the achievability scheme for the case where

cribbing is absent.
1) Cribbing is absent: The message M2,b ∈

{1, 2, . . . , exp(nR2)}, for b = 1, 2, . . . , B − 1, is uniformly
distributed, independent of the messages of the first
user, and will be sent over the MAC inB blocks,
each of n transmissions. IfB → ∞, the overall rate is
R2(B − 1)/B → R2. In each of theB blocks the same
codebook is used, and is constructed, for the second user, as
follows.

Codebook construction for User 2:Fix a distributionPX2
,

and a sufficiently smallǫ > 0. GenerateenR2 codewords
x2, i.i.d., according toPX2

. Label themx2(m2), for m2 ∈
{1, 2, . . . , exp(nR2)}.

The codewords of Users 1 and 2 form the codebook, which
is revealed to the encoders and the decoder. The messages
m1,b ∈ {1, . . . , exp(nR1)}, m′

1,b ∈ {1, . . . , exp(nR′
1)}, and

m2,b ∈ {1, . . . , exp(nR2)}, b = 1, . . . , B − 1, are encoded in
the following way.

Encoding:In block 1, the encoders send:

x1,1 = x1(m
′
1,1,u(1, 1),v(1,m1,1)) (55a)

x2,1 = x2(m2,1). (55b)

Then, in blockb, b = 2, 3, . . . , B, the encoders send (57),
shown at the top of the next page.

Decoding:We employ simultaneous joint typicality decod-
ing. At the end of the first block, the decoder looks for
(m̂1,1, m̂2,1) such that:

(v(1, m̂1,1),x2(m̂2,1),y) ∈ T (n)
ǫ (V X2Y ). (58)

Next, assume that the decoder has correctly foundm̂1,1. Then,
to find the transmitted information at the end of the second
block, the decoder looks for(m̂1,2, m̂2,2) such that:

(v(m̂1,1, m̂1,2),x2(m̂2,2),y) ∈ T (n)
ǫ (V X2Y ). (59)

With the knowledge of̂m1,2 the information at the end of the
third block can be decoded in a similar manner. In general,



x1,b = x1(m
′
1,b,u(m1,b−1,m

′
1,b−1),v(m1,b−1,m1,b)), b = 2, 3, . . . , B − 1 (57a)

x2,b = x2(m2,b), b = 2, 3, . . . , B − 1 (57b)

x1B = x1(1,u(m1,B−1,m
′
1,B−1),v(m1,B−1, 1)), (57c)

x2B = x2(m2,B). (57d)

at the end of blockb the decoder looks for(m̂1,b, m̂2,b) such
that:

(v(m̂1,b−1, m̂1,b),x2(m̂2,b),y) ∈ T (n)
ǫ (V X2Y ) (60)

wherem̂1,b−1 was decoded in the previous block.
Error Analysis: By classical results (e.g., standard MAC),

there exists a sequence of codes with a probability of error
that goes to zero as the block length goes to infinity, if:

R1 ≤ I(V ;Y |X2), (61a)

R2 ≤ I(X2;Y |V ), (61b)

R1 +R2 ≤ I(V,X2;Y ). (61c)

This concludes the decoding process when the conference link
is absent.

2) Cribbing is present: We turn now to the case
where the cribbing link is present. The messageM ′′

2,b ∈
{1, 2, . . . , exp(nR′′

2 )}, for b = 1, 2, . . . , B − 1, is uniformly
distributed, independent of the messages of the first user,
and will be sent over the MAC inB blocks, each ofn
transmissions. In each of theB blocks the same codebook
is used, and is constructed, for the second user, as follows.

Codebook construction for User 2:Fix a distribution
PX′′

2 |U , and a sufficiently small ǫ > 0. For every
u(m0,m

′
0), generateenR

′′

2 codewords x′′
2 , independently

according to
∏n

i=1 PX′′

2 |U (x2,i|ui(m0,m
′
0)). Label them

x′′
2(m

′′
2 ,u(m0,m

′
0)), for m′′

2 ∈ {1, 2, . . . , exp(nR′′
2 )}. The

codewords of Users 1 and 2 form the codebook, which is
revealed to the encoders and the decoder.

Encoding: The messagesm1,b ∈ {1, . . . , exp(nR1)},
m′

1,b ∈ {1, . . . , exp(nR′
1)}, andm′′

2,b ∈ {1, . . . , exp(nR′′
2 )},

b = 1, . . . , B− 1, are encoded in the following way: In block
1, the encoders send1:

x1,1 = x1(m
′
1,1,u(1, 1),v(1,m1,1)) (62a)

x′′
2,1 = x′′

2(m
′′
2,1,u(1, 1)). (62b)

Assume that as a result of cribbing from encoder1, after block
b, b = 1, 2, . . . , B−1, encoder 2 has estimateŝm1,b andm̂′

1,b,
for m1,b andm′

1,b, respectively. To this end, encoder 2 first
choosesm̂1,b such that:

(v(m̂1,b−1, m̂1,b),x1,b) ∈ T (n)
ǫ (V X1) (63)

wherem̂1,b−1 was determined at the end of blockb−1 (recall
thatm1,0 = 1). Then, givenm̂1,b, he chooseŝm′

1,b according

1Recall that User 1 must employ the same encoding scheme as in the
case of absent cribbing.

to (64), shown at the top of the next page, wherem̂′
1,b−1

was determined at the end of blockb − 1. Finally, in block
b, b = 2, 3, . . . , B, the encoders send (65), shown at the top
of the next page.

Decoding:Here, the principle of backward decoding [9] is
used to find the transmitted information. In the last block,
block B, the decoder looks for(m̂1,B−1, m̂

′
1,B−1) such that

{

u(m̂1,B−1, m̂
′
1,B−1),v(m̂1,B−1, 1),

x1(1,u(m̂1,B−1, m̂
′
1,B−1),v(m̂1,B−1, 1)),

x′′
2(1,u(m̂1,B−1, m̂

′
1,B−1)),y

′′
B

}

∈ T (n)
ǫ (UV X1X

′′
2 Y

′′). (66)

Next, in block B − 1, the decoder has at hand an esti-
mate of the fresh information sent in blockB − 1, namely,
(m̂1,B−1, m̂

′
1,B−1), and to find the transmitted information in

blockB−1 the decoder looks for2 (m̂1,B−2, m̂
′
1,B−2, m̂

′′
2,B−1)

according to (67), shown at the top of the next page. Then, in
block B− 2, the decoder has at hand an estimate of the fresh
information sent in blockB − 2, namely,(m̂1,B−2, m̂

′
1,B−2),

and the information sent in blockB− 2 can be decoded next,
etc. In general, in blockb, the decoder has at hand an estimate
of the fresh information sent in blockb, namely,(m̂1,b, m̂

′
1,b),

and to find the transmitted information in blockb, the decoder
looks for (m̂1,b−1, m̂

′
1,b−1, m̂

′′
2,b) according to (68), shown at

the top of the next page.
According to the above decoding rule, the decoding of

User 1 and User 2 are staggered: at some blockb ∈
{1, 2, . . . , B − 1}, the message of User 2 is decoded jointly
with the resolution informationof User 1, and the latter
estimates are actually the fresh messages of blockb− 1.

If in a decoding step (second encoder or the decoder) there
is no message index (or no index pair) to satisfy the decoding
rule, or if there is more than one index (or index pair), then
an index (or an index pair) is chosen at random.

Error Analysis: The following lemma will enable us to
bound the probability of error of the super blocknB by
bounding the probability of error of each block.

Lemma 2:Let {Al}
L
l=1 be a set of events and letAc

j be the
complement of the eventAj . Then,

Pr

{

L
⋃

l=1

Al

}

≤
L
∑

l=1

Pr
{

Al|A
c
1,A

c
2, . . . ,A

c
l−1

}

(69)

whereA0 = ∅.

2The messages(m1,B−2,m
′

1,B−2) are the resolution information of
user 1 at blockB − 1, which are actually the fresh messages ofB − 2.



{

u(m̂1,b−1, m̂
′
1,b−1),v(m̂1,b−1, m̂1,b), x1(m̂

′
1,b,u(m̂1,b−1, m̂

′
1,b−1),v(m̂1,b−1, m̂1,b)),x1,b

}

∈ T (n)
ǫ (UV X1X1) (64)

x1,b = x1(m
′
1,b,u(m1,b−1,m

′
1,b−1),v(m1,b−1,m1,b)), b = 2, 3, . . . , B − 1 (65a)

x′′
2,b = x′′

2(m
′′
2,b,u(m̂1,b−1, m̂

′
1,b−1)), b = 2, 3, . . . , B − 1 (65b)

x1B = x1(1,u(m1,B−1,m
′
1,B−1),v(m1,B−1, 1)), (65c)

x′′
2B = x′′

2(1,u(m̂1,B−1, m̂
′
1,B−1)). (65d)

{

u(m̂1,B−2, m̂
′
1,B−2),v(m̂1,B−2, m̂1,B−1),x1(m̂

′
1,B−1,u(m̂1,B−2, m̂

′
1,B−2),v(m̂1,B−2, m̂1,B−1))

x′′
2(m̂

′′
2,B−1,u(m̂1,B−2, m̂

′
1,B−2)),y

′′
B−1

}

∈ T (n)
ǫ (UV X1X

′′
2 Y

′′). (67)

{

u(m̂1,b−1, m̂
′
1,b−1),v(m̂1,b−1, m̂1,b),x1(m̂

′
1,b,u(m̂1,b−1, m̂

′
1,b−1),v(m̂1,b−1, m̂1,b))

x′′
2(m̂

′′
2,b,u(m̂1,b−1, m̂

′
1,b−1)),y

′′
b

}

∈ T (n)
ǫ (UV X1X

′′
2 Y

′′). (68)

Using Lemma 2, we bound the probability of error in the
super blocknB by the sum of the probability of having
an error in each blockb given that in previous blocks, the
messages were decoded correctly.

First let us bound the probability that for someb, encoder
2 decodes the messages of encoder 1 incorrectly at the end
of that block. Using Lemma 2, it suffices to show that the
probability of decoding error in each block goes to zero,
assuming that all previous messages in blocks(1, 2, . . . , b−1)
were decoded correctly.

Let Eenc,b = E
(1)
enc,b ∪ E

(2)
enc,b be the event that encoder

2 has an error in decodingm1,b or m′
1,b. The eventE(1)

enc,b

refers to an error in decodingm1,b, while E
(2)
enc,b refers to an

error in decodingm′
1,b. The termPr

{

Eenc,b|E
c
enc,b−1

}

is the

probability that encoder 2 incorrectly decodedm1,b or m′
1,b,

given thatm1,b−1 and m′
1,b−1 were decoded correctly. We

have,

Pr
{

Eenc,b|E
c
enc,b−1

}

≤ Pr
{

E
(1)
enc,b|E

c
enc,b−1

}

+ Pr
{

E
(2)
enc,b|E

c
enc,b−1, (E

(1)
enc,b)

c
}

. (70)

Define the sets

Eb,m1,b
, (v(m1,b−1,m1,b),x1,b) ∈ T (n)

ǫ (V X1), (71)

and the setEb,m′

1,b
in (72), shown at the top of the next page,

givenm1,b−1 andm′
1,b−1. Assume without loss of generality

thatm1,b−1 = m′
1,b−1 = m1,b = 1. Then, according to (63),

Pr
{

E
(1)
enc,b|E

c
enc,b−1

}

≤ Pr







⋃

m1,b 6=1

Eb,m1,b
|Ec

enc,b−1







.

(73)

The probability at the right hand side of (73), is the probability
of the event in (71), given thatm1,b−1, was decoded correctly.
Then, to evaluate (73), we can equivalently evaluate the
probability of the event

Eb,m1,b
, (v(1,m1,b),x1,b) ∈ T (n)

ǫ (V X1), (74)

for m1,b 6= 1. Whence, by classical results, we have,

Pr
{

E
(1)
enc,b|E

c
enc,b−1

}

≤
∑

m1,b 6=1

Pr
{

Eb,m1,b
|Ec

enc,b−1

}

(75)

≤
∑

m1,b 6=1

e−n(I(V ;X1)−3ǫ) (76)

≤ en(R1−I(V ;X1)+3ǫ). (77)

Next, recall that encoder 2 decodesm′
1,b according to (64),

given that he already decoded̂m1,b in the first stage, and
m̂1,b−1 and m̂′

1,b−1 at the end of blockb − 1. Accordingly,
we have,

Pr
{

E
(2)
enc,b|E

c
enc,b−1, (E

(1)
enc,b)

c
}

= Pr







⋃

m′

1,b 6=1

Eb,m′

1,b
|Ec

enc,b−1, (E
(1)
enc,b)

c









Eb,m′

1,b
,

{

u(m1,b−1,m
′
1,b−1),v(m1,b−1,m1,b),x1(m

′
1,b,u(m1,b−1,m

′
1,b−1),v(m1,b−1,m1,b)),x1,b

}

∈ T (n)
ǫ (UV X1X

′
1).

(72)

≤
∑

m′

1,b 6=1

Pr
{

Eb,m′

1,b
|Ec

enc,b−1, (E
(1)
enc,b)

c
}

. (78)

Again, the probability at the right hand side of (78), is the
probability of the event in (72), given thatm1,b−1, m′

1,b−1,
andm1,b, were decoded correctly. Then, to evaluate (78), we
can equivalently evaluate the probability of the event in (79),
shown at the top of the next page, form′

1,b 6= 1. We get

Pr
{

Eb,m′

1,b
|Ec

enc,b−1, (E
(1)
enc,b)

c
}

=
∑

T
(n)
ǫ (UVX1X1)

P (u)P (v)P (x1|u,v)P (x′
1|u,v)

≤ exp(n(H(U, V,X1, X1) + ǫ))

· exp(−n(H(U, V,X1)− 4ǫ))

· exp(−n(H(X1|U, V )− ǫ))

= exp(−n(H(X1|U, V )− 6ǫ)). (80)

Therefore,

Pr
{

E
(2)
enc,b|E

c
enc,b−1, (E

(1)
enc,b)

c
}

≤
∑

m′

1,b 6=1

e−n(H(X1|U,V )−6ǫ)

≤ en(R
′

1−H(X1|U,V )+6ǫ).
(81)

Wrapping up, using (77) and (81), by Lemma 2, ifR1 ≤
I(V ;X1) andR′

1 ≤ H(X1|U, V ), then encoder 2 can decode
all the messages (i.e., over all theB blocks) of encoder 1
correctly, with a probability of error that goes to zero as the
block length goes to infinity.

Next, at the receiver side, recall first the decoding
rule in (68), where in blockb, the decoder looks for
(m̂1,b−1, m̂

′
1,b−1, m̂

′′
2,b) assuming that(m̂1,b, m̂

′
1,b) were al-

ready decoded in blockb+1. In the following, we upper bound
the overall error probability of the receiver. To this end, we use
once again Lemma 2, as follows. The error probability of the
receiver is upper bounded by the sum of the probabilities that
in each blockb the receiver incorrectly decodes the messages
m1,b−1, m′

1,b−1, and m′′
2,b, given that: (1) at blockb + 1

the messagesm1,b andm′
1,b were decoded correctly, and (2)

encoder 2 decoded correctly all the messages of encoder 1 (in
all theB blocks).

Define the event in (82), shown at the top of the next page,
and without loss of generality, assume thatm1,b = m′

1,b = 1.
Assuming thatm1,b−1 = m′

1,b−1 = m′′
2,b = 1, an error occurs

if either the correct codewords are not jointly typical withthe
received sequences, i.e.,Ec

1,1,1,b, or if there exists a different
tuple (m1,m

′
1,m

′′
2) 6= (1, 1, 1) such thatEm1,m′

1,m
′′

2 ,b
occurs.

Let P (n)
e,b be the decoding error probability at blockb given

that in blocks(b + 1, . . . , B), there was no decoding error.

From the union bound, we obtain that:

P
(n)
e,b ≤ Pr

{

Ec
1,1,1,b

}

+
∑

m1>1

Pr {Em1,1,1,b}

+
∑

m′

1>1

Pr
{

E1,m′

1,1,b

}

+
∑

m′′

2 >1

Pr
{

E1,1,m′′

2 ,b

}

+
∑

m1>1,m′

1>1

Pr
{

Em1,m′

1,1,b

}

+
∑

m1>1,m′′

2 >1

Pr
{

Em1,1,m′′

2 ,b

}

+
∑

m′

1>1,m′′

2 >1

Pr
{

E1,m′

1,m
′′

2 ,b

}

+
∑

m1>1,m′

1>1,m′′

2 >1

Pr
{

Em′

1,m1,m′′

2 ,b

}

. (83)

Let us upper bound each term in (83).

1) Upper-boundingPr
{

Ec
1,1,1,b

}

: Since we assume that

encoder 2 encodes the right messagesm1,b−1 andm′
1,b−1

in block b, and that the receiver decoded the right
messagesm1,b and m′

1,b at block b + 1, by the LLN

Pr
{

Ec
1,1,1,b

}

→ 0 asn → ∞.

2) Upper-bounding
∑

m′′

2 >1 Pr
{

E1,1,m′′

2 ,b

}

: Let S be the
set of all sequences(u,v,x1,x

′′
2 ,y

′′) that belong to
T

(n)
ǫ (UV X1X

′′
2 Y

′′). We then have

Pr
{

E1,1,m′′

2 ,b

}

=
∑

S

P (u)P (v)P (x1|u,v)P (x′′
2 |u)

× P (y′′|u,v,x1)

≤ exp(n(H(U, V,X1, X
′′
2 , Y

′′) + ǫ))

· exp(−n(H(U, V,X1)− 4ǫ))

· exp(−n(H(X ′′
2 |U)− ǫ))

· exp(−n(H(Y ′′|U, V,X1)− ǫ))

= exp(−n(I(X ′′
2 ;Y

′′|U, V,X1)− 7ǫ)). (84)

Hence, we obtain
∑

m′′

2 >1

Pr
{

E1,1,m′′

2 ,b

}

≤ en(R
′′

2 −I(X′′

2 ;Y ′′|U,V,X1)+7ǫ).

(85)

3) Upper-bounding
∑

m1>1 Pr {Em1,1,1,b}: We have

Pr {Em1,1,1,b}

=
∑

S

P (u)P (v)P (x1|u,v)P (x′′
2 |u)P (y′′)

≤ exp(n(H(U, V,X1, X
′′
2 , Y

′′) + ǫ))

· exp(−n(H(U, V,X1)− 4ǫ))



Ẽb,m′

1,b
,

{

u(1, 1),v(1, 1),x1(m
′
1,b,u(1, 1),v(1, 1)),x1,b

}

∈ T (n)
ǫ (UV X1X1). (79)

Em1,m′

1,m
′′

2 ,b
,

{

u(m1,m
′
1),v(m1,m1,b),x1(m

′
1,b,u(m1,m

′
1),v(m1,m1,b)), x′′

2(m
′′
2 ,u(m1,m

′
1)),y

′′
b }

∈ T (n)
ǫ (UV X1X

′′
2 Y

′′). (82)

· exp(−n(H(X ′′
2 |U)− ǫ))

· exp(−n(H(Y ′′)− ǫ))

= exp(−n(I(U, V,X1, X
′′
2 ;Y

′′)− 7ǫ)). (86)

Hence, we obtain
∑

m1>1

Pr {Em1,1,1,b} ≤ en(R1−I(U,V,X1,X
′′

2 ;Y ′′)+7ǫ).

(87)

4) Upper-bounding
∑

m′

1>1 Pr
{

E1,m′

1,1,b

}

: We have

Pr
{

E1,m′

1,1,b

}

=
∑

S

P (u)P (v)P (x1|u,v)P (x′′
2 |u)P (y′′|v)

≤ exp(n(H(U, V,X1, X
′′
2 , Y

′′) + ǫ))

· exp(−n(H(U, V,X1)− 4ǫ))

· exp(−n(H(X ′′
2 |U)− ǫ))

· exp(−n(H(Y ′′|V )− ǫ))

= exp(−n(I(U,X1, X
′′
2 ;Y

′′|V )− 7ǫ)). (88)

Hence, we obtain
∑

m′

1>1

Pr
{

E1,m′

1,1,b

}

≤ en(R
′

1−I(U,X1,X
′′

2 ;Y ′′|V )+7ǫ).

(89)

5) Upper-bounding
∑

m1>1,m′

1>1 Pr
{

Em1,m′

1,1,b

}

: We
have

Pr
{

Em1,m′

1,1,b

}

=
∑

S

P (u)P (v)P (x1|u,v)P (x′′
2 |u)P (y′′)

≤ exp(n(H(U, V,X1, X
′′
2 , Y

′′) + ǫ))

· exp(−n(H(U, V,X1)− 4ǫ))

· exp(−n(H(X ′′
2 |U)− ǫ))

· exp(−n(H(Y ′′)− ǫ))

= exp(−n(I(U, V,X1, X
′′
2 ;Y

′′)− 7ǫ)). (90)

Hence, we obtain
∑

m1>1,m′

1>1

Pr
{

Em1,m′

1,1,b

}

≤ en(R1+R′

1−I(U,V,X1,X
′′

2 ;Y ′′)+7ǫ). (91)

6) Upper-bounding
∑

m1>1,m′′

2 >1 Pr
{

Em1,1,m′′

2 ,b

}

: We
have

Pr
{

Em1,1,m′′

2 ,b

}

=
∑

S

P (u)P (v)P (x1|u,v)P (x′′
2 |u)P (y′′)

≤ exp(n(H(U, V,X1, X
′′
2 , Y

′′) + ǫ))

· exp(−n(H(U, V,X1)− 4ǫ))

· exp(−n(H(X ′′
2 |U)− ǫ))

· exp(−n(H(Y ′′)− ǫ))

= exp(−n(I(U, V,X1, X
′′
2 ;Y

′′)− 7ǫ)). (92)

Hence, we obtain
∑

m1>1,m′′

2 >1

Pr
{

Em1,1,m′′

2 ,b

}

≤ en(R1+R′′

2 −I(U,V,X1,X
′′

2 ;Y ′′)+7ǫ). (93)

7) Upper-bounding
∑

m′

1>1,m′′

2 >1 Pr
{

E1,m′

1,m
′′

2 ,b

}

: We
have

Pr
{

E1,m′

1,m
′′

2 ,b

}

=
∑

S

P (u)P (v)P (x1|u,v)P (x′′
2 |u)P (y′′|v)

≤ exp(n(H(U, V,X1, X
′′
2 , Y

′′) + ǫ))

· exp(−n(H(U, V,X1)− 4ǫ))

· exp(−n(H(X ′′
2 |U)− ǫ))

· exp(−n(H(Y ′′|V )− ǫ))

= exp(−n(I(U,X1, X
′′
2 ;Y

′′|V )− 7ǫ)). (94)

Hence, we obtain
∑

m′

1>1,m′′

2 >1

Pr
{

E1,m′

1,m
′′

2 ,b

}

≤ en(R
′

1+R′′

2 −I(U,X1,X
′′

2 ;Y ′′|V )+7ǫ). (95)

8) Upper-bounding
∑

m1>1,m′

1>1,m′′

2 >1 Pr
{

Em1,m′

1,m
′′

2 ,b

}

:
We have

Pr
{

Em1,m′

1,m
′′

2 ,b

}

=
∑

S

P (u)P (v)P (x1|u,v)P (x′′
2 |u)P (y′′)

≤ exp(n(H(U, V,X1, X
′′
2 , Y

′′) + ǫ))

· exp(−n(H(U, V,X1)− 4ǫ))



· exp(−n(H(X ′′
2 |U)− ǫ))

· exp(−n(H(Y ′′)− ǫ))

= exp(−n(I(U, V,X1, X
′′
2 ;Y

′′)− 7ǫ)). (96)

Hence, we obtain
∑

m1>1,m′

1>1,m′′

2 >1

Pr
{

Em1,m′

1,m
′′

2 ,b

}

≤ en(R1+R′

1+R′′

2 −I(U,V,X1,X
′′

2 ;Y ′′)+7ǫ). (97)

Thus, if (R1, R
′
1, R

′′
2 ) satisfy:

R1 ≤ I(V ;X1), (98a)

R′
1 ≤ H(X1|U, V ), (98b)

R1 ≤ I(U, V,X1, X
′′
2 ;Y

′′), (98c)

R′
1 ≤ I(U,X1, X

′′
2 ;Y

′′|V ), (98d)

R1 +R′
1 ≤ I(U, V,X1, X

′′
2 ;Y

′′), (98e)

R′′
2 ≤ I(X ′′

2 ;Y
′′|U, V,X1), (98f)

R1 +R′′
2 ≤ I(U, V,X1, X

′′
2 ;Y

′′), (98g)

R′
1 +R′′

2 ≤ I(U,X1, X
′′
2 ;Y

′′|V ), (98h)

R1 +R′
1 +R′′

2 ≤ I(U, V,X1, X
′′
2 ;Y

′′), (98i)

then there exists a sequence of codes with a probability of error
that goes to zero as the block length goes to infinity. We note
to the following simplifications. First, we can remove (98c),
(98e), and (98g), due to (98i), and (98d) can be removed due
to (98h). Second, (98h) and (98i) can be replaced withR′

1 +
R′′

2 ≤ I(X1, X
′′
2 ;Y

′′|V ) andR1+R′
1+R′′

2 ≤ I(X1, X
′′
2 ;Y

′′),
respectively, due to the Markov chain(U, V )−◦ (X1, X

′′
2 )−◦ Y ′′.

Finally, the constraint in (98a), is superfluous due to (61a).
Indeed,

I(V ;Y |X2) = H(V |X2)−H(V |X2, Y ) (99)
(a)

≤ H(V )−H(V |X1, X2, Y ) (100)
(b)
= H(V )−H(V |X1) (101)

= I(V ;X1) (102)

where (a) follows from the fact that conditioning re-
duces entropy, and (b) follows from the Markov chain
(X2, Y )−◦ X1−◦ V . Thus, to summarize, using the above sim-
plifications, the achievable region for the MAC with unreliable
strictly causal cribbing is given (recall, (61))

R1 ≤ I(V ;Y |X2), (103a)

R2 ≤ I(X2;Y |V ), (103b)

R1 +R2 ≤ I(V,X2;Y ), (103c)

R′
1 ≤ H(X1|U, V ), (103d)

R′′
2 ≤ I(X ′′

2 ;Y
′′|U, V,X1), (103e)

R′
1 +R′′

2 ≤ I(X1, X
′′
2 ;Y

′′|V ), (103f)

R1 +R′
1 +R′′

2 ≤ I(X1, X
′′
2 ;Y

′′), (103g)

for somePU,V,X1,X2,X′′

2 ,Y,Y ′′ of the form

PUPV PX1|U,V PX2
PX′′

2 |UPY |X1,X2
PY ′′|X1,X′′

2
, (104)

as stated in Theorem 2.

C. Proof of Theorem 3

In order to show that all the rate pairs in (22) are achievable,
we employ Shannon strategies [9]. Consider all different
strategies (functions), with memberst ∈ T , X

|X1|
2 that

map inputsx1 ∈ X1 into inputsx′′
2 ∈ X2. Denote byt(·) the

strategy with membert as an operator.
Definition 3: For a DMMAC (X1 × X2, P (y′′|x1, x

′′
2),Y)

the DM derived MAC is denoted by (X1 ×
T , P△(y′′|x1, t),Y) whereP△(y′′|x1, t) , P (y′′|x1, x

′′
2 =

t(x1)) for all x1 ∈ X1, t ∈ T , andy′′ ∈ Y.
Let RS be the set of rates(R1, R

′
1, R2, R

′′
2 ) satisfying

R1 ≤ I(V ;Y |X2), (105a)

R2 ≤ I(X2;Y |V ), (105b)

R1 +R2 ≤ I(V,X2;Y ), (105c)

R′
1 ≤ H(X1|U, V ), (105d)

R′′
2 ≤ I(T ;Y ′′|U, V,X1), (105e)

R′
1 +R′′

2 ≤ I(X1, T ;Y
′′|V ), (105f)

R1 +R′
1 +R′′

2 ≤ I(X1, T ;Y
′′), (105g)

for some joint distributionP (u, v, x1, x2, t, y, y
′′) of the form

P (u, v, x1, x2, t, y, y
′′) =

P (u)P (v)P (x1|u, v)P (x2)P (t|u)P (y|x1, x2)P
△(y′′|x1, t).

(106)

By the achievability scheme for the strictly causal case (The-
orem 2), all rate pairs insideRS are achievable for the above
derived MAC. Therefore for the MAC with causal cribbing all
rate pairs insideRS must be achievable. If we now restrict the
distributions in (106) to satisfy

P (u, v, x1, x2, t, y, y
′′) = P (u)P (v)P (x1|v)P (x2)P (t)

× P (y|x1, x2)P
△(y′′|x1, t),

(107)

then

H(X1|U, V ) = H(X1|V ), (108a)

I(T ;Y ′′|U, V,X1) = I(X ′′
2 ;Y

′′|V,X1), (108b)

I(X1, T ;Y
′′|V ) = I(X1, X

′′
2 ;Y

′′|V ), (108c)

I(X1, T ;Y
′′) = I(X1, X

′′
2 ;Y

′′), (108d)

and3

P (v, x1, x
′′
2 , y

′′) = P (v, x1)
∑

t: t(x1)=x′′

2

P (t)P (y′′|x1, x
′′
2).

(109)

3Recall that for a discrete random variableX with probability mass
functionPX(·), the probability mass functionPY (·) of the discrete random
variableY = g(X) is given by

PY (y) =
∑

x: y=g(x)

PX(x).



Now, given an arbitrary distributionP 0(v, x1, x
′′
2) =

P 0(v, x1)P
0(x′′

2 |x1), we note that there always exists a prod-
uct distributionP (v, x1, t) = P (v, x1)P (t) such that

P (v, x1)
∑

t: t(x1)=x′′

2

P (t) = P 0(v, x1, x
′′
2). (110)

Indeed, this holds for the following choice:

P (v, x1) =
∑

x′′

2

P 0(v, x1, x
′′
2), (111a)

P (t) =
∑

x′

1

P 0(x′
1, x

′′
2 = t(x′

1))

P (x′
1)

. (111b)

From the above (recall also (61)), we conclude that all rate
pairs

R1 ≤ I(V ;Y |X2), (112a)

R2 ≤ I(X2;Y |V ), (112b)

R1 +R2 ≤ I(V,X2;Y ), (112c)

R′
1 ≤ H(X1|V ), (112d)

R′′
2 ≤ I(X ′′

2 ;Y
′′|V,X1), (112e)

R′
1 +R′′

2 ≤ I(X1, X
′′
2 ;Y

′′|V ), (112f)

R1 +R′
1 +R′′

2 ≤ I(X1, X
′′
2 ;Y

′′), (112g)

for somePV,X1,X2,X′′

2 ,Y,Y ′′ of the form

PV,X1
PX2

PX′′

2 |X1
PY |X1,X2

PY ′′|X1,X′′

2
, (113)

are achievable for the MAC with causal cribbing. Fi-
nally, note that due to the Markov chainsV−◦ X1−◦ X ′′

2

and V−◦ (X1, X
′′
2 )−◦ Y ′′ we can replace (112e) withR′′

2 ≤
I(X ′′

2 ;Y
′′|X1), and we obtain Theorem 3. Finally, we show

that each constraint in (112) can be upper bounded by each
constraint in (22), and that that the upper bounds can be
achieved by takingV = ∅, which of course satisfy (113).
Indeed, for example, for (112a), we have

I(V ;Y |X2, U) = H(Y |X2, U)−H(Y |X2, U, V )

≤ H(Y |X2)−H(Y |X2, V )

= I(V ;Y |X2) (114)

where the inequality follows from the fact that condition-
ing reduces entropy, and the Markov chainU−◦ (V,X2)−◦ Y
which follows from the Markov chainsU−◦ (X1, X2)−◦ Y and
U−◦ V−◦ X1. In the same way, we get thatI(X2;Y |V,U) ≤
I(X2;Y |V ) and I(V,X2;Y |U) ≤ I(V,X2;Y ). Finally, for
(112e), we have

I(X ′′
2 ;Y

′′|U, V,X1) = H(Y ′′|U, V,X1)

−H(Y ′′|U, V,X1, X
′′
2 )

≤ H(Y ′′|V,X1)−H(Y ′′|V,X1, X
′′
2 )

= I(X ′′
2 ;Y

′′|V,X1) (115)

where the inequality follows from the fact that
conditioning reduces entropy, and the Markov chains
(U, V )−◦ (X1, X

′′
2 )−◦ Y ′′. However, we readily see that the

above upper bounds can be achieved by simply takingV = ∅,
which coincides with Theorem 3.

D. Proof of Theorem 4

We next show thatIO
mac, defined in (25), is an outer bound

to the capacity region. We start with a sequence of codes
(n, enR1 , enR

′

1 , enR2 , enR
′′

2 , ǫn) with increasing blocklengthn,
satisfying limn→∞ ǫn = 0. We denote byMk the random
message fromNk, for k = 1, 2, and byM ′

1 and M ′′
2 the

messages fromN ′
1 and N ′′

2 , respectively. If the cribbing is
absent, by Fano’s inequality we can bound the rateR1 as
follows

nR1 − nδn ≤ I (M1;Y
n|M2) (116)

=

n
∑

i=1

I
(

M1;Yi|Y
i−1,M2

)

(117)

(a)

≤
n
∑

i=1

I
(

M1, Y
i−1;Yi|M2

)

(118)

(b)
=

n
∑

i=1

I (M1;Yi|M2) + I(Y i−1;Yi|M1,M2) (119)

(c)
=

n
∑

i=1

I (M1;Yi|M2, X2,i) + I(Y i−1;Yi|M1,M2)

(120)
(a)

≤
n
∑

i=1

I (M1,M2;Yi|X2,i) + I(Y i−1;Yi|M1,M2)

(121)

(b)
=

n
∑

i=1

I (M1;Yi|X2,i) + I (M2;Yi|M1, X2,i)

+ I(Y i−1;Yi|M1,M2) (122)

(d)
=

n
∑

i=1

I (M1;Yi|X2,i) + I(Y i−1;Yi|M1,M2) (123)

where limn→∞ δn = 0, due to limn→∞ ǫn = 0, (a) follows
from the chain rule for mutual information and the non-
negativity of the mutual information, (b) follows from the
chain rule for mutual information, (c) is due to the fact that
X2,i is a deterministic function ofM2, and (d) follows from
the Markov chainM2−◦ (M1, X2,i)−◦ Yi, proved in Appendix
A (see, Lemma 3). Thus,I (M2;Yi|M1, X2,i) = 0. Continu-
ing, note thatI(Y i−1;Yi|M1,M2), appearing in (123), can be
upper bounded as follows

I(Y i−1;Yi|M1,M2)
(a)
= I(Y i−1;Yi|M1,M2, X

i
2) (124)

(b)

≤ I(Xi−1
1 ;Yi|M1,M2, X

i
2) (125)

≤ I(Xi−1
2 ,M2, X

i−1
1 ;Yi|M1, X2i) (126)

(c)
= I(Xi−1

1 ;Yi|M1, X2,i)

+ I(Xi−1
2 ,M2;Yi|M1, X2,i, X

i−1
1 ) (127)

(d)
= I(Xi−1

1 ;Yi|M1, X2,i) (128)

where (a) is due to the fact thatXi
2 is a determin-

istic function of M2, (b) follows from the fact that
Y i−1−◦ (Xi−1

1 , Xi
2,M1,M2)−◦ Yi (see, Lemma 3), and the fact



that for any Markov chainZ−◦ (X,W )−◦ Y we have4

I(Z;Y |W ) ≤ I(X;Y |W ). (129)

Passage (c) follows from the chain rule of mutual in-
formation, and finally (d) is due to the Markov chain
(M2, X

i−1
2 )−◦

(

M1, X
i−1
1 , X2,i

)

−◦ Yi (see, Lemma 3). Wrap-
ping up, we obtained

nR1 − nδn ≤
n
∑

i=1

I (M1;Yi|X2,i) + I(Xi−1
1 ;Yi|M1, X2,i)

(130)

=
n
∑

i=1

I
(

M1, X
i−1
1 ;Yi|X2,i

)

. (131)

Next, for R2 we have:

nR2−nδn ≤ I(M2;Y
n|M1,M

′
1) (132)

=

n
∑

i=1

I(M2;Yi|M1,M
′
1, Y

i−1) (133)

(a)
=

n
∑

i=1

I(X2,i,M2;Yi|M1,M
′
1, X1,i, Y

i−1) (134)

≤
n
∑

i=1

I(X2,i,M1,M
′
1,M2, Y

i−1;Yi|X1,i) (135)

(b)
=

n
∑

i=1

I(X2,i;Yi|X1,i)

+ I(M1,M
′
1,M2, Y

i−1;Yi|X1,i, X2,i) (136)

(c)
=

n
∑

i=1

I(X2,i;Yi|X1,i) (137)

where (a) follows from the fact thatX2,i and X1,i

are deterministic functions ofM2 and (M1,M
′
1), re-

spectively, (b) is due to the chain rule for mutual
information, and (c) follows from the Markov chain
(M1,M

′
1,M2, Y

i−1)−◦ (X1,i, X2,i)−◦ Yi. Finally, for the sum
rate we have

n (R1 +R2)− nδn ≤
n
∑

i=1

I
(

M1,M2;Yi|Y
i−1

)

(138)

≤
n
∑

i=1

I
(

M1,M2, Y
i−1;Yi

)

(139)

=

n
∑

i=1

I (M1,M2;Yi)

+ I(Y i−1;Yi|M1,M2) (140)

where the last equality follows from the chain rule. However,
we already saw that (recall (128)):

I(Y i−1;Yi|M1,M2) ≤ I(Xi−1
1 ;Yi|M1, X2,i), (141)

4TakeZ = Y i−1, X = X
i−1
1 , Y = Yi, andW = (M1,M2, X

i
2).

and thus

n (R1 +R2)− nδn ≤
n
∑

i=1

I (M1,M2;Yi)

+ I(Xi−1
1 ;Yi|M1, X2,i) (142)

(a)
=

n
∑

i=1

I (M1,M2, X2,i;Yi)

+ I(Xi−1
1 ;Yi|M1, X2,i) (143)

(b)
=

n
∑

i=1

I (M1, X2,i;Yi)

+ I(Xi−1
1 ;Yi|M1, X2,i) (144)

=
n
∑

i=1

I
(

M1, X
i−1
1 , X2,i;Yi

)

(145)

where in (a) we use the fact thatX2,i is a determin-
istic function of M2, and (b) is due to the fact that
I (M1,M2, X2,i;Yi) = I (M1, X2,i;Yi)+I (M2;Yi|M1, X2,i)
and thatM2−◦ (M1, X2,i)−◦ Yi.

Now, when cribbing is present, by Fano’s inequality we
bound the rateR′

1 as follows:

nR′
1 − nδn ≤ I(M ′

1;Y
n′′

|M1) (146)

= I(M1,M
′
1;Y

n′′

|M1) (147)
(a)
= I(M1,M

′
1, X

n
1 ;Y

n′′

|M1) (148)
(b)
= I(Xn

1 ;Y
n′′

|M1)

+ I(M1,M
′
1;Y

n′′

|M1, X
n
1 ) (149)

(c)
= I(Xn

1 ;Y
n′′

|M1) (150)

≤ H(Xn
1 |M1) (151)

(d)
=

n
∑

i=1

H(X1,i|M1, X
i−1
1 ) (152)

where (a) follows the fact thatXn
1 is a deterministic function

of (M1,M
′
1), (b) is due to the chain rule for mutual informa-

tion, (c) follows from the Markov chain(M1,M
′
1)−◦ Xn

1 −◦ Y n′′

(see, Lemma 3), and (d) is due to the entropy chain rule. Next,
for R′′

2 we have:

nR′′
2 − nδn ≤ I(M ′′

2 ;Y
n′′

|M1,M
′
1) (153)

=
n
∑

i=1

I(M ′′
2 ;Y

′′
i |Y i−1′′ ,M1,M

′
1) (154)

(a)
=

n
∑

i=1

I(M ′′
2 ;Y

′′
i |Y i−1′′ ,M1,M

′
1, X

i−1
1 , X1,i) (155)

≤
n
∑

i=1

I(M1, X
i−1
1 , Y i−1′′ ,M ′

1,M
′′
2 ;Y

′′
i |X1,i) (156)

(b)
=

n
∑

i=1

I(M1, X
i−1
1 , Y i−1′′ ,M ′

1,M
′′
2 , X

′′
2,i;Y

′′
i |X1,i) (157)

(c)
=

n
∑

i=1

I(X ′′
2,i;Y

′′
i |X1,i) (158)



where (a) is due to the fact thatXi
1 is a deterministic function

of M1 andM ′
1, (b) follows the fact thatX ′′

2,i is a deterministic
function of (M ′′

2 , X
i
1), and (c) follows from the Markov chain

(M1, X
i−1
1 , Y i−1′′ ,M ′

1,M
′′
2 )−◦ (X1,i, X

′′
2,i)−◦ Y ′′

i . Finally, for
the sum rateR1 +R′

1 +R′′
2 , we have:

n(R1 +R′
1 +R′′

2 )− nδn ≤ I(M1,M
′
1,M

′′
2 ;Y

n′′

) (159)

≤
n
∑

i=1

I(X1,i, X
′′
2,i;Y

′′
i ). (160)

So, hitherto we have that:

n(R1 − δn) ≤
n
∑

i=1

I(M1, X
i−1
1 ;Yi|X2,i) (161a)

n(R2 − δn) ≤
n
∑

i=1

I(X2,i;Yi|X1,i) (161b)

n(R1 +R2 − δn) ≤
n
∑

i=1

I(M1, X
i−1
1 , X2,i;Yi) (161c)

n(R′
1 − δn) ≤

n
∑

i=1

H(X1i|M1, X
i−1
1 ) (161d)

n(R′′
2 − δn) ≤

n
∑

i=1

I(X ′′
2,i;Y

′′
i |M1, X

i−1
1 , X1,i) (161e)

n(R′
1 +R′′

2 − δn) ≤
n
∑

i=1

H(X1i|M1, X
i−1
1 )

+ I(X ′′
2,i;Y

′′
i |M1, X

i−1
1 , X1,i) (161f)

n(R1 +R′
1 +R′′

2 − δn) ≤
n
∑

i=1

I(X1,i, X
′′
2,i;Y

′′
i ). (161g)

We are now in a position to define our auxiliary RV. From
(161a)-(161g), lettingVi ,

(

M1, X
i−1
1

)

, and thus preserving
the Markov chain induced byP, we have that

n(R1 − δn) ≤
n
∑

i=1

I(Vi;Yi|X2,i) (162a)

n(R2 − δn) ≤
n
∑

i=1

I(X2,i;Yi|X1,i) (162b)

n(R1 +R2 − δn) ≤
n
∑

i=1

I(Vi, X2,i;Yi) (162c)

n(R′
1 − δn) ≤

n
∑

i=1

H(X1i|Vi) (162d)

n(R′′
2 − δn) ≤

n
∑

i=1

I(X ′′
2,i;Y

′′
i |Vi, X1,i) (162e)

n(R′
1 +R′′

2 − δn) ≤
n
∑

i=1

H(X1i|Vi)

+ I(X ′′
2,i;Y

′′
i |Vi, X1,i) (162f)

n(R1 +R′
1 +R′′

2 − δn) ≤
n
∑

i=1

I(X1,i, X
′′
2,i;Y

′′
i ). (162g)

Using the standard time-sharing argument as in [13, Ch. 14.3],
one can rewrite (162) by introducing an appropriate time-
sharing random variable. Therefore, ifǫn → 0 as n → ∞,
the convex hull of this region can be shown to be equivalent
to the convex hull of the region in (25).

Remark 1:As was mentioned in the paragraph preceding
Theorem 4, one can obtain the same outer bound also for the
case of non-causal cribbing (see, (26)). Indeed, it is evident
that the only places where the casual assumption play a role
are in the bounds onR′′

2 and R1 + R′
1 + R′′

2 . It is easy to
see that the bound onR1 + R′

1 + R′′
2 will not change, and

regardingR′′
2 , we have (see, (158)):

nR′′
2 − nδn ≤ I(M ′′

2 ;Y
n′′

|M1,M
′
1) (163)

=

n
∑

i=1

I(M ′′
2 ;Y

′′
i |Y i−1′′ ,M1,M

′
1) (164)

(a)
=

n
∑

i=1

I(M ′′
2 ;Y

′′
i |Y i−1′′ ,M1,M

′
1, X

n
1 ) (165)

≤
n
∑

i=1

I(M1, X
n/i
1 , Y i−1′′ ,M ′

1,M
′′
2 ;Y

′′
i |X1,i) (166)

(b)
=

n
∑

i=1

I(M1, X
n/i
1 , Y i−1′′ ,M ′

1,M
′′
2 , X

′′
2,i;Y

′′
i |X1,i) (167)

(c)
=

n
∑

i=1

I(X ′′
2,i;Y

′′
i |X1,i) (168)

where (a) is due to the fact thatXn
1 is a deterministic function

of M1 andM ′
1, (b) follows the fact thatX ′′

2,i is a deterministic
function of (M ′′

2 , X
n
1 ), and (c) follows from the Markov

chain(M1, X
n/i
1 , Y i−1′′ ,M ′

1,M
′′
2 )−◦ (X1,i, X

′′
2,i)−◦ Y ′′

i , where
Xn/i = (Xi−1, Xn

i+1).

APPENDIX A
AUXILIARY MARKOV CHAINS RELATIONS

Lemma 3:The following relations hold:

1) M2−◦ (M1, X2,i)−◦ Yi

2) (M2, X
i−1
2 )−◦

(

M1, X
i−1
1 , X2,i

)

−◦ Yi

3) Y i−1−◦
(

Xi−1
1 , Xi−1

2

)

−◦ Yi

4) Y i−1−◦
(

Xi−1
1 , Xi−1

2 ,M1,M2

)

−◦ Yi

5) Y i−1−◦
(

Xi−1
1 , Xi

2,M1,M2

)

−◦ Yi

6) (M1,M
′
1)−◦ Xn

1 −◦ Y n′′

Proof of Lemma 3: First, recall that:
(

M1,M2, Y
i−1, Xi−1

1 , Xi−1
2

)

−◦ (X1,i, X2,i)−◦ Yi. (A.1)

Thus, the first item of Lemma 3 follows from:

PYi|M1,X2,i,M2
=

∑

x1,i

PYi|M1,X2,i,M2,X1,i

× PX1i|M1,X2,i,M2
(A.2)

=
∑

x1,i

PYi|M1,X2,i,X1,i
PX1i|M1,X2,i

(A.3)

= PYi|M1,X2,i
, (A.4)



where in the second equality we have used (A.1), and the fact
thatX1 is independent ofM2. The second item of Lemma 3
follows exactly in the same way as above. Indeed,

PYi|M1,Xi
2,M2,X

i−1
1

=
∑

x1,i

PYi|M1,Xi
2,M2,Xi

1

× PX1i|M1,Xi
2,M2,X

i−1
1

(A.5)

=
∑

x1,i

PYi|M1,Xi
1,X2,i

× PX1i|M1,X
i−1
1 ,X2,i

(A.6)

= PYi|M1,X
i−1
1 ,X2,i

. (A.7)

Next, the third item is true because:

PYi|X
i−1
1 ,Xi−1

2 ,Y i−1 =
∑

x1,i,x2,i

PYi|X
i−1
1 ,Xi−1

2 ,Y i−1,X1,i,X2,i

× PX1i,X2i|X
i−1
1 ,Xi−1

2 ,Y i−1 (A.8)

=
∑

x1,i,x2,i

PYi|Xi
1,X

i
2
PX1i,X2i|X

i−1
1 ,Xi−1

2

(A.9)

=
∑

x1,i,x2,i

PX1,i,X2,i,Yi|X
i−1
1 ,Xi−1

2

(A.10)

= PYi|X
i−1
1 ,Xi−1

2
(A.11)

where the second equality follows from the fact that the
channel is memoryless and the fact that there is no feedback.
The forth item follows in exactly the same way. The fifth item
follows from:

PYi|X
i−1
1 ,Xi

2,Y
i−1,M1,M2

=
∑

x1,i

PYi|X
i−1
1 ,Xi

2,Y
i−1,X1,i,M1,M2

× PX1i|X
i−1
1 ,Xi

2,Y
i−1,M1,M2

(A.12)

=
∑

x1,i

PYi|Xi
1,X

i
2,M1,M2

PX1i|X
i−1
1 ,Xi

2,M1,M2
(A.13)

=
∑

x1,i

PX1,i,Yi|X
i−1
1 ,Xi

2,M1,M2
(A.14)

= PYi|X
i−1
1 ,Xi

2,M1,M2
(A.15)

where again the second equality follows from the fact that the
channel is memoryless and the fact that there is no feedback.
Finally, we obtain the sixth item due to the same reasons:

PY n′′ |Xn
1 ,M1,M ′

1

=
∑

xn′′

2

PY n′′ |Xn
1 ,Xn′′

2 ,M1,M ′

1
PXn′′

2 |Xn
1 ,M1,M ′

1
(A.16)

=
∑

xn′′

2

PY n′′ |Xn
1 ,Xn′′

2
PXn′′

2 |Xn
1

(A.17)

=
∑

x1,i

PY n′′ ,Xn′′

2 |Xn
1

(A.18)

= PY n′′ |Xn
1
. (A.19)

APPENDIX B
PROOF OFLEMMA 1

Proof: In the following, we upper bound each constraint in
(28), and show that that the upper bounds can be achieved by
taking V = X1. We have:

R1 ≤ I(V ;Y |X2) (B.1)

≤ I(V,X1;Y |X2) (B.2)

= I(X1;Y |X2), (B.3)

where we have used the fact thatV−◦ (X1, X2)−◦ Y . Next,

R2 ≤ I(X2;Y |V ) (B.4)

= H(X2|V )−H(X2|V, Y ) (B.5)

≤ H(X2|X1)−H(X2|X1, Y ) (B.6)

= I(X2;Y |X1) (B.7)

where the inequality follows from the fact thatX2 is indepen-
dent of (V,X1), and the fact that:

H(X2|X1, Y ) = H(X2|X1, V, Y ) (B.8)

≤ H(X2|V, Y ) (B.9)

where the inequality is due to the fact that conditioning
reduces entropy, and the equality follows from the relation
V−◦ (X1, Y )−◦ X2. Indeed, first note that:

PX2,V |X1,Y =
PX1X2Y PV |X1,X2,Y

PX1,Y
(B.10)

= PX2|X1,Y PV |X1,X2,Y (B.11)

= PX2|X1,Y PV |X1,X2
(B.12)

= PX2|X1,Y PV |X1
(B.13)

= PX2|X1,Y PV |X1,Y (B.14)

where the third and last equalities follow from the relations
V−◦ (X1, X2)−◦ Y andV−◦ X1−◦ Y , respectively, which are true
due to (21). For the sum rate, we have:

R1 +R2 ≤ I(V,X2;Y ) (B.15)

≤ I(V,X1, X2;Y ) (B.16)

= I(X1, X2;Y ) (B.17)

in which the last equality follow fromV−◦ (X1, X2)−◦ Y .
Similarly, for R′′

2 , we obtain:

R′′
2 ≤ I(X ′′

2 ;Y
′′|X1, V ) (B.18)

= H(Y ′′|X1, V )−H(Y ′′|X1, V,X
′′
2 ) (B.19)

≤ H(Y ′′|X1)−H(Y ′′|X1, X
′′
2 ) (B.20)

= I(X ′′
2 ;Y

′′|X1) (B.21)

where the inequality follows from the fact that conditioning
reduces entropy, and the relationV−◦ (X1, X

′′
2 )−◦ Y ′′. Finally,

the result follows by noticing that the obtained upper bounds
in (B.3), (B.7), (B.17), and (B.21) are independent ofV , and
can be achieved by takingV = X.
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