
 
 
 
 
 

 

 

IRWIN AND JOAN JACOBS 

CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES 

 

Exploiting the Scan Side 

Channel for Reverse 

Engineering of a VLSI Device 

 
Leonid Azriel, Ran Ginosar, and 
Avi Mendelson 

CCIT Report #897 
May 2016 
 

DEPARTMENT OF ELECTRICAL ENGINEERING 

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL 
  

Electronics 
Computers 

Communications 



Exploiting the Scan Side Channel for Reverse

Engineering of a VLSI Device

Leonid Azriel, Ran Ginosar, and Avi Mendelson

Technion, Israel Institute of Technology,
{leonida, ran, avi.mendelson}@technion.ac.il

Abstract. This paper presents a novel non-invasive method of reverse
engineering of digital VLSI devices that exploits the scan chains origi-
nally inserted into the device for production test automation. The scan
chains unfold the sequential logic of the device to form a combinational
function. The device’s logical functionality can then be discovered by ex-
amining this function. This potentially allows for the adversary to carry
out a reverse engineering attack using simple off-the-shelf equipment for
accessing the scan chains combined with Boolean function learning meth-
ods. To demonstrate the effectiveness of the method, we apply a set of
heuristic learning algorithms that take advantage of common proper-
ties of digital circuits, in particular limited transitive fan-in of combi-
national logic and sub-circuit sharing properties. With these algorithms
we achieve successful and fast reconstruction of popular cryptographic
function implementations such as the AES cryptographic accelerator.
The algorithm used for reconstruction of the AES is scalable and there-
fore can be used with significantly larger circuits. Finally, we discuss the
existing countermeasures against scan-based side channel attacks and
find that the presented method is immune to some of them.

Keywords: Side Channel Analysis, Scan Side Channel, Reverse Engi-
neering

1 Introduction

Reverse engineering of a VLSI device is a complex task that traditionally re-
quires tedious work and expensive equipment [25]. The ultimate goal of the
reverse engineering process is, given the physical device, to discover its underly-
ing algorithm; i.e., the device’s behavioral definition. Roughly, we can represent
the discovery task as a two-stage process: (1) Extraction of the circuit from the
physical device and (2) Extraction of the behavioral model from the circuit.

The boundary between the two stages sometimes may be blurred; neverthe-
less, these are usually two distinct tasks. The first stage, as a rule, involves a
sequence of invasive techniques, such as removing the package, performing cross-
section, delayering, and imaging of nanoscale [18, 25]. The second stage is usually
algorithmic [1, 14, 16, 22]. This paper addresses the first stage - circuit extraction.
The complexity and cost of invasive circuit extraction methods commonly used

lesley
CCIT Report #897  May 2016



II

today rise with the advancement in semiconductor manufacturing technology.
We propose a new, non-invasive approach for circuit extraction that exploits
the internal scan chains. This approach provides notable accuracy, while using
simple and inexpensive equipment. In contrast to the dynamic data oriented
attacks. this method reveals the logical function of the circuit.

Scan insertion is a well-known DFT (Design-For-Test) technique that allows
for the automatic generation of test vectors for production test of a VLSI device.
Thanks to its efficiency and ability to achieve high coverage, it has become a
de-facto standard for testing digital circuits, supported by all the major syn-
thesis tools. Furthermore, scan insertion is usually enforced by ASIC vendors.
The high controllability and observability that the scan provides contribute to
high fault coverage, but make a significant drawback when security is a con-
cern. Scan insertion provides a side channel, which, unless properly protected,
may become an easy target for the attacker as was already shown by recent
research [5, 8–10, 13, 20]. Previous work primarily focuses on the vulnerability
of the registers that participate in the scan chain. Easy access to these regis-
ters may reveal confidential information, such as cryptographic keys, machine
state, etc. This paper presents a different attack that reveals functionality of
the design itself. This security breach broadens the scope of possible exploits
of the scan mode from security devices to any device that may contain trade
secrets or proprietary algorithms. The proposed reverse engineering method can
also serve benign purposes, such as competitive analysis, IP theft detection, or
discovery of malicious hardware implanted by a third party during the physical
implementation process.

 

State register: r 

shift mode 

Combinational Function: F 

external outputs: o external inputs:  i 

Fig. 1. Scan Design



III

The scan insertion algorithm adds to the circuit a special shiftmode, which
arranges all the internal registers in one or several shift registers, called scan
chains, see Fig.1. Hence, the external tester may place the circuit in the desired
state (ShiftIn operation) and sample the current state (ShiftOut operation) of
the circuit. One can combine the ShiftIn and ShiftOut operations with a single
functional (Capture) cycle to learn (Probe) the output of the combinational
function F for a given input. An exhaustive search over all possible states of the
device’s registers and input pins then reveals a truth table that fully describes
the function F .

The exhaustive search, due to its exponential complexity, is practical only
for very small devices, containing no more than a few dozens of registers. For a
general case of learning a Boolean function, the number of possible functions is
22

n

, where n is the number of inputs of the function . However, the search space
in our case is much smaller as shown in Theorem 1:

Theorem 1. The number of n-input Boolean functions realizable by a digital
circuit is significantly smaller than the number of all possible n-input Boolean
functions, if n is large enough.

Proof. The thorem is a direct corollary from the Shannon Effect [15], which
states that almost all Boolean functions have a complexity close to the maximum
possible for the uniform probability distribution. Namely, an arbitrary function
with n variables will have asymptotic complexity of O(2n) with probability close
to 1. The complexity of a Boolean function is equivalent to circuit complexity
(the number of gates) [26]. Clearly, for large n, a circuit of size O(2n) is not
realizable. Hence, the conclusion is that for large n, almost all Boolean functions
are not realizable by a digital circuit. ⊓⊔

Devising an upper bound for the number of n-input Boolean functions with
some limited complexity is an open question. If such a bound exists, it may
define the size of the search space for our problem. An additional unanswered
question is about the properties of all the functions that satisfy the complexity
bound. Until these question are answered, we take a heuristic approach. In this
paper, we assume properties of the functions to be learned and propose learning
algorithms that exploit these properties for reduction of complexity. In a sense,
our work correlates to the field of Computational Learning theory, which studies
learning algorithms for functions with certain properties, such as linear func-
tions, decision trees, DNF, junta functions and more [19]. We use some of the
algorithms developed in this field, in particular algorithms for learning juntas.
To summarize, the contributions of this paper are:

1. Finding of a vulnerability: exploitation of the test scan logic for reverse
engineering of a digital VLSI device

2. Proposal of a heuristic-based algorithm for learning of a Boolean function
realizable by a digital circuit

3. Demonstration of full reconstruction of an AES engine via scan side channel
with a junta learning algorithm



IV

The remainder of this paper is organized as follows. Section 2 introduces for-
mal definitions of the circuit and supplies definitions of the learning algorithms
with proofs and examples. Section 3 shows the experimental results obtained
from simulation. Section 4 discusses related work including known countermea-
sures. Finally, Section 5 concludes and suggests directions for future work.

2 Algorithms for Learning a Boolean Function with

Probes

The scan based attack turns the problem of reverse engineering of a circuit
to the problem of learning a stateless Boolean function. This section describes
the algorithms for learning the circuit’s combinational function F exposed by
the scan. We start with a formal definition of the circuit (see Fig.1) and a few
notations.

Definition 1. Let S be a digital circuit comprising a vector of inputs i = (i1, . . . , ia) ∈
{0, 1}a, a vector of outputs o = (o1, . . . , ob) ∈ {0, 1}b, a state register r =
(r1, . . . , rn) ∈ {0, 1}n, a clock input ck ∈ {0, 1} and a collection of combi-
national gates that implement the next state and output function F such that
(r ‖ o)next ck cycle = F (r ‖ i).

Notations:
literal a variable with or without inversion. A literal is negative if it is inverted

and is positive otherwise
term product of literals
implicant of function F : a term, which implies F=1
relevant or irredundant literal with respect to a function F is a literal that

corresponds to a variable that affects the value of F . Otherwise, the literal
is redundant

cover: term ḿ is a cover of term m if m can be obtained by removing literals
from ḿ

mapping: A binary vector v maps to a term m by mapping bits in v equal to
1 to positive literals and bits equal to 0 to negative literals in m

The scan insertion algorithm arranges the bits of the state register r in c
scan chains accessible from the circuit interface. An additional shiftmode input
signal switches the circuit operation from regular to scan shift mode. For brevity,
we omit here the description of the additional logic controlling the scan chains,
and assume immediate access to the circuit state register r. However, for the
sake of computing the time complexity, we keep in mind that it takes 2n/c+1
clock cycles to perform the Probe operation, consisting of one cycle for Capture
and n cycles for each of ShiftIn and ShiftOut operations. We also assume that
c is constant and for large n: c≪n. A probe operation Probe(S, v) over circuit
S is defined as the following sequence:

1: r ‖ i := v ⊲ Set registers and inputs state to v
2: on−1 := o ⊲ Sample outputs of S



V

3: Capture
4: return r‖on−1 ⊲ New register values and outputs

Further in this section, we present five algorithms for learning the circuit S us-
ing Probe operations. The two most important of them are ISoTT and JSoTT ,
while the remaining three are provided to ease the explanation. The ESoTT
algorithm is a simple exhaustive search that we use as a baseline for the algo-
rithms evaluation. The KSoTT algorithm leverages the limited transitive fan-in
property of the combinational logic cones for reducing the learning complexity.
CSoTT is an improved version of KSoTT that adds on-the-fly minimization
for reduction of memory space requirements. The KSoTT and CSoTT make
gradual introduction to the heuristic ISoTT algorithm. Finally, the algorithm
JSoTT implements the adaptive junta learning known from the computational
learning field [7, 17].

2.1 Algorithm ESoTT (Exhaustive Search over Truth Table)

The ESoTT algorithm realizes the brute-force approach by doing an ehaustive
search over all possible input values.

1: procedure ESoTT(S from Definition 1)
2: for v from 0 to 2n+a-1 do
3: TT [v] := Probe(S,v)
4: end for
5: end procedure

The array TT contains the truth table of the function F at the end of the
algorithm execution. This directly follows from the definitions of the circuit and
the algorithm. The time complexity of ESoTT is proportional to the number
of steps1 multiplied by the length of the scan chains; and the space it takes is
proportional to the size of the array:

TESoTT = O[(2n/c+ 1) · 2n+a] (1)

SESoTT = O[(n+ b) · 2n+a] (2)

Note that we obtain the time complexity by counting the probe operations.
The probes are ’expensive’, since their runtime depends on n. Moreover, they
must run serially. The processing, in contrast, can run in parallel to probes, and
also can be parallelized. Hence, the number of probes determines the algorithm
time complexity.

2.2 Algorithm KSoTT (K-bounded Search over Truth Table)

The KSoTT algorithm leverages the limited dependency property. Consider a
subset BK of the functions in B, where every bit in the output vector depends

1 Cumulative number of register and input bits determines the search space for func-
tion F . Below, we will use the notations: N = n+ a and No = n+ b. Also, typically
a, b ≪ n, resulting N,No ≈ n



VI

on a limited number of input bits. Namely, for any j, 0 ≤ j ≤ n + b output bit
yj = f(G) where G is a subset of bits in the input vector such that |G| ≤ Kmax.
In this case, it is sufficient to examine the function with a set of input vectors that
covers all value combinations of all subgroups G s.t. |G| ≤ Kmax. As a trivial
example, when Kmax = 1, the function can be learned using input vectors, in
which only one bit is set with the addition of the 0 vector. More generally, to
reconstruct a function in BK , it is sufficient to test it with a group of vectors with
hamming weight (number of bits equal to 1) of up to Kmax. Below we describe
the algorithm KSoTT that implements this learning, followed by a formal proof.

1: procedure KSoTT Learn(S from Definition 1)
2: F0 := Probe(S,0)
3: for all v ∈ {0, 1}N s.t. HW (v) ∈ (1, . . . ,Kmax) do
4: P := Probe(S,v)⊕ F0

5: for all i s.t. Pi = 1 do
6: Record tuple < v, i >∈ TT
7: end for
8: end for
9: end procedure

10: procedure Post Process ⊲ Eliminate redundant literals
11: for i from 1 to n+ b and j from 1 to N do
12: if ∀v s.t. < v, i >∈ TT : < (v \ vj) ∪ ¬vj , i >∈ TT then
13: remove literal vj from all tuples < v, i >
14: end if
15: end for
16: for all < v, i >∈ TT s.t. HW (v) = Kmax do
17: remove all negative literals from v
18: end for
19: end procedure

Theorem 2. If the circuit S implements F ∈ BK (see Definition 1), at the end
of KSoTT execution, table TT will contain all and only implicants of all the
output bits in the function F ⊕ F0, which is sufficient for full reconstruction of
the function F .

Proof. First, we prove the correctness of the algorithm for a function F , for
which F (0) = 0. Let f be a hypothesis function for F resulting from the table
TT . The algorithm is correct if fi(v) = Fi(v) for every input vector v ∈ {0, 1}N

and every output bit 1≤ i ≤ n+ b.

Case 1: Hamming weight of v is Kmax or smaller. By definition of the algo-
rithm, after stage 1 TT will contain tuple < v, i > iff Fi(v) = 1. Now, we
prove that stage 2 of the algorithm removes only redundant literals. Assume
by contradiction that stage 2 removes some irredundant literal uj . Literal uj

being irredundant implies that there exists a vector u with hamming weight of
Kmax or smaller, for which fi(u)=1 and f((u \ uj)∪¬uj)=0. This contradicts
the condition of the reduction; therefore uj will not be removed in stage 2a. If



VII

uj is removed in stage 2b, then vector u contains at most Kmax-1 irredundant
positive literals. Consequently, vector u contains at least one redundant positive
literal. We reached contradiction, because, as it will be proved in the next clause,
all redundant positive literals are removed in stage 2a. We proved that stage 2,
which comprises stages 2a and 2b does not remove irredundant literals.

Case 2: Hamming weight of v is greater than Kmax. For function in BK , there
are at most Kmax irredundant bits in v. Define v́ as:

v́ = (v́1, . . . , v́N ) ∈ {0, 1}N | v́j =

{

vj , vj irredundant

0, otherwise

Hamming weight of v́ is at most Kmax, hence, as demonstrated in the previous
clause, after stage 1: f(v́)=F (v́)=F (v). Now, we prove that stage 2 removes
all the redundant literals. Assume by contradiction that stage 2 leaves some
redundant literal uj . Literal uj being redundant implies that for any vector u:
fi(u)=1 iff fi(ú=(u \ uj)∪¬uj)=1. If hamming weight of u is less than Kmax or
if uj=1, hamming weight of ú is less or equal than Kmax. Hence, both < u, i >
and < ú, i > will either appear or not in the table TT , which means that literal
uj will be removed in stage 2a. If hamming weight of u is equal to Kmax and
uj=0, uj will be removed in stage 2b. We reached contradiction.

Finally, we prove the correctness of the algorithm for any function F . Let
F 0=F ⊕ F (0) → F 0(0) = 0. Let f0 be a hypothesis function for F 0. We have
F = F 0 ⊕ F (0) = f0 ⊕ F (0). ⊓⊔

Time Complexity Number of probes in KSoTT is equal to the number of

elements in {0, 1}N with hamming weight of Kmax or smaller, that is
Kmax
∑

i=0

(Ni ) ≤

1 +NKmax . Hence, the bound for the time complexity of the algorithm can be
written as:

TKSoTT = O[(2n/c+ 1) · (1 +NKmax)] (3)

Space Complexity The size of the table TT at the end of stage 1 defines
the space requirement of the algorithm. TT can be stored in the form of a sparse
matrix, such that for every entry only bits equal to 1 in v are stored. In the
worst case from the space perspective, every output depends on one input bit
only. Hence, the bound for space is:

SKSoTT = O[Kmax ·N · (1 +NKmax−1)] (4)

At the end of the execution, the KSoTT algorithm yields a correct and
compact Disjunctive Normal Form (DNF) circuit representation, if followed by
an additional minimization step at the end. However, larger memory space is
required for the intermediate results, that is the table TT after the first stage
(4).



VIII

2.3 Algorithm CSoTT (Compact K-Search over Truth Table)

The CSoTT solves the KSoTT space complexity problem by reduction of re-
dundant literals and partial minimization during the runtime. This algorithm
iteratively probes the function F with vectors v, starting with hamming weight
HW=0 and going up to Kmax. If bit i of the probe result is equal to 1, the
Onset table is updated with a new implicant candidate, unless a cover of the
corresponding term already exists in the table. If the bit is 0, but the Onset
table includes an implicant candidate t, which is a cover of v, then t is removed
from the table. Instead, Onset is updated with all the terms covered by t, all
literals of which match bits in v equal to 1, excluding v itself.

1: procedure CSoTT Learn(S from Definition 1)
2: F0 := Probe(S,0)
3: Onset[i] = ∅ for all i from 1 to n+b
4: for K from 1 to Kmax do
5: for all v ∈ {0, 1}N s.t. HW (v)=K do
6: P := Probe(S,v)⊕F0

7: T := ∧Tj s.t. vj=1 ⊲ compose term from positive literals that
correspond to bits in v equal to 1

8: for i from 1 to n+b do
9: if Pi=1 AND cover(T )/∈Onset[i] then

10: add(Onset[i],T )
11: else if Pi = 0 then
12: call updateOnset(T ,i)
13: end if
14: end for
15: end for
16: end for
17: end procedure
18: procedure updateOnset(T ,i)
19: for all t ∈Onset[i]=cover(T ) do
20: for all t̂=cover(v) s.t. t=cover(t̂) do
21: tinv := ∧¬tn for n s.t. tn=1 AND tn /∈ t̂
22: t̃ := t̂ ‖ tinv
23: add(Onset[i],t̃)
24: end for
25: end for
26: remove(Onset[i],t)
27: end procedure

The algorithm’s iterative operation can be demonstrated using Karnaugh
maps. Figure 2 shows the algorithm stages for an example single-bit function
F (a, b, c, d) = (a∧¬(b∧ c))∨ c ∧ d. At stage 1 (Hamming Weight = 1), the only
recorded implicant candidate is a. At stage 2 (Hamming Weight = 2) the impli-
cant c ∧ d is added At stage 3 (Hamming Weight = 3), the implicant candidate
a is found bogus, since the probe operation on a vector {a, b, c, d} = 1110 yields
a result of 0. Thus, it is replaced with higher order terms as shown in the cor-



IX

 

ab  cd 00 01 11 10 

00 0 0 0 0 

01 0 0 0 0 

11 1 1 1 1 

10 1 1 1 1 

 

ab  cd 00 01 11 10 

00 0 0 1 0 

01 0 0 1 0 

11 1 1 1 1 

10 1 1 1 1 

 

ab  cd 00 01 11 10 

00 0 0 1 0 

01 0 0 1 0 

11 1 1 1 0 

10 1 1 1 1 

 

Stage 1: 
f = a 
  
  
  
  
Stage 2: 
f = a ∨ c∧d 
  
  
  
  
Stage 3: 
f = a∧b∧¬c ∨ a∧¬b∧c ∨ a∧¬b∧¬c ∨ c∧d = 
= (a ∧ ¬(b∧c) ∨ c∧d 
  

Fig. 2. CSoTT algorithm stages with their respective Karnaugh maps

responding Karnaugh map in the figure. At the end of the algorithm execution,
the Onset table contains a DNF (Disjunctive Normal Form) representation of
the function F . Note that minimal DNF is not guaranteed in every case, however
compactness is provided heuristically.

CSoTT Time and Space Complexity The time complexity of the CSoTT
is equal to the one of the KSoTT algorithm (3). The space required for CSoTT
is bounded by the worst case size of a DNF representation of a function with
Kmax variables.

SCSoTT = O[No ·Kmax · 2Kmax−1] (5)

In practice, the memory space for CSoTT is approximately the size of the
minimal DNF representation of F . Both space and time of the algorithm grow
exponentially with Kmax.

In the domain of digital circuits, Kmax represents the transitive fan-in of
the combinational logic cones that end in sequential elements or outputs of the
circuit. Fig.3 shows a histogram of transitive fan-ins of flip-flops and outputs of
the circuits from the ITC99 benchmark [3] set. Clearly, due to the exponential
growth, Kmax of a typical circuit is too high for the algorithm to be practical.
Lower K can be selected for partial reconstruction of the function F . For exam-
ple, in approximately half of the cases from the ITC’99 statistics, the transitive
fan-in is smaller than 50, and for 25% of them it is below 32. This partial in-
formation may provide an adversary with sufficient information to carry out the



X

0 50 100 150 200 250 300
0

200

400

Fan In

N
u

m
b

e
r 

o
f 

re
g

is
te

rs
 a

n
d

 o
u

tp
u

ts

0 50 100 150 200 250 300
0

25

50

75

100

C
u

m
u

la
ti
v
e

 P
e

rc
e

n
ta

g
e

Fig. 3. Transitive fan-in histogram for ITC’99 benchmark circuits

attack. We define a metric δk, circuit reconstruction accuracy, as a ratio between
the number of correctly reconstructed bits and the total number of bits.

2.4 Algorithm ISoTT (Incremental CSoTT)

The ISoTT is a speculative algorithm that invokes CSoTT a number of times
with different Hamming Weight, setting some bits of the input vector to constant
values based on previously learned results. In this way it leverages the presence
of subcircuits, which are shared between a number of logic cones. Large digi-
tal circuits comprise hierarchical levels, which combine parts of the circuit into
’dense’ structures, in which the same sub-circuit may belong to a number of
logical cones. One example of this phenomenon is the carry propagation logic
in arithmetic circuits. In this case, implicants with K variables can be obtained
by extension of the CSoTT algorithm from implicant candidates with hamming
weight K −Kstep, where Kstep is some constant. Below, we define the ISoTT ,
incremental CSoTT algorithm that takes advantage of this property:

1: procedure ISoTT(S from Definition 1)
2: Pick Kinit, Kstep

3: K := Kinit

4: Run CSoTT(Kmax=K) on S
5: do
6: for all m ∈Onset s.t. HW(m)=Kinit do
7: for all j s.t. mj ∈ m: set vj to constant 1;
8: Run CSoTT(Kmax=K) on the remaining bits of v



XI

9: end for
10: K := Kmax + Kstep

11: while there is a change in Onset
12: end procedure

ISoTT implements a greedy best-first search method. At every step of the
algorithm, CSoTT is called as many times as the number of implicants with the
maximum Hamming Weight in the table. The worst case runtime of ISoTT is
equal to the runtime of CSoTT (Kmax=Kinit). For a more general case, we can
write the time complexity of the single algorithm step as:

TISoTT ≤ O[SISoTT (step−1) · TCSoTT (Kmax = Kstep)] (6)

From (6), the ISoTT ’s performance depends on the structure of the circuit
and on the size of the minimal DNF representation of the circuit. For some
examples, such as the arithmetic circuits, ISoTT achieves full reconstruction of
the circuit.

2.5 Algorithm JSoTT (Junta based Search over Truth Table)

The JSoTT is a randomized algorithm that also exploits the limited transitive
fan-in property. In computational learning theory, a function f : {0, 1}n→{0, 1}
is called a k-junta for k ∈ x if it depends on at most k of its input coordinates;
i.e., f(x) = g(xi1 , · · · , xik) for some g: {0, 1}n→{0, 1} and i1, · · · , ik ∈ [n] [19].
Hence, algorithms for learning junta functions from queries can be leveraged for
reconstructing combinational circuits (or logic cones) with a limited transitive
fan-in. We take the adaptive algorithm from [6]. The algorithm runs separately
for every output bit and comprises two stages: finding dependencies and function
discovery. At the first stage, a set of probes with random inputs is prepared.
The results of the probes are used to find input bits that influence the output
(Relevant Variables or RV) with a binary search-alike method. At the second
stage, a logical function is discovered by checking all the value combinations of
the variables relevant to this output bit.

1: procedure JSoTT Find RVs(S from Definition 1)
2: F0 := Probe(S,0)
3: RVs[i] = ∅ for all i from 1 to n+b
4: repeat
5: v := random(1,. . . ,2N -1)
6: P := Probe(S,v)⊕F0

7: add(Probes, 〈v,P 〉)
8: until done Kmax · 2Kmax times
9: for i from 1 to n+b do

10: for all 〈v, P 〉 in Probes do
11: v̂ := {v̂1, . . . , v̂N}|v̂j = (vj ∈RVs[i]) ? vj : 0

12: P̂ := Probe(S,v̂)⊕F0

13: if Pi 6= P̂i then



XII

14: find next RV by binary search on v keeping all vj ∈ RV s[i]
fixed2

15: add(RVs9i), RV)
16: end if
17: end for
18: end for
19: end procedure
20: procedure JSoTT Find function

21: Call CSoTT3 for output bit i with input composed from bits in RVs[i]
and Kmax = |RV s[i]|

22: end procedure

JSoTT Runtime and Space Complexity. From [6] time complexity of
JSoTT can be written as:

TJSoTT ≤ O[Kmax · 2Kmax · logNo +No · logNo +No · 2
Kmax ] (7)

The algorithm’s time complexity dependency on n is superlinear at most,
which means JSoTT scales well with the circuit size. Hence, JSoTT is advan-
tageous versus ISoTT for large circuits. However, JSoTT lacks the heuristic
component, hence ISoTT is still preferable for certain circuit types. The algo-
rithm’s space complexity is similar to the CSoTT ’s (5).

3 Experimental Results

We used a software simulator to evaluate the effectiveness of the algorithms from
Section 2. The simulator works at the algorithmic level. It models the circuit
under test with a Probe function, abstracting away from the underlying scan
based sequence that implements the Probe. But first we checked the correctness
of the scan based implementation of Probe, with the Validation of Concept
experiment.

3.1 Validation of Concept

For this experiment, we used a simple incrementor circuit S. The circuit de-
scription was written in Verilog HDL and synthesized into gate level, followed
by scan insertion. On the resulting gate level with scan we ran the ESoTT al-
gorithm using Verilog behavioral simulator. Note that the algorithm execution
was preceded by a learning of the length of the scan chain by shifting in a pat-
tern to the scan input and counting number of cycles until it was observed at
the scan output. The reconstructed circuit S′ (Fig.4) comprises (1) a register R

2 During the binary search, the vector v is recursively halved and one of the halves
filled with 0s until a single variable that makes the difference between Pi and P̂i is
found

3 In number of probes, it is equal to running exhaustive search. However, we invoke
CSoTT to get a compact function representation.



XIII

 

Scan Insertion 

+ ESoTT Logic 

Logic 

TT Lookup table  
 

Original Circuit S Reconstructed Circuit S’ 

R 

Fig. 4. Validation of Concept Circuit Diagram

comprising all n flip-flops found along the scan chain, and (2) a combinational
function (represented by a truth table) that covers all value combinations of the
n flip-flops. Finally, we confirmed the equivalence of the reconstructed circuit
S’ to the original circuit S using a formal logic equivalence tool. The remain-
der of this section presents results obtained from the software simulator, which
uses the Probe abstraction and assumes correctness of its underlying scan based
implementation.

3.2 Methodology

For additional experiments, we built a software simulator that models the func-
tionality of digital circuits under test with a Probe operation: an operation that
represents the circuit’s next state function F according to Definition 1. The sim-
ulator also implements the algorithms defined in Section 2. The output of the
algorithm, the circuit hypothesis function f , is further matched against the orig-
inal circuit function F . The simulator performs the matching by comparing the
outputs of the functions F and f for all possible inputs. If the circuit is too large
for checking all the values, the simulator performs the matching using statistical
method with a sufficiently large sample set of randomly selected inputs.

Both the ESoTT and the KSoTT algorithms require deterministic time
and space, thus, they can be calculated. Therefore, in the graphs we present
analytical data for these algorithms. For the CSoTT and ISoTT , we present
the simulation results. Also, in the case of ISoTT , we perform a series of runs
with different Kinit and Kstep parameters, and then select the best results for
constructing the graphs. As a criterion for evaluation, we define use the metric
δK , circuit reconstruction accuracy, as a ratio between the number of correctly
reconstructed bits and the total number of bits. Note that we use the number of
probes as a measure of time. See ?? for details.



XIV

3.3 Arithmetic and Datapath Elements

At first, we evaluate the algorithms when applied to the common building blocks
of the digital circuits. We start with the arithmetic circuits and measure the
runtime and space required to achieve a full reconstruction of an adder circuit
(δK=1). On one hand, the arithmetic circuits are characterized by tight depen-
dency, which makes the limited fan-in optimization non-efficient. On the other
hand, their regular and recursive structure is a useful property for the incremen-
tal ISoTT algorithm. Indeed, as shown in Fig.5, ISoTT is the most efficient for
the adder. Note that the ISoTT and JSoTT have the same space requirements
as the CSoTT .

The adder implements a single function, where the limited fan-in approach
has little advantage; thus, all the algorithms still run in exponential time. We
expect to see the speedup with hierarchical structures with loose dependencies
between their sub-structures. As an example, we took a pipelined accumulator
circuit. It is built of pipeline stages, each of them merely adds the result of the
previous stage to the input vector. When unfolded to a combinational structure,
it turns to a set of adders in a parallel construction. Here, Kmax is derived from
the size of the single adder and does not depend on the number of pipeline stages.
Therefore, we observe polynomial growth of space and runtime in Fig.5

Next, we evaluate our algorithms with a multiplexer, which is a typical el-
ement of datapath structures. For example, unfolding a register file with scan

10 20 30 40 50
10

0

10
5

10
10

10
15

P
ro

b
e
s

Adder

 

 

ESoTT
JSoTT
ISoTT

10 20 30 40 50
10

0

10
5

10
10

10
15

N

S
p
a
c
e

 

 

ESoTT

JSoTT/ISoTT

10 20 30 40 50

10
5

10
10

Pipelined Accumulator

 

 

ESoTT
JSoTT
ISoTT

10 20 30 40 50

10
5

10
10

N (~Width*Depth)

 

 

ESoTT

JSoTT/ISoTT

Fig. 5. Algorithm Results with Arithmetic Circuits



XV

0 50 100 150 200

10
10

10
20

P
ro

b
e
s

By bus width

 

 

ESoTT
JSoTT
ISoTT

0 50 100 150 200

10
10

10
20

N

S
p
a
c
e

 

 

ESoTT

ISoTT/JSoTT

0 10 20 30 40

10
5

10
10

By mux rank

 

 

ESoTT
JSoTT
ISoTT

0 10 20 30 40

10
5

10
10

N

 

 

ESoTT

JSoTT/ISoTT

Fig. 6. Algorithm Results with a Multiplexer

results in a structure resembling a multiplexer. The size of the input vector to the
multiplexer with bus width W and rank (number of input busses) R is N=R·W .
However, every output bit depends on only R+log2R bits, namely Kmax does
not depend on the bus width. This makes the algorithms, leveraging the lim-
ited fan-in, particularly efficient for wide datapath structures. Fig.6 illustrates
this phenomenon. Interestingly, ISoTT performs better for all the arithmetic
circuits and even for multiplexer circuits with high rank, in spite of the fact that
JSoTT has lower theoretical complexity, Two explanation to these phenomena.
First is the heuristics of the ISoTT . Second, if for JSoTT Kmax represents the
upper bound on the transitive fan-in of combinational circuits, for ISoTT it is
enough to use the maximum implicant size as Kmax. In this sense, ISoTT can
be regarded as a DNF formulae learning algorithm [2].

3.4 AES Accelerator

In previous section we observed the ISoTT ’s superior performance with regular
and structured circuits. Naturally, the more structure (or less entropy) is present
in the circuit, the better ISoTT can exploit it. Alternatively, JSoTT fits better
to circuits having high entropy. Such circuits are characterized by the avalanche
effect that eases exploration of influences. We took the tiny AES core from the
Open Cores repository [11] as an ultimate example of a high-entropy circuit. This
is a highly pipelined implementation of the AES encryption/decryption, which



XVI

contains 6848 internal registers. The maximum transitive fan-in of the circuit
is 8. Nevertheless, thanks to the avalanche effect, Kmax as low as 4 appears
suffices for detecting all the influences. Hence, JSoTT learns the AES circuit
precisely and with little effort, despite its formidable size, see Table 1. The
parameter δK denotes a circuit reconstruction accuracy, defined as a percentage
of the correctly reconstructed bits from the output vector. Note that due to the
algorithm’s random nature, results differ slightly between algorithm invocations.

Table 1. AES Circuit Reconstruction

Selected Kmax Accuracy (δK) Number of probes

2 44% 389109

3 93% 1251169

4 100% 1594819

The interesting observation from the results of this experiment is that cryp-
tographic functions that are considered complex may actually present an easy
target for the reverse engineering attack. How easy it is, depends on the im-
plementation. Additionally, thanks to the scalability of JSoTT , the size of the
circuit is less important, and what matters is its structure. For example, deeper
pipeline is expected to increase the chance of successful reverse engineering at-
tack thanks to the finer partitioning of the logic.

4 Related Work

Several works discuss non-invasive methods for reverse engineering. Kash et al.
[12] proposes an optical method for monitoring switching activity of different
locations in the circuit under test. Further, this information can be compared
against reference models for partial extraction of the circuit functionality. This
method requires prior knowledge of the circuit and access to test patterns. A
number of works [1, 14, 16, 22, 24] present various techniques addressing phase
two of the reverse engineering process, behavioral model extraction. Our work
focuses on the first phase, netlist extraction.

Saab et al [21] were the first to propose using the scan for extraction of func-
tionality of a digital integrated circuit. They present a randomized algorithm for
finding dependencies between registers and evaluate it with a few small bench-
marks and an AES function. In this paper, we add the discovery phase and pro-
vide a systematic learning method adding discussion of algorithms’ complexity
and scalability metrics. We also propose a heuristic algorithm tuned for certain
types of circuits, such as arithmetic circuits.

A number of papers propose countermeasures against the scan base side chan-
nel attack. Da Rolt et al. [4] present their comprehensive classification, which
divides the countermeasures to the following groups: Advanced DFT Structures,



XVII

BIST, Secure Wrappers, Unbounding, Scrambling, Access Restrictions, Secret-
Free Test, Modified Scan Chain and Countermeasures against Microprobing.
Below we use Da Rolt’s classification to show that some of the countermeasures
are ineffective against the scan based reverse engineering attack. For example,
Da Rolt shows that the Advanced DFT Structure is insecure against scan side
channel attack in general. Another countermeasure, the BIST (Built-in Self-Test)
structure resists any scan based attack, including ours, by disabling external ac-
cess to the scan chains. For this, BIST should not provide any bypass modes,
which complicates debug and field failure diagnostic. In addition, fault coverage
of BIST is typically insufficient. Hence, pure BIST solutions are rarely selected
by vendors. The scrambling and modified scan chain types present an additional
countermeasure, but they are inefficient against the reverse engineering attack.
The reason is that the reverse engineering is still possible in the presence of the
aforementioned structures, but the output of the reverse engineering process will
include both the functional and the protection circuits. At the next stage, the
adversary can separate between the two. Finally, the Secret-free Test solution
prevents volatile secret data from being exposed. However, it doesn’t prevent
reverse engineering of the design data. Solutions of the types Access Restriction
and Secure Wrapper prevent unauthorized access to scan chains. Therefore, they
are also efficient against reverse engineering. Nevertheless, combined attacks are
still possible. These attacks may target the authorization mechanism at the first
step, for example using DPA [23]. Often, such mechanisms use global secrets;
hence, it is sufficient to hack a single unit for gaining access to all the other units
of the same product.

Previous work usually relies on the circuit ability to switch dynamically from
mission mode to scan mode and back for retrieving runtime information. As a
result, one of the popular countermeasures against scan-based attacks is enforc-
ing reset when switching between the modes [9]. The reverse engineering attack
retrieves static design information from the scan chains, and therefore is immune
to this countermeasure.

5 Conclusions and Future Work

This paper presents new methods of the scan based side channel attack, an at-
tack that allows for the non-invasive reverse engineering of entire device at a
logical netlist level. The methods take into advantage the limited transitive fan-
in property for efficient learning. This leads to a novel heuristic that enables
full reconstruction of some circuits in a polynomial time. By using an algorithm
that employs junta learning, we successfully reconstructed a hardware imple-
mentation of the AES cryptographic function. Hence, our experimental results
show that exploitation of the scan side channel for reverse engineering is a real
threat, which can give the adversary full or partial information on the circuit
functionality. Even partial information may reveal sufficient data to serve the
malicious purposes. The presented attack is also immune to some of the popular
countermeasure techniques.



XVIII

An important contribution of this paper is in demonstrating the feasibil-
ity of a non-invasive reverse engineering attack using heuristic algorithms that
exploit common properties of digital circuits. Our future work will focus on ex-
amining algorithms that provide higher efficiency or that are tuned for specific
circuit types. The scalability of JSoTT makes the presented method potentially
applicable also to large scale SoC devices. Combining JSoTT with algorithms
that exploit additional heuristics (such as ISoTT ) can target complex logic. Al-
gorithms from the fields of learning automata, probabilistic learning, machine
learning and SAT based algorithms are good candidates for this purpose. Differ-
ent algorithms may match different types of circuits. A case of special interest
is when some part of the circuit is known a priori. Here, the reverse engineer-
ing technique may help in detecting hardware Trojans or accidentally inserted
back-doors.

In the domain of the scan usage, there is a number of questions that call
for continued research for addressing modern complex SoC devices. When the
device does not fully comply with the definition of fully synchronous single clock
digital synchronous design, additional steps are required. For example, when
part of the design is asynchronous or there are several clock domains or non-
standard cell based sections present, such as memories, analog circuits or non-
scannable logic. In a typical scan insertion flow, such parts are masked with a
special scan logic. Scan chains, where some of the registers are inverted represent
an additional problem to be solved. In addition, an effect of scan compression
should be examined. According to [5] and [8], the existing scan compression
techniques have limited contribution to security. However, their effect on the
success of reverse engineering is a separate research question.

Finally, protection techniques from the reverse engineering with scan should
be explored. Previous work suggests a number of techniques for general pro-
tection from the scan side channel attacks, such as encryption, authentication
and obfuscation. Some of them apply to this type of attack as well. Protection
techniques optimized for the reverse engineering attack, such as obfuscation of
the combinational functions, which preserves automatic test capability, present
an additional interesting extension to the research.

References

1. Bouchaour, H., Ouali, M., Lebbah, Y.: Towards a Method for VLSI Circuit Reverse
Engineering. In: Amine, A., Mohamed, O.A., Benatallah, B., Elberrichi, Z. (eds.)
CIIA. CEUR Workshop Proceedings, vol. 825. CEUR-WS.org (2011)

2. Bshouty, N.H., Jackson, J.C., Tamon, C.: More efficient PAC-learning of DNF
with membership queries under the uniform distribution. Journal of Computer
and System Sciences 68(1), 205–234 (feb 2004)

3. Corno, F., Reorda, M., Squillero, G.: RT-level ITC’99 benchmarks and first ATPG
results. IEEE Design & Test of Computers 17(3), 44–53 (2000)

4. Da Rolt, J., Das, A., Di Natale, G., Flottes, M.L., Rouzeyre, B., Verbauwhede, I.:
Test Versus Security: Past and Present. IEEE Transactions on Emerging Topics in
Computing 2(1), 50–62 (mar 2014)



XIX

5. Da Rolt, J., Di Natale, G., Flottes, M.L., Rouzeyre, B.: New security threats against
chips containing scan chain structures. 2011 IEEE International Symposium on
Hardware-Oriented Security and Trust pp. 110–110 (jun 2011)

6. Damaschke, P.: Adaptive Versus Nonadaptive Attribute-Efficient Learning. Ma-
chine Learning 41(2), 197–215 (2000)

7. Damaschke, P.: On parallel attribute-efficient learning. Journal of Computer and
System Sciences 67(1), 46–62 (aug 2003)

8. Das, A., Ege, B., Ghosh, S., Batina, L., Verbauwhede, I.: Security Analysis of
Industrial Test Compression Schemes. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 32(12), 1966–1977 (dec 2013)

9. Hely, D., Bancel, F., Flottes, M., Rouzeyre, B.: Test Control for Secure Scan De-
signs. European Test Symposium (ETS’05) pp. 190–195 (2005)

10. Hely, D., Rosenfeld, K., Karri, R.: Security challenges during VLSI test. In: IEEE
9th International New Circuits and systems conference. pp. 486–489. Ieee (jun
2011)

11. Hsing, H.: tiny aes IP project (2012), http://opencores.org/project,tiny aes
12. Kash, J., Tsang, J., Knebel, D.: Method and apparatus for reverse engineering

integrated circuits by monitoring optical emission (dec 2002)
13. Lee, J., Tehranipoor, M., Patel, C., Plusquellic, J.: Securing Designs against Scan-

Based Side-Channel Attacks. IEEE Transactions on Dependable and Secure Com-
puting 4(4), 325–336 (oct 2007)

14. Li, W., Wasson, Z., Seshia, S.A.: Reverse Engineering Circuits Using Behavioral
Pattern Mining. In: IEEE International Symposium on Hardware-Oriented Secu-
rity and Trust. pp. 83–88 (2012)

15. Lupanov, O.: On circuits of functional elements with delay. Probl. Kibern (23),
43–81 (1970)

16. McElvain, K.S.: Methods and apparatuses for automatic extraction of finite state
machines (2001)

17. Mossel, E., O’Donnell, R., Servedio, R.P.: Learning juntas. In: Proceedings of the
thirty-fifth ACM symposium on Theory of computing - STOC ’03. p. 206. ACM
Press, New York, New York, USA (jun 2003)

18. Nohl, K., Evans, D., Starbug, S., Plötz, H.: Reverse-engineering a cryptographic
RFID tag. In: USENIX Security,. pp. 185–193. USENIX Association (jul 2008)

19. O’Donnell, R.: Analysis of boolean functions. Cambridge University Press (2014)
20. Rolt, J.D., Di Natale, G., Flottes, M.L., Rouzeyre, B.: Thwarting Scan-Based At-

tacks on Secure-ICs With On-Chip Comparison. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 22(4), 947–951 (apr 2014)

21. Saab, D.G., Nagubadi, V., Kocan, F., Abraham, J.: Extraction based verification
method for off the shelf integrated circuits. In: 2009 1st Asia Symposium on Quality
Electronic Design. pp. 396–400. IEEE (jul 2009)

22. Shi, Y., Ting, C.W., Gwee, B.H., Ren, Y.: A highly efficient method for extracting
FSMs from flattened gate-level netlist. Proceedings of 2010 IEEE International
Symposium on Circuits and Systems pp. 2610–2613 (may 2010)

23. Skorobogatov, S., Woods, C.: Breakthrough silicon scanning discovers backdoor in
military chip. In: Prouff, E., Schaumont, P. (eds.) Cryptographic Hardware and
Embedded Systems CHES 2012. Lecture Notes in Computer Science, vol. 7428,
pp. 23–40. Springer Berlin Heidelberg, Berlin, Heidelberg (sep 2012)

24. Subramanyan, P., Tsiskaridze, N., Pasricha, K., Reisman, D., Susnea, A., Malik,
S.: Reverse Engineering Digital Circuits Using Functional Analysis. In: Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2013. pp. 1277–
1280. IEEE Conference Publications, New Jersey (2013)



XX

25. Torrance, R., James, D.: The State-of-the-Art in IC Reverse Engineering. In:
Clavier, C., Gaj, K. (eds.) Cryptographic Hardware and Embedded Systems -
CHES 2009. Lecture Notes in Computer Science, vol. 5747, pp. 363–381. Springer
Berlin Heidelberg, Berlin, Heidelberg (aug 2009)

26. Wegener, I.: The Complexity of Boolean Functions. John Wiley & Sons, Inc. (1987)


