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Abstract—It is well known that cooperation between users in capacity region. Their result coincides with the resultkiahg
a communication network can lead to 5|gn|f|cant performance gnd Veeravalli when the relay link of [6] is replaced with a
gains. A common assumption in past works is that all the users constant rate bit pipe.

are aware of the resources available for cooperation, and know . L. .
exactly to what extent these resources can bz used. In this work _The MAC with cribbing 'encoders was mtroduced by
a family of models is suggested where the cooperation links may Willems and Van Der Meulen in [9]. Here there is no dedicated
or may not be present. Coding schemes are devised that exploit communication link that can be used explicitly for coopienmat
the cooperation links if they are present, and can still operate |nstead, one of the encoders can crib, or listen, to the @ann
(although at reduced rates) if cooperation is not possible. input of the other user. This model describes a situation in
Index Terms—Broadcast channel, conferencing decoders, co- . . .
operation, cribbing, multiple access channel. which users in a c.eIIuIar system are chated physmallyect(_)s .
each other, enabling part of them to listen to the transonissi
|. INTRODUCTION of the others with high reliability - i.e., the channel beame
L hni h | . bthe transmitters that are located in close vicinity is almos
Commumcapon tec nlgu;‘as t ‘?)t employ coope_ranon Fojseless. Willems and Van Der Meulen considered in [9] all
tween users in a network have been an extensive area Bhsistent scenarios of cribbing (strictly causal, causah-

research in recent years. The interest in such schemes st M¥al and symmetric or asymmetric), and characterized th
from the potential increase in the network performance. TIE% aci{y region of these models '

employment of cooperative schemes require the use of syste the next sections, we propose and study extensions of

;le%l;:(;zsfc;rt;ﬁgdcvgftg’rggg i féogjk:n?;gg’ ([e)tlfe- tgh?;esgm;j the two models described above, when the cooperation links
nature of modern wiFr) | d-h pmm 'ni tion t£ TCLQ of the physically degraded BC, and the cribbing link of
ature of modern, wireless ad-noc communication Systeras, 4o MAC) may or may not be present. For the MAC models,

we first propose achievable rate regions which are based on

availability of these resources is not guaranteed a praord
the coding schemes are required to work also in the abserﬂgg combination of superposition coding and block-Markov

of the cgopgraﬂon links, although possibly achieving IDWecoding. Here, we consider the unreliable strictly causalsal,
communication rates.

: . . and non-causal cribbing. Then, we propose a general outer
In this work we study channels with cooperation links thtaéound, which is tight for some interesting special cases&he

may or may not be present. We focus on t\.NO Cases - WEme constraints on the rates of the users are added. For the
physically degraded broadcast channel (BC) with Confer@c.ghysically degraded BC, the results are conclusive.
| -

g_ecoders,dand t_?ﬁ méj(l:tlplt_athacce?s cha_nne:j (MAdC) with C;. It should be noted that multi-user communication systems
INg encoders. The With conferencing decoders was 'rsﬁh uncertainty in part of the network links have been
studied by Dabora and Servetto [2], [3], and independent tensively studied in the literature - see, e.g., [8] anfdl [5

by Liang and Veeravalli [6], [7], who studied also the mor nd references therein. The models suggested here, of the BC

general setting of relay-broadcast channels (RBC)' _In ¢ fid MAC with uncertainty in the cooperation links, have not
model of Dabora and Servetto, a two-users BC is conS|der?J en studied before

where the decoders can exchange information via noiselessrhe outline of the rest of the paper is as follows. In Section

communication links of limited capacitie€’; » and Cj ;. . . : .
; ) ’ = Ill, we consider the physically degraded BC with coopefgtin
When the broadcast channel is physically degraded, infor scoders. In Section 1V, we consider the MAC with cribbing

tion sent from the weaker (degraded) user to the Strcmgere'r?coders,, and in Section V, we provide proofs for all our
redundant, and only the capacity of the link from the Strmng?esults
user to the weaker (sag/; ) increases the communication '

rates. For this case, Dabora and Servetto characterized the II. NOTATION CONVENTIONS

This work was supported by the ISRAEL SCIENCE FOUNDATION Ve UseH(-) to denote the entropy of a discrete random
(ISF) (grant no. 684/11). variable (RV), andI(-;-) to denote the mutual information
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vy M,

between two discrete RVs. Calligraphic letters denotec(die M) Decoder 1
and finite) sets, e.gX, the complement oft’ is denoted by N ,

. . . . Encoder | X" [ P(vi,v3)X) Ciz
X¢, while |X| stands for its cardinality. The-fold Cartesian (M0, M)
product of X is denoted byt”. An element oft™ is denoted =~ — ﬁ.lm'_ﬂzz/(ﬂz,ﬂflz’)
by " = (x1,29,...,2,); Whenever the dimensiom is
clear from the context, vectors (or sequences) are dengted b Broadcast Channel
boldface letters, e.gx. We denote RVs with capital letters- Fig. 1. Broadcast channel with unreliable cooperating dets

X, etc. We denote by *(X) the weakly typical set for the

(possibly vector) RVX, see [1] for the definition of this set.

Finally, we denote the probability distribution of the Ry ~ Definition 1: An (n,v1,v2, 15,11 2,¢) code for the BC
over X with Px and the conditional distribution of given Py, v,/x With an unreliable conference link is an encoder
X with Py|x. mapping

f:./\/ll XMQXMIQ%XR,
IIl. THE PHYSICALLY DEGRADED BROADCAST CHANNEL

WITH COOPERATINGDECODERS a conference mapping

Let X, )1, V- be finite sets. A broadcast channel (BC) h:YVt — Nia,
(X, V1,Y2, Py, v, x) is a channel with input alphabet, '
two output alphabetd’; and)», and a transition probability
Py, y,x from X to )y x ). The BC is said to be physically g1: V7 > Ny, (3a)
degraded if for any input distributio®y, the Markov chain 9 V3 = N, (3b)

XeY eY; holds, i.e., , /
Gy : Vg X N1o = Ny, (3¢)

_ such that the average probabilities of erfdrand P, do not
We will refer to Y7 (resp.Yz) as the stronger (resp. weakerexceede. Here,

or degraded) user. We assume throughout that the channel is 1
memoryless and that no feedback is present, implying tleat th P, =
transition probability ofn-sequences is given by

and three decoding maps:

Px v, v, = Px Py, v, x = Px Py 1 x Pyy v, - 1)

Z Py, vy x (Se| f(m1,ma,m5)) (4a)

/
120214
17272 my,ma,mh

n 1
P = P, S’ f(mq, ma, mb)) (4b
Praix 03,95 10) = [T Praaix s vedlas). (2) F= g 2 Prnx(SlS(mi,ma,md)) (40)
i=1 mi,m2,Mmy
Fix the transmission length, and an integer, 5. Let A, , = Where the sets. and S are defined as

{1,2,...,11 2} be the index set of the conference messageg

Denote the sets of messagesMy = {1,2,..., v}, k = 1,2, “

and NV} = {1,2,...,v4} wherevy, v, andv} are integers. A

code for the BC with unreliable conference link, that may or {(y1,92) : 95(yq, h(yy)) # ms},  (5)

may not be present, operatt_es as fO”OWS.' Three messeges and for notational convenience, the dependenc8.cénd S’

M, and M/, are drawn uniformly and independently fromOn the messages is dropped in (4) €

y . . .

th_e sets\Vy, Vg, and/_\/, respectively. The encod/er maps thisgye  conference rate”; » and the communications rates

triplet to a channel input sequence(M;, M», M}). At the (Ry, Ro, R}) are defined as usual:

channel output, Decodér has the output sequendg”’, k = )

1,2, at hand. Decoder 1 (resp. Decoder 2) is required to decodg, _ _ 108 LT log Yk p—1,2, Rj=— logvy

the messag@é/; (resp.M,), whether or not the conference link ™ n n n

is present. If the conference link is present, Decoder 1sand The interpretation of the rates is as followS; 2 is the

message € N » to Decoder 2, based on the output sequencenference rate in case that it is present. The ffeis

Y. le.,c = ¢(Y7"). Finally, Decoder 2 decode¥; based on intended to Usek, k£ = 1,2, to be decoded whether or not

his outputYy* and the conference messagf&"). The setting the conference is present. The rdté is intended to User 2

of the problem is depicted in Fig. 1. and is the extra rate gained if the conference link is present
Observe that only Decoder 2 benefits when the conferenceA rate quadruple (R;, Rq, R5,C12) is said to be

link is present. Indeed, since there is only a link from Demodachievable with unreliable conference if for any >

1 to Decoder 2, whatever Decoder 1 can do with the link, v > 0, and sufficiently largen there exists an

he can also do without it. Therefore the rate to User 1 j&,e™(F1=7) en(R2=7) en(Ba=7) n(C1247) ¢) code for the

independent of whether the link is present or not. Only Us&C with unreliable conference link. The capacity region

2 can benefit from its existence, and thus there are two sietsthe closure of the set of all achievable quadruples

of messages intended to User 2/, and V3. (R1, Re, Ry, C1,2) and is denoted bg. For a given conference
In the following, we give a more formal description of theate C; 2, C(C1,2) stands for the section af at C4 5. Our

above described structure. interest is to characteriz&(C' »).

(m1,m2) = {(Y1,Y2) : g1(y1) # m1 OF g2(ys) # ma}
Sé(mlam%mé) = Se(mlam2)u




Let R(C12) be the convex hull of all rate triplesnumbers the constraints are satisfied with high probability
(R, Ro, RY) satisfying The Converse is also similar just adding a step of introdycin
. 5 a “time sharing” RV @, uniformly distributed over the set
Ry < 1(U; Ya), (6a) {1,2,...,n}, and independent of the other RVs. Finally, define
Ry <min{I(V;Y2|U) + Ci2, I(V;YA|U)},  (6b) U = (Q,Uy) andV = (Q,Ug), and everything goes along
R, <I(X;W|U, V), (6¢) without any problem.

for some joint distribution of the form
IV. THE MULTIPLE ACCESSCHANNEL WITH CRIBBING

Pyv.x vy, = PuvPxiuvPy, v x (6d) ENCODERS

where|U| < [X[+3, and[V| < (|X| +2)(|X[+3). Ourmain o myitiple access channel (MAC) is a quadruple
result on the physical degraded BC with unreliable conftemen(Xh Xa, Y, Py|x, x,), WhereX;, is the input alphabet of User

is the foIIowirTg _ _ k, k = 1,2, Y is the output alphabet, anBl|x, x, is the
Theorem 1:For any physically degraded BC with unreli~5nition probability matrix fromv; x X, to . The channel
able conference of rat€’ », is memoryless without feedback.
C(Cy2) = R(C12). In this section we present achievable rates for the MAC with

an unreliable cribbing - that may or may not be present - from
The proof is given in Section V. Given the last result, we notencoder 1 to Encoder 2. The basic assumptions are as follows.
to the following observations: Since Encoder 2 listens to Encoder 1, he knows whether the
« Let us examine the regioR(C4 2) in the following inter- cribbing link is present. Similarly, the decoder knows ics
esting extreme case. Assume tl@at, = 0, that is, the case Encoder 2 can convey to him this message, as it is only one bit
where even if the conference link is present, its rate is @, aof information to transmit. Encoder 1, on the other hand sdoe
so there is no benefit from the conference link. Due to (6d) tim®t know whether the cribbing link is present, since he canno
Markov condition(U, V')« Y;e Y, holds, implying, of course, be informed about it. He is only aware that cribbing could
also thatV e (U,Y7)e Y; holds. Therefore, whefi; » =0, it occur. LetN] = {1,2,...,v1} and NV} = {1,2,...,v4} be
is readily seen that the bounds in (6) reduce to two message sets. A coding scheme operates as follows. Four
messaged\/;, M{, M,, and M} are drawn uniformly and

R/Q <I(UsYa), (73) independently from the setd;, V], N5, N, respectively.
Ry < I(V; Y2|U), (7b)  Encoder 1 maps the paif/;, M}) to an input sequence; =
Ry < I(X;V1|U, V). (7c) @1(M,, M7). If the cribbing link is absent, Encoder 2 maps

_ , . . the messagé/, to to an input sequence, = x;(M>). If the
The total rate to User 2 i, + R;. Now, it is easy to Verify cyiphing link is present, Encoder 2 knows strictly causally,
that after optimization ove{U, V), the rates guaranteed by (7} s maps the paifMZ,z:) to an input sequences”, in a
coincide with the capacity region of the degraded BC, as OBfictly causal manner:7
should expect. Indeed, we have:
L+ Ry < I(U,V: Ya), (8a) g (my, 1) = (25 ,(m3), 5 5(my, 21.1),
R, < I(X:Vi|U,V), (8b) s (my, 2. (10)
and so, by letingU £ (U,V) where P y.y, = At the output, the decoder decodédl;, M) if cribbing is
Py Py 5Py, v, x, We obtain the capacity region of the deapsent, andM,, M, My) if cribbing is present.
graded BC. . _ _ Note that there is a slight difference in the interpretation
» Another case of interest is wheff, = 0. Here, User 2 will  of the message sets, compared to the message sets of the BC
not get any rate if the _conference link is absent. Choosing model studied in Section III. The pait\f,, M) is encoded
to be a null RV, the region of ratds?;, R,) guaranteed by (6) by User 1, wherel/; is always decoded, antl// is decoded
reduces to only if cribbing is present. For User 2, if cribbing is absent
R, <min {I(V;Ys) + Ch0, I(V; Y1)}, (92) M, is encoded, whereas if cribbi_ng is prgsefwg’ is enc_odgd. _
R < I(X:V: ’ ob Therefore User 2 can reduce his rate in case of cribbing, in
1< I(Xn|Vv), ) favor of increasing the rate of User 1. Due to this structure,

which coincides with the result in [3, Theorem 1]. the joint distribution of M, and MY is immaterial, as they

« Theorem 1 can be easily generalized to encountdgver appear together in the coding scheme. The setting of
cases in which there is an input constraint of the forife problem is depicted in Fig. 2.

E[}", T(X;)] < nP. In this case the achievable region is Following is a formal definition of the scheme described
given by Theorem 1 where the additional constrdinfy,] < above.

P is needed. The achievability proof of the Theorem 1 with Definition 2: An (n,v,v],vs, 14, €) code for the MAC

the input constraint is the same since by the law of largé, x, x, with unreliable strictly causal cribbing link consist



(M, My)
(N, M}, M}))

Encoder 1 Xi

n
X3

P(Y|X1,X>)

Encoder 2

Multiple Access Channel

Fig. 2. MAC with unreliable cribbing encoders.

of n + 2 encoding maps

f1: N1 x N{ — X7, (11a)
fo i No — X3, (11b)
Yot NG x X7 Xy, i=1,2,...,n, (11c)
and a pair of decoding maps
g: YY" — N1 x Na, (12a)
g V" = Ny x N x Ny, (12b)

such that the average probabilities of erfrand P, do not
exceede. Here

1
P, = VITVZ ml;m2 PY|X1,X2(QC‘f1(m17m/1)a fa(m2))
DU
(13a)
1
P=——
VA ZS Z

U 1"
mi,mf,ms

Pyix,,x,(Qe| fr(ma,my), £5(my, fi(my,m})))(13b)

where f5(my, fi(m1,m})) is the sequence of map$;,
in (11c), the set®,. and Q. are defined as

Qe(mi,m2) = {y : g(y) # (m1,m2)} (14a)
Q;(mlvmllvmg) = {y : g/(y) # (mhm/hmg)} (14b)

and the dependence of the s&s, Q. on the messages iS(Rl,

dropped in (13), for notational convenience.
The rates(R;, R}, Rz, RY), and achievability of a given

guadruple, are defined as usual. The capacity region of the

MAC with unreliable strictly causal cribbing is the closwé
the collection of all achievable quadrupléB,, R}, Ra, RY),
and is denoted bgsit, Our interest is in charactenzuﬂ;fn"'Ct

Let &/ andV, be finite sets, and lPS" pe the collection
of all joint distributions Py v, x, x, xy,v,y~ of the form

(15)

where Py x, xy is our MAC with X} at the input of

Py Py Px,\uv Px, Py x, x,Pxy v Py x, xy

Encoder 2. Letzsgggt be the collection of all quadruples

(R1, R}, R», RY) satisfying

By < I(V;Y|Xy), (16a)

Ry < I(X2; V), (16D)

Ri+ Ry < I(V,X2;Y), (16¢)

Ry < H(X1|U,V), (16d)

Ry < I(X53Y'|UV, Xy1),  (16e)

Ry + Ry < I(Xy, X4 Y"|V), (16f)
Ri+ R} + Ry < I(X1,X3;Y"), (169)

for somePy v, x, x, xy.v,y» € P where

U] < min{|A;] - |Xa| + 1, V] + 2} an
V| < min{|Xy] - [Xo] +4, V] + 5} (18)
We start with the following result, which is proved in Subsec
tion V-B.
Theorem 2 (Inner bound - strictly causal cas&or
MAC with unreliable strictly causal cribbing

strict strict
I mac C Cmac

any

Next, consider the case where causal cribbing, for the
second user, is allowed, that is,

ZL"Q/(mIQ/, x1) = (5C/2/’1(m/2’, 551,1)7 e 7x/2/,n(ml2l7 z1)), (19)
or, equivalently, replace (11c) with:
P NG XX = Xy i=1,2,....n (20)

The capacityCmac of the MAC with unreliable causal cribbing
is defined similarly to the strictly causal case, but with)(19
and (20), replacing (10) and (11c), respectively.

Let P be the collection of all joint distributions
PV,Xl,XQ,Xé/,Y,Y” of the form

(21)

The interpretation of this joint distribution is as followhe
pair (V, X;) are the coding RVs of User 1. These are fixed,
regardless of whether cribbing is present or not. The idput

is the coding variable of User 2 if cribbing is absent, theref

it is independent of V, X;), andY is the MAC output due
to inputs X3, Xo. When cribbing is present, User 2 encodes
with X/ which can depend oX;. The output of the channel
due to inputsX; and X/ is denoted byy”.

Py x, Px, Py |x, x, Pxy|x, Pyrx, xy-

Let Zmac be the collection of all quadruples
', Ra, RY) satisfying

Ry < I(V;Y|Xy), (22a)

Ry < I(Xp;Y[V), (22b)

Ry + Ry < I(V,X5;Y), (22¢)

Ry < H(X1|V), (22d)

Ry < I(X3;Y"|V, X4), (22e)

Ry + Ry < I(Xy1, XY, Y"|V), (22f)

R+ Ry + Ry < I(X1, X3;Y"), (229)

for somePy x, x, xy,v,y» € P where

[V| < min {|X] - |Xs| +4, |V + 5} . (23)

We have the following result, proved in Subsection V-C.
Theorem 3 (Inner bound - causal cribbingfFor any MAC
with unreliable causal cribbing

Imac g Cmac~

We shall make several remarks on this result.

« The bounds on the cardinalities 6f, and V, are derived

in a similar manner as in [9, Appendix B], and is based on
Fenchel-Eggleston-Cardtbdry Theorem.



« The proof of Theorem 2 is based on the combination of Theorem 4 (Outer bound - causal (hon-causal) cas&r
superposition coding and block-Markov coding. The trarssmiany MAC with unreliable causal (non-causal) cribbing
sion is always performed i sub-blocks, of lengtm each. o
In each sub-block, the messages of User 1 are encoded in Lrac 2
two layers. First, the “resolution” information of User lear Next, we consider a case in which we were able to derive the
encoded withl/, which depend on both messages and M. capacity region.

Then, the fresh information of messadf is encoded with/, )

and finally, the fresh information af/; is encoded withx;, A User#lis always fully decoded

using superposition coding around the cloud centéendU. Consider the case whe® = 0, which means that there is

If the cribbing link is absent, Encoder 2 encodes his messagm extra rate sent by User 1 to be decoded when cribbing is
independently of Encoder 1. The decoder can then decode opigsent. In this case, the first user is fully decoded no matte
the messages df, that is, M1, and X,. If the cribbing link whether cribbing is present or not. Then, according to Téwor

is present, block Markov coding is employed, similarly te th3, it is easy to verify that an achievable region is given by:
scheme used in [9] for one sided causal cribbing.

) Cmac

« Note that the main important observation in the achievabil- Ry < I(V;Y|Xa), (28)
ity, is that User 1 must employ a universal encoding scheme, i Ry < I(X3;Y[V), (28b)
the sense of being independent of the cribbing. User 2 and the Ri+ Ry < I(V,X5;Y), (28c)
Schermes,in accordance t existence or absence of ther i B <1611, (260)

! g Ri + RY < I(Xy, XJ;Y"), (28e)

« When cribbing is absent, the ratd®, and R, are not
decoded. Thus, setting = X in the regionZny,c yields the for somePy x, x, xy,v,y~ € P of the form

capacity region of the MAC without cribbing, as expected.

« The r.h.s. of (16e) is smaller than that of (22e). Indeed, Pyvxi P, Py xy 0 Pxy 1 Py x xy - (29)

(XU Y"|U,V, X)) = HY"|U,V, X)) Let_ f;,fac be the collection o_f all quadrupleSRl,R?,R’Q’)
HY"U.V. X1 X" satisfying (28) and (29). In this stage, one may realize fibrat
Y"\U,V, X1, X5) R} =0, the auxiliary RVV should be superfluous, and we can

<HY"|V, X)) actually substituteX; instead. This is indeed reasonable due
— H(Y"|V, X1, X)) to the fact thafi” is used to convey the messag#f , and the
= I(X: Y|V, X1) (24) extra messages from the first user, thafifg, is encoded by

X1. Accordingly, letZ:.. be the collection of all quadruples
where the inequality follows from the fact that conditiogin (R:, Rs, RY) satisfying:
reduce entropy, and the Markov ch&lii, V) e (X, XJ)e Y.

Ry < I(X1;Y|Xa), (30a)

Unfortunately, we were not able to show the converse part
in general, but only for some special cases, described in Ry < I(X2; Y[ Xa), (30b)
the forthcoming subsection. In the following, we provide an Ry + Ry < I(X1, X;Y), (30c)
outer bound to the capacity region, assuming unreliablsalau N < I(XY:Y"|Xy), (30d)
cribbing. LetZ,. be the convex hull of all rate quadruples R+ R < I(X1, XU, Y"), (30e)

(R1, R}, R2, RY)) satisfying
for somePx, x, xy v,y of the form

Ry < I(V;Y|X2), (25a)
Ry < I(X5;Y|X1). (25b) Px, Px, Py |x, x,Pxy1x, Pyrix, xy- (31)
Ri+ Ry < I(V,X5;Y), (25c) The following lemma is proved in Appendix B.
R, < H(X,|V), (25d) Lemma 1:The following relation holds:
Ry < I(X3;Y"|V, X), (25€) Thac = Tiac (32)
Ry + Ry + Ry < I(X1, X53Y"), (25f)  Using Lemma 1, we obtain the following result.

Theorem 5:For any MAC with unreliable causal (non-
causal) cribbing, ifR} = 0, thenZz,. is the capacity region.
Proof: The result follows directly by substituting; = 0 in

for somePy x, x, xy v,y € P. The following result is true
also for the non-causal cribbing case, namely,

xy(my, x1) = (x5, (my, 27), ..., 25, (m3,27)), (26) the outer bound (25), and noticing that it coincides with the
walentl | ith achievable region in (30). [
or, equivalently, replace (11c) with: According to (30), if the first user is fully decoded no matter
2N XA = KXoy, i=1,2,...,n. (27) whether cribbing is present or not, then there is no bound on

o _ _ the individual rate of the first user when cribbing is present
The following is proved in Subsection V-D. (we have only bounds on the rate of the second user (30d) and



on the sum rate (30e)). Instead, as can be seen from (30d):
(30e), it is assumed that; is already known to the receiver
when cribbing is present. The reason is that since cribbamg c
only help in recoveringXy, the bound on the individual rate

of the first user when cribbing is absent dominates (or, more
strict). To illustrate the result in Theorem 5, we consider t
following example.

Example 1:Consider the example where the channel out-

put, Y, is given by:

Rl—R2 Curve

RfR"z Curve

0.5F

0.4

RZIR"2 [bits per channel use]

0.3

Y=X10Xo002Z1 D 2> (33) 02}
where X, X5, N;, and N,, are binary RVs, whereZ; is orr
Bernoulli withPr{Z; =0} = p1, Zo =01if X; =0, and itis % 0.05 o1 o015 o2 025 03
Bernoulli with Pr {Z; = 0} = po, otherwise (i.e., iftX; = 1). R, [bits per channel use]

Here, X1, X2, Z; and Z,, are independent. When cribbing is
present, the channel outpuit,’, is given by:

Y'=X10X)®Z1® Z, (34)

Fig. 3. The capacity region fgs; = 0.01 andpz = 0.1.

) N Direct Part. We use the binning approach suggested in [4].
where now X; may depend” onXy. Let Pr{X; =0} = e will start with the code construction.
Py, for i = 1,2, Pr{Xy =0[X, =0} = 1, and  codebook constructiorix a joint distribution Py v x .
Pr{Xy =0|X; =1} = po. Also, for two real numbers 1) Generate"" codewordsu(j), j = 1,2,...e"F2, iid
0<a,b<1,defineaxb=a-b+a-b, andaxb=a-b+a-b, according toPy ’ B T

N . . ,
wherea = 1 — a. Finally, let: 2) For every u(j), generate e codewords v(k|j),

a2 (py *p2) - Px, + (p1 % p2) - Px,, (35) k= 1,2,...e"%, independently according to
2 (i xo) - g 4+ (1 % Do) - fio. 36 [y Prio(vilui(5))- )
B2 prxpe) piat (Prapa) - iz (36) 3) For everyj, distribute thee"?> codewordsv(k|j), k =
Then, using the above definition, it is a simple exercise to 1,2 ... e"R2, intoe"C12 bins, evenly and independently
check that of each other. Thus, in every bin there af&f2—C1.2)

codewordsv(k|j) with a fixed index;j. Denote byb(k|j)

< P _
i< hao(Pxpr+ Py (proxp2)) = P ha(py) the bin number to whichy(k|;) belongs. Note that

- le hQ(pl *pQ)v

_ - nCi,2
Ry < Px, ha(p1 * Px,) + Px,ha(a) — Px, ha(p1) 1< blklj) < e : (38)
— Px, ha(p1 * p2), 4) For every Ig/air(u(j),v(mj)]%, j=12,...,e k=
5. = 1,2,...,e™%, generatee™™ vectors z(l|j,k), | =
Ry + Ry < ho(Px, (p1 * Px,) + Px, @) — Px, h IRIRERE _ , ;
e Q(JBX }(Lpz X2)) ) = P ha(py) 1,2,...,e™" independently of each other, according to
— * n . .
. X ftabr ) [Liz) Pxjov (@ilui(d), vi(k[4))-
Ry < Plel?(pl * 1) + Pxha(B) = Pxyha(p) These codewords form the codebook, which is revealed to the
— Px, ha(p1 * p2), encoder and the decoders.
Ry + Ry < ho(Px, (p1 % i) + Px, B) — Px, ha(p1) Encoding:Given a triple(j, k, 1), wherej = 1,2,... e,
E=1,2,...,eM2, 1 =1,2,..., " the encoder sends via

= Pxiha(pr«p2)- B7 " the channel the codeword({|j, k).
wherehs (+) is the binary entropy. Fig. 3 depicts the capacity Decoding: We assume first that the conference link is
region for the case wherg; = 0.01 and p, = 0.1. The absent. Decoder 2 hag, at hand. He looks for the unique
capacity region was numerically evaluated using (37). I tindex j in {1,2,...,exp(nR,)} such that
figure, we present two curves corresponding to the congdrain ~ n
related to the rate$R;, Ry) which refer to the case where (u(7),y2) € TV (UY2).
cribbing is absent (the blue curve), and the constraintted! If such; does not exist, or there is more than one such index,
to the rateg R, R4) which refer to the case where cribbingan error is declared. By classical results, if
is present (the red curve). It is evident that higher rates ca

Ry < I(U;Ys), (39)

be achieved for the second user due to the cribbing.
the index;j is decoded correctly with high probability.

V. PROOFS . LA
Decoder 1 hag, at hand. He looks for the unique indgx

A. Proof of Th 1 :
ro_o ° ec?rem . in {1,2,...,exp(nR2)} such that
In this subsection, we prove Theorem 1. The direct part uses

random selection and strong typicality arguments. (u(?),yl) e TM(UY).



If such j does not exist, or there is more than one such indek,are the correct indices fof, k, and j, respectively), by
an error is declared. By classical results, if classical resultg is correct with high probability if

Ry < I(U,Yi), (40) Ré — 01)2 < I(V,Y2|U) (47)

Decoder 1 succeeds to decode correctly the indesith high The region defined by (45) and (47) coincides WRKC 2).
probability. Since the channel is degraded, if (39) holds, This concludes the proof of the achievability part.

implies (40). Next, Decoder 1 looks for the unique indein Converse Part. We start with a sequence of codes

{1,2,...,exp(nR))} such that (n, g1 enRz gnRy ¢nCiz €n) With increasing blocklength
R . n, satisfyinglim,, ., ¢, = 0. We denote byM;, the random
(u (A) (;;m )€ T(")(VY1|U)- (41) message from\V, £ = 1,2, and by M} the message from

Nj. The conference message is denotedMy,. By Fano’s
If such k does not exist, or there is more than one sucifequality we can bound the raf@, as
an error is declared. By classical results, the indexe n
{1,2,...,exp(nR})} is decoded correctly with high proba- iy —ndn < I(Mp;Yy") (48)

bility if (a) n i1
2N (M Yo, |V
Ry < I(V;Y1|U). (42) ; (Ma;Y2,i|Y; )
Having the pair(;', :) at hand, Decoder 1 looks for the unique < ZI(MQ’ Yyt Ya.i), (49)
index! € {1,2,. nR)} satisfying i=1

(u(j), v(k]),

By classical results, this step succeeds if the fatesatisfies

xp(
PPN where lim,,_,, 4, = 0, due tolim, .., €, = 0, and (a)
a(llk, ), y,) € TT(XV1[UV).  (43) follows from the chain rule. We now bound the ral as
follows. If the conference link is present, then the message
M can be decoded by Decoder 2 based ¥oh and the
Ry < I(X;11|U, V). (44) message transmitted via the conference likk,». Therefore

This concludes the decoding process when the confererice lifil2 — ndn < I(M3; V5", ) (50)
is absent. By (39), (42) and (44), the conditions for correct = I(M}; Y3 |M2) + I(My; My 5| M, Ys")
decoding when there is no conferencing are My Y M) + H (M )

/\/\

I IN
M3 ~

R2 S I(U,YQ)a (45a) I(Mé;YQ,”MQ’}/Qi_l) +H(M172)
Ry < I(V;|U), (45b) i=1
R, <I(X;n|U, V). 45¢ - . .
1= ( 1| ) ( ) S ZI(]\/157}/11_1;1/2,1‘|M2’Y2L_1) +H(M1,2).
Observe that, although the rat¥, is decoded by Decoder 1 i=1

(if (45b) is satisfied), it does not arrive to User 2, since thl@loreover the messagaf, can be decoded by Decoder 1,
conferencing link is absent. The bound (45b) is still neededyardiess of the conference link. Hence:

in order to guarantee that Decoder 1 can proceed and decode

the index! (the message intended to him). nRy —nd, < I(Msy;Y]"|Ms)
We turn now to the case where the conference link is

present. Decoder 1 operates exactly as in the case of no

conference, and decodes the indiges, andi. If (45) hold,
these steps succeed with high probability. He then sends
b(k|7), the index of the bin to whichy(k|j) belongs, via the
conference link. Due to (38), the link capacity suffices, and
Decoder 2 receives(k|;) without an error.

Decoder 2 decodes the index as in the case of no
conference. After receiving from Decoder 1 the bin indewhere(a) is true because the channel is physically degraded.

b(k|j), he looks in this bin for the unique inddxsuch that The rateR, can be bounded by

M27 Yl Z|M27 }/12 1)

—
S|
N

NgER M:

@
Il
-

I(Mév Yl-,i|M27 Yliilv Yv2i71)

S I(Mévyli_l;yl,i|M231/;_l)a (51)

I

s
I
—

. n /
(v(k1]). u(j), 92) € T (VY2 |D). (46) " non < TV, M)
If such an index does not exist, or there is more than one such, = > I(My; Y| My, My, YY)
an error is declared. From the code construction, every bin i=1

contains approximately™(F>=C1.2) codewordsw. Assuming (@) zn:I(Ml'Yl My, M, YV Y
that the previous decoding steps were successful ﬁlek = oL e



® iI(Xi;YLAMQ,Mz’,Yf‘l,Yfl), (52) other, \_/viII_ be sent over the MAC B blocks, each ofn
p ’ transmissions. Note that iB — oo, the overall rates are
(B-1)/B — R; andR|(B—1)/B — Rj. In each of the

. . ) ) Ry
where (a) is true since the channel is physically degraded; p|ocks the same codebook is used, and is constructed, for

Equality (b) holds sinceX; is a deterministic function of the ,a first user. as follows.
messageMli,legjnd M, and sinceY, ; is independent of ¢ ,qehook construction for User Eix a joint distribution
(Mo, M}, Yy, Y™, M) when conditioned oiX;. Defining P

U i) Vo oyl d using the fact that v Py Px,u,v, and a sufficiently smak > 0.
i = (Ms,Y;7), Vi = (M3, ¥y™") and using the fact tha 1) Generate e"(F1+51)  codewords v, i.i.d., according

1 to Py. Label them v(mg,mi), for mg,m; €
—H(M < C 53 v 0> 1)s 05 1
n (M) < €1, (53) {1,2,...,exp(nRy)}.
we obtain from (49), (50), (51), and (52) the bounds 2) Generatee"(f1+F1) codewordsu, independently ac-
n cording to Py. Label them w(mg,mg), for mg €
n(Ry — 6,) < ZI(Ui;Y27i)7 (54a) {1,2,...,exp(nR;)} andm( € {1,2,...,exp(nR})}.
P 3) For every v(mg,m1) and wu(mg,m(), generate
n e"™  codewords x;, independently according
n(Ry — 4,) < ZI(Vi; Yo :|U;) + nCi 2, (54b) to [T Px,ju,v (@1,ilus(mo, mg), vi(mo, my)).
i=1 Label them x;(m),u(mo,m(),v(mo,my)), for
~ mj €{1,2,...,exp(nR})}.
/ . 1/ 1 1
n(Rz = 0n) < z_; HUs Y14V, (54c) We now present the achievability scheme for the case where

n cribbing is absent.
n(Ry —8,) < ZI(Xi;YLi|Ui;Vi)- (54d) 1) Cribbing is absent: The message M,;, €
= ' {1,2,...,exp(nR2)}, for b = 1,2,..., B — 1, is uniformly
Using the standard time-sharing argument as in [13, Ch_]’14_g|str|bute(;, |n|(|jeEendentt of th?h mﬁiacge'srB Ofbl thlf first
one can rewrite (54) by introducing an appropriate tim ISer, and will be sent over (he ' 0cKs,
sharing random variable. Therefore,df — 0 asn — oo, each ofn transmissions. IfB — oo, the overall rate is
the convex hull of this region can be shown to be equivaleﬁ[Q(B N 1)_/3 — Ra. ".1 each of the blocks the same
to the convex hull of the region in (6). codebook is used, and is constructed, for the second user, as
Finally, the bounds on the cardinalities &f and V' follow follows. . , o
from Fenchel-Eggleston-Cardibdry Theorem, similarly as Codeboo'k'constructlon for User Eix a d|sgr|but|onPX2,
used for the 3-receiver degraded BC [12, Appendix C](] a”d_‘?‘ sufﬂmently smal > 0. Generatee™™ codewords
xq, iid., according toPx,. Label themxy(ms), for my €
B. Proof of Theorem 2 {1,2,...,exp(nRz)}. _
The codewords of Users 1 and 2 form the codebook, which

The prp_of of T_heorem 2 is based on th_e combination % revealed to the encoders and the decoder. The messages
superposition coding and block-Markov coding. The trarsnsmlm1 b € {1 exp(nRy)}, m) , € {1 exp(nR!)}, and
s gy y 1,1) PRI 1 L]

sion is always performed i sub-blocks, of lengtn each. s .
In each sub-block, the messages of User 1 are encoded in {nﬁ’ébfoellé\}v’ir'].g. ;,5;(5_(”&)}’ b=1,...,B-1, are encoded in
layers. First Fhe messag\dl' IS encoded withV, an.d. then the Encoding:In block 1, the encoders send:

messagel/] is encoded withX;, using superposition coding ————
around the cloud centerg. If the cribbing link is absent, @11 =x(my g, u(l, 1),v(1,m,)) (55a)
Encoder 2 encodes his messages independently of Encoder 1. Loy = To(may). (55b)
The decoder can then decode only the messagds ahd

X,. If the cribbing link is present, block Markov coding isThen, in blockb, b = 2,3,..., B, the encoders send (57),
employed, similarly to the scheme used in [9] for one sided'own at the top of the next page.

strictly causal cribbing. Decoding:We employ simultaneous joint typicality decod-

It is important to emphasize that User 1 must employ I9- At the end of the first block, the decoder looks for
universal encoding scheme, in the sense of baidgpendent (7721,1,772,1) such that:
of the cribbing. _User 2 and the_ decoder, hOW(_ever, can employ (v(1,1701.1), @2 (121, y) € TE(")(VXQY). (58)
different encoding and decoding schemes, in accordance to
existence or absence of the cribbing. Accordingly, in th¥ext, assume that the decoder has correctly fond. Then,
sequel, we describe the encoding scheme for the first uterfind the transmitted information at the end of the second
separately. block, the decoder looks fdtig 2,722) such that:

We use a random coding argument to demonstrate the N N N n
achievability part. The messagés , € {1,2,...,exp(nR;)} (v(rhn1,7i0.2), @2(1ha2), y) € TV (VXY). (59)
and M, € {1,2,...,exp(nR})}, for b = 1,2,...,B — 1, With the knowledge ofn, » the information at the end of the
which are uniformly distributed and independent of eadhird block can be decoded in a similar manner. In general,




w1y = x1(myy, u(myp—1,m) 4 1), v(mip-1,m1p)), b=2,3,...,B-1 (57a)
Tap = xa(may), b=2,3,...,B—1 (57b)
z1p = 1(L,u(myp-1,m] p_1),v(m1,5-1,1)), (57¢)
rop = :Bg(mlB). (57d)

at the end of block the decoder looks fofriv1 5, 7722,5) such to (64), shown at the top of the next page, wheug, ,

that: was determined at the end of blobk— 1. Finally, in block
(w0111, 1i01)s o (12), ) € TE(”)(VXQY) (60) lc);f fh; r?éi{ paéf the encoders send (65), shown at the top
wherer; ;1 was decoded in the previous block. Decoding:Here, the principle of backward decoding [9] is
Error Analysis: By classical results (e.g., standard MAC)used to find the transmitted information. In the last block,

there exists a sequence of codes with a probability of errdlock B, the decoder looks fofiny p—1,7 p_;) such that

that goes to zero as the block length goes to infinity, if: R N R
9 gh g 4 {u(y,p_1,m] p_1),v(M1,B-1,1),

Ry < I(V;Y]Xy), (61a) x1 (1, u(my, p_1,M) p_y),v(11,8-1,1)),
Ry < I(X2;Y|V), (61b) x5 (1, u(myg_1,m) p_1)),Yp
R+ Ry < I(V, Xo3Y). (61c) e TMUVX, XJY"). (66)
This concludes the decoding process when the confererice 'N'bxt, in block B — 1, the decoder has at hand an esti-
is absent. mate of the fresh information sent in blodk — 1, namely,

2) Cribbing is present: We tumn now fo the/ CaS€ (4iv; p_1,17} 5_4), and to find the transmitted information in
where the cribbing link is present. The messa@%}b € Pplock B—1 the decoder looks 811111 52, 117} p_o 1 1)

1 _ H H ? D= [
{1,2,...,exp(nRy)}, for b = 1,2,..., B — 1, is uniformly  5c00rding to (67), shown at the top of the next page. Then, in
distributed, independent of the messages of the first usgck B — 2 the decoder has at hand an estimate of the fresh
and will be sent over the MAC inB blocks, each ofn information sent in blockB — 2 namely, (1iv1_p_o, 172! )
transmissions. In each of thB blocks the same codebookyng the information sent in block — 2 can b’e décoégd_?]ext
is used, and is constructed, for the second user, as followSstc |y general, in block, the decoder has at hand an estimate

Codebook construction for User 2:Fix a distribution ¢ tne fresh information sent in blodk namely, (i1 , 172 )
Pxyw, and a sufﬁme}gltly smalle > 0. For every and to find the transmitted information in blokthe decoder
u(mo,my), generatee™™: codewordszy, independently |ooks for (1 1,70} ,_,, 14 ,) according to (68), shown at
according to [[;_, Pxyu(w2,i|ui(mo, mg)). Label them the top of the next page.
x5 (my, u(mo, mg)), for my € {1,2,... exp(nRy)}. The  According to the above decoding rule, the decoding of
codewords of Users 1 and 2 form the COdebOOk, which iL$5er 1 and User 2 are Staggered: at some blécke

revealed to the encoders and the decoder. {1,2,...,B — 1}, the message of User 2 is decoded jointly
Encoding: The messagesni, € {1,...,exp(nR1)}, with the resolution informationof User 1, and the latter
my, € {1,...,exp(nRy)}, andmy, € {1,...,exp(nR3)}, estimates are actually the fresh messages of bhoek.
b=1,...,B—1, are encoded in the following way: In block |f in a decoding step (second encoder or the decoder) there
1, the encoders sehd is no message index (or no index pair) to satisfy the decoding
T = 331(77”&/1,1,“(17 1), v(1,m1.1)) (622) rule, or if there is more than one index (or index pair), then

o v an index (or an index pair) is chosen at random.
51 = 3 (myy, u(l,1)). (62b)  Error Analysis: The following lemma will enable us to

Assume that as a result of cribbing from encotleafter block Pound the probability of error of the super bloekB by
b, b=1,2,...,B—1, encoder 2 has estimatés ;, ands/ ,, bounding the probability of error of each block.

)

. L
for my,, andm/ ,, respectively. To this end, encoder 2 first Lemma 2:Let {A;},", be a set of events and letj be the

choosesi, , such that: complement of the eventl;. Then,
~ ~ (n) L L
(/U(ml,bfhml,b)vwl,b) € Te (VXI) (63) PT{UAl} < ZPI_ {AZ|A§7 57“.7 lcfl} (69)
wherern, ;1 was determined at the end of blogk 1 (recall I=1 1=1

thatm; o = 1). Then, giveni, 5, he choosesn) , according where A, = 0.

1Recall that User 1 must employ the same encoding scheme as in the 2The messagesml,B,g,m/LB_Q) are the resolution information of
case of absent cribbing. user 1 at blockB — 1, which are actually the fresh messagesiof- 2.



{u(me—l?m/l,b—l)vv(mlab—lmeb)’ 2131(7’?11/17[),’U;(’ﬁ’ll,b_l,m/Lb_l),’U(’ﬁ’lLb_l,me)),wl,b} € Te(n)(vale) (64)

x1y = x1(mly, u(myp—1,m) 4 1), v(mip-1,m1p)), b=2,3,...,B-1 (65a)
513/2/,17 = wé’(mé’?b,u(ml’b,l, m’l,b,l)), b=2,3,...,B-1 (65hb)
x1p = o1 (1, u(mip_1,m) p_),v(m1p_1,1)), (65¢)
Typ = wg(lvu(ml,B—hm/l,B—l))' (65d)

{u(mLB—Q’ mll,B—2)7 v(ﬁ]’LB—Qa ml,B—l)v xl(ﬁ]’/l,B—la U(mLB_Q, mll,B—2)7 U(mLB—Qa m17B_1))
-’Elzl(mlz/,th u(mi, -2, mll,B—2>)a ’y%q} € Te(n) (UVXlXé/YN)~ (67)

{w(map—1,m) 1), v(1hap—1, 1), @1 (W] 4, w1, M) 1), v(15-1,11))
@l (g p, w(riv p1, 100y 1)) 9 } € TV (UV XL XGY"). (68)

Using Lemma 2, we bound the probability of error in théhatm ,_; = m’Lb_1 =my, = 1. Then, according to (63),
super blocknB by the sum of the probability of having
an error in each block given that in previous blocks, the
messages were decoded correctly. Pr {EgédESngbq} <PrS | EmiylBéce
First let us bound the probability that for sorhgencoder M7l
2 decodes the messages of encoder 1 incorrectly at the end (73)

of that block. Using Lemma 2, it suffices to show that th¢ne propapiity at the right hand side of (73), is the probigbi
probability of decoding error in each block goes to zerqy ine event in (71), given that ,_;, was decoded correctly.

assuming that all previous messages in blo@ks,...,b—1) Then, to evaluate (73), we can equivalently evaluate the
were decoded correctly. probability of the event

Let Eengy = Eé}])qb U Eéi)cb be the event that encoder N
2 has an error in decodingu , or m} ,. The eventEg}Z;b by, 2 (0(1,may),@1,) € TI(VXY),  (74)
refers to an error in decoding ;, while Eéﬁ)qb refers to an for mi, # 1. Whence, by classical results, we have,
error in decodingn ;. The termPr 3 Eency| Egye;,; ¢ IS the "
probability that encoder 2 incorrectly decoded ; or m’Lb, Pr {Eenqb\Egnqb—l} < Z Pr {5b»m1,h|E§nqb71} (75)
given thatm, ;1 and m}, , were decoded correctly. We ma b7l
have, < Z e~ nI(ViX1)=3¢) (76)

my p#1
Pr {Eencb|Egngb71} <Pr {Eéraz):,b|Egnc,b71} < en(Rlil(V;Xl)Hk)' (77)

+Pr {Ee(ﬁz;b\Egnqb_l, (Eéﬁlb)c} . (70)  Next, recall that encoder 2 decod;jaél’b acc_ording to (64),
given that he already decodetil,; in the first stage, and
m1 p—1 and mg,b_l at the end of block — 1. Accordingly,

Define the sets we have,

2 » 1
Epmry 2 (V(map1,mip),T1p) € T (VXY),  (71) Pr {Eéng;b‘Egnc,bflv (Eén();b)c}

and the set, .,/ in (72), shown at the top of the next page, =Pr U gb,m,’l_b|E(e2nc,b—1v (Eé;éb)c
givenmy ;1 andm/ , ,. Assume without loss of generality m} ,#1 '



Eomy, 2 {w(mup—1,mh 1), v(map1,map), @ (m] y, w(ma p1,ml o), v(ma -1, mip)), @1} € T (UV X XY).

(72)
< Z Pr {5b,m’1 N Eench—1 (Eé;();b) } . (78) From the union bound, we obtain that:
my  #1 n c
’ Pe(,b) <Pr{Ef;,}+ Z Pr{Em, 116}
Again, the probability at the right hand side of (78), is the m1>1
probability of the event in (72), given that; ;_, m/l,b—l' + Z Pr{El,m’lJ,b} + Z Pr {E171,m’2’,b}
andm, ;, were decoded correctly. Then, to evaluate (78), we mi>1 my>1
can equivalently evaluate the probability of the event i@)(7 PrlE
shown at the top of the next page, for, , # 1. We get + Z By i 10}
’ m1>1,mi>1
C 1 C
Pr {gb,m’l,b|Eenqb—la (Eénz;b) } = + Z Pr {Em1 1,mYy 7b}
, my>1,m} >1
Z P(u)P(v)P(x1|u,v)P(x]|u,v) el B
TM(UV XL X1) " />1Z//>1 r{ 1*m/1’m/2/7b}
< exp(n(H(U,V, X1,X1) + ¢€))
cexp(—n(H(U, V, X1) — 4¢)) v BBl )
m1>1,mi>1,my>1
exp(=n(H(X|U, V) = ©)) Let us upper bound each term in (83)
= exp(—n(H(X1|U,V) - 66)). (80) | 7
1) Upper-boundlngPr{Efm’b}: Since we assume that
Therefore, encoder 2 encodes the right messages._, andm| ,
5D |ge 1) e Cn(H (X1 |U,V)—66) in block b, and that the receiver decoded the right
Pr{ EencoBench—1> (Eencs) }§ > e ' messagesn, , and m/ , at block b + 1, by the LLN
"7l P {EC } L 0asn—
< MRI—H(X1|UV)+6¢) L Rt B ) _ n = 0.
= ' (81) 2) Upper-boundlngzmé,NPr{Eljlmu »}: Let S be the
set of all sequence$u,v,x;,x},y"”) that belong to
Wrapping up, using (77) and (81), by Lemma 2,if < Te(")(UVXlX”Y”). We then have
I(V; X;) and Ry < H(X1|U,V), then encoder 2 can decode PriE
all the messages (i.e., over all tti¢ blocks) of encoder 1 r{ B 1 my b}
correctly, with a probability of error that goes to zero as th = ZP P(z1|u,v)P(xy|u)
block length goes to infinity.
Next, at the receiver side, recall first the decoding x P(y"|u,v,x)
rule in (68), where in blockb, the decoder looks for < exp(n(H(U,V, X1, XJ,Y") +¢))

(Ma,p—1, M} _q,15,) assuming thatrn, ;, M} ,) were al-

ready decoded in biodk+ 1. In the following, we upper bound rexp(— ”(H(U’HV’ X1) —4e)
the overall error probability of the receiver. To this end; use -exp(—n(H(X3|U) —¢€))
once again Lemma 2, as follows. The error probability of the ~exp(—n(H(Y"|U,V, X1) —¢€))

receiver is upper bounded by the sum of the probabilities tha
in each blockb the receiver incorrectly decodes the messages
mip-1, mj,_,, and me, given that: (1) at blockb + 1 Hence, we obtain
the messages:; , and m » were decoded correctly, and (2) Z Pr {E1 L b} < MBY=I(XF Y UV X1)47€)
encoder 2 decoded correctly all the messages of encoder 1 (in

all the B blocks).

Define the event in (82), shown at the top of the next page,
and without loss of generality, assume that, = m), = 1.  3) Upper-bounding_, . ., Pr{Ey, 1,1}: We have
Assuming thatm, ;1 =m}, , =mjy, =1, an error occurs Pr {E }
if either the correct codewords are not jointly typical witte Fibm, 11

= exp(—n(I(X5;Y"|U,V,X1) — Te)).  (84)

my>1

(85)

received sequences, i.d; | | ,, or if there exists a different = Z P(u P(x1|u,v)P(xh|u)P(y")
tuple (my, m}, my) # (1,1 1) 'such thatl,,,, ;s my,» OCCUIS.
Let P(" be the decodmg error probability at blodkgiven < exp( (H(U,V, X1, X3,Y") +€))

that in blocks( B), there was no decoding error. ~exp(—n(H(U,V, X1) — 4¢))



oy, 2 {w(1,1),0(1,1), @1 (m] 4, u(1,1),0(1, 1)), 1} € T (UV X X)),

(79)
Emhm; ,m4 b = {u(mla mll)’ v(mlv m17b)7 wl(mll,b’ u(mlv mll), U(mh ml,b))a wg(mg7 u(mlv mll)) yg
TM(UV X XIY. (82)
~exp(—n(H (XY |U) —¢€)) 6) Upper-bounding 3=, 1 s Pr{Em, 1my s} We
cexp(—n(H(Y") = ¢)) have
:eXp(—ﬂ(I(U,‘/,Xl,Xé/;YN) — 76)) (86) Pr{Eml lmz,b}
Hence, we obtain = ZP P(z1|u,v)P(z3|u)P(y")
> Pr{Ep, 115} < " HOVALXYHHTE, < exp( (H(U,V, X1, XJ,Y") +¢))
e (87) cexp(—n(H(U,V, X1) — 4e))
. ~exp(—n(H (X3 |U) — €))
4) Upper-boundlngzm,1>1 Pr{E\ . 1,}: We have cexp(—n(H(Y") = €))
Pr {El ml,Lb} = exp(—n(I(U,V,Xl,Xé/;Y”) - 76)) (92)
= ZP P(z1|u,v)P(zy|u)P(y" |v) Hence, we obtain
< exp( (H(U,V, X1, XJ,Y") +¢)) Y Pr{Buiimgs}
m1>1,mf4>1
. eXp(in(H(U;‘/aXl) 746)) < en(RH—R;’—I(U,V,Xl,Xé’;Y”)—Q—’?e). (93)
~exp(—n(H (X5 |U) — €)) B
cexp(—n(H(Y"|V) = €)) 7) Upper-bounding 3=,/ . i Pr {Brm;myp}: We
= exp(—n(I(U, X1, XL; Y"|V) — Te)). (88) have
Hence, we obtain Pr {Evm my b}
_ " "
Z Pr{E m, 1} < LI UX XG5V V) 47€) ZP Plaifu, o) Plas [u) P(y7lv)
my>1 89 < eXp( (H(U,V, X1, X5,Y") +¢))
(89) ~exp(—n(H(U,V, X1) — 4e))
5) Upper-bounding 3=, o1 o1 Pr{Em, mj 10} We -exp(—n(H(X}|U) —€))
have cexp(—n(H(Y"|V) =€)
Pr {Eml,m1717b} = exp(—n(I(U, X1, XJ; Y"|V) — Te)). (94)
= ZP P(x1|u,v)P(xy|u)P(y") Hence, we obtain
< exp( (H(U,V, X1, X[, Y") +¢)) Y Pr{Bimmys)
) _ _ mi>1,ml>1
exp( n(H(U,/V, X1) — 4e)) < eM(Ri+RY—I(UX1,X5Y"|V)+7e€) (95)
-exp(—n(H(X3|U) - €)) - '
: exp(—n(H(Y") - 6)) 8) Upper-boundlngZ7rll>l mi>1,mfy>1 Pr {Eml mf,my b}
= exp(—n(I(U,V, X1, X};Y") ~7€)).  (90) We have
Hence, we obtain Pr {Emlamwmz ab}

1 1
S P { B} =3 P P() Pl ) P(e) Py

m1>1,m)>1 S exp( ( (U7VY7X1»X§/7YN) +6))

n(Ri+R,—I(U,V,X1,X: Y )+7¢
<e (Ri+Ry—I( 1,45 )+ ) '6XP(*H(H(U,V,X1)*4€))

(91)



~exp(—n(H(X3|U) —¢))
~exp(—n(H(Y") —¢))
= exp(—n(I(U,V, X1, X5;Y") = Te)). (96)
Hence, we obtain
> Pr{ By mi mig b }
m1>1,m)>1,mf>1
< en(Bi+R +Ry —I(UV,X1,X);Y")+7e) (97)
Thus, if (Ry, R}, RY) satisfy:
Ry < I(V; Xy), (98a)
Ry < H(X:|U,V), (98b)
Ry < I(U,V, Xy, X5;Y"), (98¢c)
Ry < I(U, X1, XY, Y"|V), (98d)
R+ R, <I(U,V, Xy, XYY", (98e)
Ry <I(X{;Y"|UV,X1), (98
Ry + Ry < I(U,V, Xy, X5;Y"), (980)
Ry + Ry < I(U, X1, XY;Y"|V), (98h)
R+ R+ R <I(U,V, Xy, XJ;Y"), (98i)

then there exists a sequence of codes with a probabilityrof er
that goes to zero as the block length goes to infinity. We notp(
to the following simplifications. First, we can remove (98c)

(98e), and (98g), due to (98i), and (98d) can be removed dtﬁa

to (98h). Second, (98h) and (98i) can be replaced iitht
RY < I(Xy, X§;Y"|V) andRy + Ry + Ry < I(Xy, X Y"),
respectively, due to the Markov chaitr, V) e (X1, X4 )e Y.

C. Proof of Theorem 3

In order to show that all the rate pairs in (22) are achievable
we employ Shannon strategies [9]. Consider all different
strategies (functions), with membetse 7 £ X, Y1 that
map inputsz; € &; into inputszy € X,. Denote byt() the
strategy with membet as an operator.

Definition 3: For a DMMAC (X} x Xa, P(y"|z1,25),Y)
the DM derived MAC is denoted by (Ax; x
T, P>(y"|x1,t),Y) where P2 (y"|z1,t) & Py |z, 2l =
t(xy)) forall z, € Xy, t € 7, andy” € ).

Let R be the set of rateR;, R}, Re, RY) satisfying

Ry < I(V:Y]X), (105a)
Ry < I(Xy;Y|V), (105b)

Ri+ R < I(V, X;Y), (105¢)

| < H(X,|U, V), (105d)

R} <I(T;Y"|U,V,X:),  (105e)

R, + R < I(Xy,T;Y"|V), (105f)
R+ R, + R <I(X,,T;Y"), (105g)

for some joint distributionP(u, v, x1, z2,t,y,y”) of the form

"
u,v xlaantayvy )

)P (a1 |u, v) Pz 2y |1, 1)

(106)

2) P(t[u) P(y|z1, x2) P

By the achievability scheme for the strictly causal caseefTh
orem 2), all rate pairs insidRg are achievable for the above

Finally, the constraint in (98a), is superfluous due to (61a)erived MAC. Therefore for the MAC with causal cribbing all

Indeed, rate pairs insidéks must be achievable. If we now restrict the
I(V;Y|X5) = H(V|X,) — H(V|X5,Y) (99) distributions in (106) to satisfy
2 HW) - HYVIX, X, Y) @0y  Plwv,zi,@s,t,y,y") = P(U)P(U)P($1|U)Ap(x2)P(t)
(b) X P(ylzy, xo) P2 (y" |21, ),
= H(V) - H(V|X1) (101) (107)
=I(V; X)) (102)
o then
where (a) follows from the fact that conditioning re-
duces entropy, and (b) follows from the Markov chain H(X,|U, V)= H(X;|V), (108a)
(X2,Y)e X;e V. Thus, to summarize, using the above sim- I(T;Y"|U,V, X)) = I(XJ: Y|V, X1) (108b)
plifications, the achievable region for the MAC with unrélia ” ’ ", ’,, ’
strictly causal cribbing is given (recall, (61)) I(X, T:Y7|V) = I(X1, X35 Y'|V),  (108c)
I(X1,T;Y") = I(Xy, XI5 Y"), (108d)
Ry < I(V;Y[X2), (103a)
Ry < I(X5;Y|V), (103b) and
st = 10 Aaid) (1930 py 0y af.y") = Poa) Y POPG o).
R1 < H(X1|U, V)a (103d) t: t(xy)=al
Ry < I(X§;Y"|U,V,X1),  (103e) (109)
Ri+ Ry <10, X5V V), @os) o Vet with orobabil
ecall that for a discrete random varia with probability mass
Ri+ Ry + Ry < I(X1,X3;Y"), (1039)  function Px (-), the probability mass functio®y () of the discrete random
variableY = g(X) is given by
for somePy v x, x,,xy v,y of the form
Py Py Px,ju,v Px, PxyjuPyx, x, Pyox, xy,  (104) Priv) = . ,g(x) Px(e).

as stated in Theorem 2.



Now, given an arbitrary distributionP%(v,z1,25) = D. Proof of Theorem 4
P°(v, 1) P°(x5|z1), we note that there always exists a prod- \ye next show thaf©

A mac defined in (25), is an outer bound
uct distribution (v, z1,t) = P(v, 21)P(t) such that to the capacity region. We start with a sequence of codes

Po,a) 3 P(t)=Plweraf).  (110) (ne"™ e, enfis onR, c,) with increasing blocklength,
T — satisfying lim,,_,., €, = 0. We denote byM}, the random
message fromVy, for & = 1,2, and by M{ and M} the

I this holds for the followi hoice:
ndeed, this holds for the following choice messages fromV] and N}/, respectively. If the cribbing is

P(v,z1) = P°(v,21,2%), (111a) absent, by Fano's inequality we can bound the r&eas
Y follows
PO(afh,ay = t(xh)) n
P(t) = Z P . (111b)  nR; — nin < T (My;Y™|My) (116)
1 =3I (MY M) (117)
From the above (recall also (61)), we conclude that all rate pr
pairs (@)
i—1.v,
Ry < I(V;Y[X5), (1122) < 2100 YTHYiIM) (118)
RQ S I(Xg, Y‘V), (112b) (b) n i
Ri+ Ry < I(V, X Y), (112¢) = DT (MyYi| M) + I(Y' 5 Yi|My, M) (119)
Ry < H(X,|V), (112d) B
Ry < I(XY;Y"|V,X1), (112e) © D T (M3 Y| My, X ) + I(Y' 5 V3| My, Mp)
R} + Ry < I(Xy, X355 Y"|V), (112f) =t (120)
Rl + Rll + RIQ/ < [(Xla Xél; YN)v (1129) (a) n
. i—1,
for some Py x, x, xy.v.y~ Of the form <Y T(My, My; Y| Xo ) + I(Y' ™ Yi| My, M)
=1
Py x, Px, Pxy x, Py|x, x, Py x, xy, (113) (121)

are achievable for the MAC with causal cribbing. Fi-
nally, note that due to the Markov chainge X;e X/
and Ve (X1, X))eY"” we can replace (112e) witlR, <
I(XY;Y"”|X;), and we obtain Theorem 3. Finally, we show
that each constraint in (112) can be upper bounded by each (d) i1
constraint in (22), and that that the upper bounds can be I I(My; Yl Xo3) + 1Y Yi| My, M) - (123)
achieved by taking” = @, which of course satisfy (113). =1
Indeed, for example, for (112a), we have ¥vhere Emn?wool On =| 0,f due tOHHIln.%foo én =0, (a)d fO;]'OWS
rom the chain rule for mutual information and the non-
IV;Y|X2,U) = H(Y|X2,U) - H(Y| X2, U, V) negativity of the mutual information, (b) follows from the
S H(Y[X2) - H(Y[X2,V) chain rule for mutual information, (c) is due to the fact that
=I(V;Y|X>) (114) Xs; is a deterministic function ofif;, and (d) follows from

where the inequality follows from the fact that conditionIhe Markov chainMye (M, X» ) e ¥;, proved in Appendix

. A (see, Lemma 3). Thud (Ms; Y;| M1, X5 ;) = 0. Continu-
ing reduces entropy, and the Markov chdire (V, X5)eY i—1. v ’ Ve

which follows from the Markov chain&« (X1, X2)e Y and {Tg’enroéimztégyas f70}|/|1(|)vj\v431’ M), appearing in (123), can be
Ue Ve X;. In the same way, we get thd{Xo; Y|V, U) < PP

I(X2;Y|V) and I(V, Xo; Y|U) < I(V, Xo;Y). Finally, for (YL VM. M (a) (YL YM.  M,. X: 124
(112e), we have ( ) ’L| 1 2) - ( ) 1‘ 1 2, 2) ( )

b n
YN T (M Vil X) + T (My; Vi My, Xa,)
i=1
+ 1YL Vi My, M) (122)

I(X):Y"\U,V,X,)=HY"|U,V, X)) (2 I(X{7h Y| My, My, X3) (125)
— H(Y"|U,V, X1, XY) < I(X57', Mo, X{75 i My, Xo)  (126)
< HY'V, Xy) - HY"|V, X, X5) © I(X]7 Y| My, X )
= I(Xé/,Y//H/, Xl) (115) +I(X;:_l,MQ;K|M1,X271',X{_1) (127)
where the inequality follows from the fact that @ I(xi—1 Yi| My, Xo.) (128)

conditioning reduces entropy, and the Markov chains
(U, V)e (X1,X5)eY". However, we readily see that thewhere (a) is due to the fact thak} is a determin-
above upper bounds can be achieved by simply taking 0, istic function of M,, (b) follows from the fact that
which coincides with Theorem 3. O yi-le (Xi™t Xi, My, My)e Y, (see, Lemma 3), and the fact



that for any Markov chairZe (X, W) <Y we havé and thus

Z;Y W) < I(X;Y W), (129)  n(Ry+ Ry) —ndy <Y I (My, My3Y;)
=1
Passage (c) follows from the chain rule of mutual in- FIXITLY M, Xa,)  (142)
formation, and finally (d) is due to the Markov chain . v e
(M2, Xi™1)e (M1, Xi7', Xo;) o Y; (see, Lemma 3). Wrap- (@) ZI(Ml,M27X2 i Yi)
ping up, we obtained Py
n + (XYY My, X)) (143)
nRy —nd, <> I(M;Yi|Xa,) + I(X{™ Vi My, Xa,) o) &
i=1 :Z (M1, X2, Y5)
(130) i=1
n . +I(X{L Y My, Xa ) (144)
=3 I (ML XL Y Xay) (131) N !
i=1 => I (M, X{ ", X233Y;)  (145)
Next, for R, we have: =1
where in (a) we use the fact thaX,, is a determin-
nRy—nd, < I(Mo;Y"™| My, M7) (132) istic function of M;, and (b) is due to the fact that
n _ I (My, My, Xo53Y;) = 1 (My, Xo 45 Y)+1 (Ma; Y| My, Xo ;)
= ZI(MQ;}/AMDM{?Y,L_l) (133) and thatMQG (M17X27'L')9')/i'
i=1 Now, when cribbing is present, by Fano’s inequality we
0) — , bound the rateR’ as follows:
WS (X, M Y| My, MY, X1, YY) (134) ! )
i 1 nRy —nd, < I(M{;Y™ |My) (146)
< ZI Xo4, My, Ml My, Y"1, Yi|X,,)  (135) = I(My, M3 Y™ [ M) (147)
o @ Iy, My, XY M) (148)
(®)
=D (X2 Vil X1) & 1oy ()
=1 n n
I(Ml,M{,M27Yi_1;YZ“X1’i,XQ’Z‘) (136) ( )+ I(Ml,Ml;Y ‘Ml,Xl) (149)
) 2 (XY™ | My) (150)
() 19
i:Zl ( 2, ‘ 1,) ( ) SH(X1|M1) (151)
d) — ;
where (a) follows from the fact thatX,; and X ; (:)ZH(X1,Z-|M1,X{*1) (152)
are deterministic functions ofM, and (M, M7), re- i=1

spectively, (b) is due to the chain rule for mutuajvhere (a) follows the fact thak? is a deterministic function
information, and (c) follows from the Markov chainof (Ar;, M7), (b) is due to the chain rule for mutual informa-
(My, M, Ma, Y~ )e (X1,5, X2,)e Y;. Finally, for the sum tion, (c) follows from the Markov chaifM;, M])e X7e Y™

rate we have (see, Lemma 3), and (d) is due to the entropy chain rule. Next,
for RY we have:

—_— M . i-1 12
U)o S 0 T MYV (099 no < I(ME; Y™ My, M) (153)
n n : "
<SUI(My My YY) @89) = D TS Y YT My, M) (154)
=1 =1
= S (My, My; Vi) WS Iy My, MY X X) (155)
i=1 i=1
i—1.v n . o
+ I(Y 7Y’-L|M1,M2) (140) S ZI(Ml,X]Z_il,Yz_l 7M{;M2//;Y;N|X1’i) (156)

where the last equality follows from the chain rule. However i:nl

we already saw that (recall (128)): ® ZI My, X7t yi- 1 M MY XY i Y| X14) (157)
IY'"hY| My, Me) < I(X{ 5 Y3 My, Xoy),  (141)

=1
© ©
C
= (XYY | X) (158)
“TakeZ = Y*~1, X = Xi~1, Y = Y;, andW = (My, Ma, X3). i=1



where () is due to the fact that! is a deterministic function Using the standard time-sharing argument as in [13, Ch],14.3
of M, and M, (b) follows the fact thafX/; is a deterministic one can rewrite (162) by introducing an appropriate time-
function of (M4, X1), and (c) follows from the Markov chain sharing random variable. Therefore,df — 0 asn — oo,

(My, X7 Y MY, MY)e (X1,4, X4,)e Y{". Finally, for

the sum rateR; + R} + Rj, we have:
n(Ry + R + Ry) — nd,, < I(Ml,M{,Mé’;Y”’d

< ZI (X1,0, XY 5 Y.

So, hitherto we have that: .
n(Ry — 0p) < iI(MhXiil;Yi‘Xli)
=1
n(Ry — 6,) < zn:f(X2,¢;Yi|X1,i)
i=1
n(Ri + Ry — 6,) < iI(Ml,X{”,Xz,Z—;E)
i=1
n(Ry — ) < iH(XMMl’Xf_l)

i=1

n(RY —6,) <Y I(XY Y| My, X7, Xo)
=1

n(R} + Ry —6,) <Y H(Xy;|My, Xi71)
=1

+I(X21,Y”|M1,X 1 X14)

n(Ry + Ry + Ry —4,) < ZI(Xl,hXéI,i;Y—iN)'
i=1

We are now in a position to define our auxiliary RV. From
(161a)-(161g), letting; = (M, X{™"), and thus preserving

the Markov chain induced b, we have that

n(Ry — 6,) < zn:I(Vi;YﬂXz,i)
i—1
n(Ry —6,) < iI(Xz,i;Yi\Xl,i)
i=1
n(Ry + Ry — 0p) < Zn: I(Vi, X245, Y5)
i—1
n(Rll - 5n) < i: H(Xlt‘vz)
i=1

n(RY —6,) <> I(XY Y |Vi, X14)
i=1

n(Ry + Ry —6,) <Y H(Xy,|Vi)
=1

+ I(XQ mYHH/HXl 2)

n(Ry + R} + Ry — <ZI X1.4, X3 5 Y7).
i=1

(159)

(160)

(161a)

(161b)

(161c)

(161d)

(161e)

(161f)

(1619)

(162a)

(162b)

(162c)

(162d)

(162¢)

(162f)

(1629)

the convex hull of this region can be shown to be equivalent
to the convex hull of the region in (25).

Remark 1:As was mentioned in the paragraph preceding
Theorem 4, one can obtain the same outer bound also for the
case of non-causal cribbing (see, (26)). Indeed, it is exide
that the only places where the casual assumption play a role
are in the bounds o) and R; + R} + Rj. It is easy to
see that the bound oR; + R} + Rj will not change, and
regardingR}, we have (see, (158))

nRY —nd, < I(Mg;Y™" | My, M) (163)

=1y )Y My, M) (164)
=1

WS vy Y Y My, M, XY (165)
=1

<STI(My, XYY MY, MY Y X ) (166)

o

&
Il
-

I(My, X7 Y Y My, MY XY Y X ) (167)

=
NS

'M:H
I,

1
-

C

I(Xy ;5 Y[ X14) (168)
where (a) is due to the fact thai is a deterministic function
of M, andMj, (b) follows the fact thaf(;; is a deterministic
function of (M}, X7), and (c) follows from the Markov
chain (My, X77*, Y=V M, M}))e (X1, X4;)e Y/, where

X/ = (X X)),

O

APPENDIXA
AUXILIARY MARKOV CHAINS RELATIONS
Lemma 3:The following relations hold:
1) Mye (M1,X2,i) oY
2) (Mo, X5 "o (M1, X{7!, Xo,) oY}
3 Vile (XL Xy ) e,
4) Yitle (X{7H XS My, M) oY,
5) Vi~le (X{7', Xi, M, M) =Y,
6) (My, M])e XPre Y™
Proof of Lemma 3First, recall that:

(M1, Ma, Y7L XL X ) o (X1, Xoi) o Yie  (AD)
Thus, the first item of Lemma 3 follows from:

PY;‘\Mth,wJWz = ZP}/'L"AILXQJ,J\/[Zle,i
Z1,i

x PXli\Ml,XziJ\b (A2)

= ZPYi\M17X2,i7X1,iPX1i|M1-,X2,1: (A3)

T1,i

= PYi\Ml,Xz,i? (A4)



where in the second equality we have used (A.1), and the fact APPENDIXB
that X; is independent of\/,. The second item of Lemma 3 PROOF OFLEMMA 1

follows exactly in the same way as above. Indeed, Proof: In the following, we upper bound each constraint in

Py, aty xi 0,01 = melMl,X;MmX{ (28), and show that that the upper bounds can be achieved by

w1 taking V' = X;. We have:
< Py v xyan,xi-t (AB) Ry < I(V;Y|Xs) (B.1)
= ZPli,X;',XZ_,,; < I(V,X1;Y|Xo) (B.2)
= I(X1;Y]Xa), (B.3)
X PXliU\41aX;71aX2,i (A6)
_p _ A7 where we have used the fact tHak (X, Xs)e Y. Next,
- E|M17X1717X2,i. ( ' )
Next, the third item is true because: Ry < I(X9;Y|V) (B.4)
= H(X,|V)—- H(X,|V,Y B.5
Pyjxit x v = D Prxit ximt vt x,0x. (XolV) ~ H(XalV.T) (B.5)
T1,i,T25 < H(XQ‘Xl) - H(X2|X1,Y) (86)
X PX1i7X2i‘Xii71,X;71,Yi71 (A8) :I(XQ,Y|X1) (B?)

= Y PrixixiPx, x. xi-'.xit where the inequality follows from the fact thak, is indepen-

T1,0,T2, dent of (V, X;), and the fact that:
(A.9)
— Z P R H(X2|X1,Y) = H(X2| X1, V,Y) (B.8)
- X1,,X2,4, Y| X770, X5
T1,i,%2,i ’ ' : < H(X2|V7Y) (Bg)
(A.10)

where the inequality is due to the fact that conditioning
=Py xi-1 xi1 (A11) reduces entropy, and the equality follows from the relation
where the second equality follows from the fact that thE<e (X1,Y)e X,. Indeed, first note that:

channel is memoryless and the fact that there is no feedback. Px, v Pyix, xo.x
142 1,442,

The forth item follows in exactly the same way. The fifth item Px, vix,y = Px v (B.10)
follows from: L

= PXQ\Xl,YPV|X1,X2,Y (B.11)

Py xi=r xg,vi-1 My My = Px,1x,,vyPvix, x, (B.12)

= Z Py xi1 xivio1 x, .0, M1 M, = Px,1x,,vyPvix, (B.13)

i = Px,1x,,yPvix,y (B.14)

X Py X1 X3,y My Ma (A.12)

where the third and last equalities follow from the relasion
= Z PY'i‘X{vX;FJWl7M2PX1i‘X}_1’X§.7A11’1\/[2 (A.13) Ve (X1,X2)eY andVe X, e Y, respectively, which are true

T due to (21). For the sum rate, we have:
= Py iviot i A.14

wz A VXX MM (A.14) Ry + Ry < I(V, X2:Y) (B.15)
= Py, xi1 X101, M (A.15) <I(V, X1, Xo3Y) (B.16)

where again the second equality follows from the fact that th = I(X1, X2;Y) (B.17)

channel is memoryless and the fact that there is no feedbagk.yhich the last equality follow fromV e (X, X;)o V.
Finally, we obtain the sixth item due to the same reasons: Similarly, for R%, we obtain: ’

PY,,L//‘XIL7A]17]W{ R/QI < I(Xé/,YH|X1,V) (518)
= Z Pyt xn xo g ot Pxp” | x0 001 (A.16) =HY"|X,V)-HY"|X1,V, X}) (B.19)

a3 < HY"|X,) - HY"| X1, XY) (B.20)
= Z// PY”” \XIHXSN Xg// ‘X{I (Al?) — I(Xé/’ Y//|X1) (le)

’ where the inequality follows from the fact that conditiogin

= ZP n xp" | X7 (A-18)  reduces entropy, and the relatidhe (X1, X5)e Y. Finally,

T the result follows by noticing that the obtained upper baund
= Pyurixn. (A19) in (B.3), (B.7), (B.17), and (B.21) are independentiof and

[] can be achieved by taking = X. U
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