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1 Introduction

The study of textures plays an important role in image understanding, processing and analysis.

The decomposition of textured images into their structured skeletons (the so-called cartoon com-

ponent) and textural components is advantageous in many research areas, including compression,

interpolation, classi�cation, characterization, to name a few (e.g. [1, 2, 3]).

Textures are loosely classi�ed into three groups: structured (regular) textures, irregular textures

and natural stochastic textures (NST) [4]. Regular textures are comprised of a repeated geomet-

ric pattern or a strictly periodic behaviour. NST, on the other hand, are characterised by their

statistical properties.

The statistical properties of textures contain information about �ne details that are often lost

and/or degraded during image acquisition, processing and communication. Algorithms that perform

successfully in processing of images containing a limited amount of texture, fail to produce satis-

factory results when applied on fully textured images [5]. This is due to the statistical properties

of textures, which render models suitable for processing of cartoon-type natural image to become

irrelevant to the processing of fully-textured images. Of special interest are the Natural Stochastic

Textures (NST). They depict statistical characteristics that are not encountered in highly structured

natural images or in structured textures [5, 6, 7, 8].

NST are considered to be realizations of random processes, since they exhibit certain properties,

such as scale-invariance (self-similarity), that are expressed via their statistical properties and not

their geometrical properties. In a structured texture, for instance, a line is a self-similar structure

in that it retains its shape across scales. In NST, however, a structured area will be similar to its

own subset in terms of its variance or functions of higher moments.

The main properties of NST are Gaussianity and statistical self-similarity [6, 7, 9]. Observing

that these properties characterise the fractional Brownian motion (fBm), we have previously pro-

posed the fBm as a model suitable for gray-level NST images and color NST images [10]. Some

NST, however, contain skeleton-type structures and cannot be fully characterised as realizations of

random processes. These structures, while being conceptually similar to edges in a cartoon-type or

a general natural image, are not well represented by natural image models. These properties can be

validated via the phase information characteristic of an image. Therefore, the Fourier phase should

also be incorporated into the NST processing scheme [11].

In this work we investigate the phase structure of textured images. We analyze basic structures
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in 1D and 2D signals, identify the magnitude and phase structure of anisotropic textures, and

propose a model for the phase of structured textures. We then present an anisotropic texture model

and show a non-local algorithm for image deblurring/deconvolution. To incorporate anisotropy

into an NST texture model, we propose a combined model for isotropic and anisotropic textures,

and show its application in image decomposition to its stochastic and structured ingredients. The

combined model can be used for image processing tasks such as deconvolution, super-resolution and

others.

2 Background

2.1 Magnitude and phase of NST

It is well-known that in a Fourier representation of images the phase plays an important role, much

more so than the magnitude [12]. This is mainly due to the fact that the phase plays a more

signi�cant role in the representation of contours, edges and other skeleton-type structures, that are

dominant factors in image visual assessment and in recognition. To create an edge in a 1D signal,

for instance, all harmonic functions composing the image need to be in the same phase, i.e. �phase-

locked�. A small deviation in the phase will a�ect the edge's coherence, thus distorting it severely

in terms of visual appearance.

A similar deviation in the magnitude, on the other hand, would alter the edge structure, but

since all frequencies will still be in phase, the edge will remain apparent. It is well-known that two

images with the same phase will look more similar to one another than two images with the same

magnitude [12, 13]. Further, since the characteristic spectrum of a natural image decreases with its

frequency, an image with a constant magnitude can be considered to be a high-passed version of

the image, enhancing edge-type features, important for shape recognition.

Whereas the phases of natural structured images has been investigated thoroughly, the phase of

stochastic textures is usually considered to be less important than its magnitude [14, 15], due to a

common assumption that textures can be represented using their autocorrelation, which corresponds

to Fourier magnitude [11]. Dividing textures into two classes, structured and stochastic, we indeed

observe that in a pure stochastic texture the phase is not important (Fig. 1).

However, textures cannot be completely classi�ed into these two classes; most of the textures

contain some stochastic content and some structured content, for which phase is a crucial ingredient.

Indeed, some studies exploit the phase in texture reconstruction [11] and synthesis [16].

2.2 Fractional Brownian motion

Fractal properties (scale invariance) are found in many natural images and phenomena [17]. The

fBm is a well-known fractal process, widely used in the context of analysis of natural images. It

is a self-similar Gaussian random process, which was introduced by Mandelbrot and Van-Ness as

3



(a) Isotropic texture (b) Asotropic texture

(c) Isotropic texture with
phase distortion

(d) Asotropic texture with
phase distortion

Figure 1: The importance of phase in textures, expressed via visual assessment of textures with dis-
torted phase: (1a) An isotropic stochastic texture. (1b) an asotropic texture, containing stochastic
as well as structured information. (1c) Result of phase distortion by means of i.i.d Gaussian noise
with σ = 1 (PSNR 14.9dB), applied to (1a). (1d) Result of the same degradation, applied to (1b)
(PSNR 18.1dB). We observe that despite the same noise variance applied to both images, the details
of the isotropic texture are retained due to its negligible dependency on the Fourier phase. The
asotropic texture, however, contains �ne structures and its details are therefore severely distorted
with application of the i.i.d Gaussian noise.
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a model suitable for natural images [18]. The fBm generalizes the well-known Brownian motion

in that the increments are stationary but not independent. It is de�ned, in one dimension, as a

Gaussian process with zero mean and the following autocorrelation function:

E {BH (t)BH (s)} =
σ2

2

(
‖t‖2H + ‖s‖2H − 2 ‖t− s‖2H

)
, (1)

where σ2 > 0 is a known variance, and H ∈ (0, 1) is the Hurst parameter that characterises the

regularity of the process. Lower values of H correspond to rougher signals, and higher values of

H correspond to smoother signals. Statistically, the process exhibits negative correlation between

samples (anti-persistence) forH ∈ (0, 0.5), and positive correlation between samples forH ∈ (0.5, 1).

For H = 0.5 the fBm degenerates to the standard Brownian motion.

This process exhibits two important properties, known to characterise natural images, in the

context of Mandelbrot's work on fractals [18]. The �rst one is long-range dependencies (LRD)

between samples, where for H ∈ (0.5, 1) the sum of the correlations of the increments diverges [19].

The second property of the fBm is its fractal (self-similarity) property:

BH (at)
d
= ‖a‖H BH (t) ,

for a > 0, where the equality is in distribution. This equality indicates that the sample distribution

across di�erent scales is varied only by a constant depending on the scale, a, and on H. These

two properties highlight the relevance of this process to natural textures, as the latter often exhibit

similarities between adjacent as well as distant pixels.

The fBm does not have a unique 2D extension [20]. In this study we choose the straightforward

manner in which the process indices in the de�nition of the covariance (1) are extended to 2D:

t→ (t1, t2) , s→ (s1, s2) .

The ‖·‖ operator is then the L2 norm of a point in 2D space. The 2D fBm is governed by a single

Hurst parameter and is, therefore, isotropic. We note that there are various extension of the fBm to

multi-fractal processes, in which the fractal dimension is varied in space or in frequency [21, 22, 23].

A useful process, derived from the fBm, is the fractional Gaussian noise (fGn), de�ned as the

�rst order di�erence of the fBm:

WH (t) = BH (t)−BH (t− 1) .

The fGn is a stationary process exhibiting asymptotical self-similarity, and it has the same memory

properties as the fBm w.r.t H: short-range dependence is exhibited for H ∈ (0, 0.5) and LRD is

exhibited for H ∈ (0.5, 1). In the case of H = 0.5, the fGn degenerates to white Gaussian noise (as

the increment of the Brownian motion).
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The two aforementioned processes, fBm and fGn, are useful in texture processing and analysis,

due to the fact that many process exhibit Gaussianity and self-similarity [9]. It can be shown that

the fBm is the only process (in 1D) to exhibit these two properties, considering only processes with

stationary increments. In this study we address fBm/fGn patches in a discrete framework, in which

the covariance is assumed to be the discrete covariance. We note that there are extended versions of

the discrete fBm [24]. The limited patch size raises the question of whether or not fractal behaviour

could be assessed using small patches; this is addressed in Sec. 2.3.

2.2.1 Karhunen-Loéve (KL) decomposition of fBm

An immediate representation of a discrete fBm/fGn signal, f , shall be f = Wx, where x is an

i.i.d Gaussian noise and WW T is the fBm/fGn covariance matrix. However, this method requires

the calculation of the square root of the covariance matrix and does not provide any insight as to

the stability of its inverse (as is required in likelihood functions used in this work). Therefore, we

present basic KL results that will be used in the following sections.

Let f (x, y) be an fBm/fGn image. Using the Karhunen-Loéve transform [25], f (x, y) can be

represented as the in�nite sum f (x, y)
d
=
∑∞

i=0 ξiψi (x, y), where {ξi} are uncorrelated standard

Gaussians, and ψi (x, y) are the eigenfunctions of the covariance of f (x, y). Since in all practical

cases we address discrete signals, we use the discrete formulation, in which f is a vectorized image

matrix. The eigenfunctions are then obtained by the solution of the following equation:

Rfψ
′
i = λiψ

′
i, (2)

where Rf is the covariance matrix of f , the vectorized version of f (x, y), and ψ′i is a vectorized

function. The solution to the complete set of ψ′i is then obtained from (2) as follows:

RfΨ = ΨΛ,

where Λ is a diagonal matrix with {λi} on its diagonal, and Ψ is a matrix whose columns are the

corresponding functions, ψ′i. Ψ and Λ can, therefore, be obtained by eigendecomposition of the

covariance matrix, Rf . The resulting columns of Ψ represent the spanning functions in decreasing

order of signal energy content, and f is obtained by the following sum:

f
d
=

K∑
i=1

ξi
√
λiψ

′
i, (3)

where {ξi} are uncorrelated standard normal variables. The summation (3) can be represented in

matrix form as follows:

f
d
= ΨΛ0.5ξ , Φξ, (4)
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where ξ =
(
ξ
1
, ..., ξ

K

)T
. We note that while ΦΦT is the fBm covariance, this case is di�erent than

obtaining any square root of a matrix, since the vectors in Φ are organized by descending order of

energy contribution of the signal. Further, the basis functions, Ψ, have known analytic expressions

only in the case of H = 0.5, in which the fBm coincides with the standard Brownian motion [26].

An implication of this decomposition, used in this study, is that if Rf is non-invertible, an inverse

matrix can, nevertheless, be obtained using almost all eigenvectors with minimal loss in �delity to

the true covariance matrix.

2.3 Fractal behaviour on discrete and limited supported patches

In many image processing applications a patch size of 3× 3 or 5× 5 is used for modeling purposes.

Considering the classical image model of smooth surfaces and edges, it is clear that one can detect

an edge even in these small patch sizes, as well as detect a smooth area. This is due to the very

high dimension endowed by 9 or 25 pixels with gray-level values in the range of [0, 255]. However,

in order to model fractal behaviour, the patch size should be larger. The fractal property of scale

invariance requires su�cient patch size in order to assess the variance in di�erent scales; for this

task, the sample size should be larger, as we show hereinafter. Nevertheless, we show that fractal

behaviour can indeed by estimated in moderately sized patches as used in this work and others.

Let {X (n) , 0 ≤ n < N} be a 1D-fBm de�ned on a discrete grid. X (n) is a discrete Gaussian

process and X (cn)
d
= cHX (n) for c ∈ N+. The process covariance is RX (n,m) = E {XnXm} =

σ2
(
n2H +m2H − |n−m|2H

)
.

Let Wτ (n) denote the τth order increment of fBm:

Wτ (n) , X (n+ τ)−X (n) .

Wτ (n) is stationary (due to the stationary increment property of fBm) and has the following

variance and covariance:

RWτ (n, n) = E
{

(Xn+τ −Xn)2
}

= E
{

(Xτ −X0)
2
}

(5)

= E
{
X2
τ

}
= RX (τ, τ) = σ2

(
τ2H + τ2H

)
= 2σ2τ2H (6)

RWτ (n, n+ k) = RWτ (0, k) = E {(Xτ −X0) (Xτ+k −Xk)} = E {Xτ (Xτ+k −Xk)} (7)

= RX (τ, τ + k)−RX (τ, k) (8)

= σ2
(
τ2H + |τ + k|2H − τ2H − k2H − |k|2H + |τ − k|2H

)
(9)

= σ2
(
|τ + k|2H + |τ − k|2H − 2 |k|2H

)
. (10)
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Therefore, V (τ), the log-variance/scale plot as a function of τ is:

V (τ) , log (RWτ (n, n)) = log
(
2σ2
)

+ 2H log τ, (11)

and can be used to estimate H. This stems from successful estimation of the increment variances,

RWτ (n, n), which converges to the true variance for high sample sizes. We would like to estimate

a minimal sample size, N , from which fractal behaviour can be detected. Considering an unknown

patch of size N = n × n, we would like to decide whether was generated by an i.i.d noise source

(WGN) or by fractal behaviour. We use i.i.d noise as a prototype to the simplest random texture

that might be confused with fBm in case of small sample size.

Performing an hypothesis testing scheme to obtain a threshold for rejection of the white noise

hypothesis requires knowledge of the probability of a suitable test statistic. In our case, a suitable

test statistic will be the variance of the increments; while the variance of the increments of fGn of

order τ is given by (6), the variance of the increments of i.i.d Gaussian noise, denoted by W g
τ , is

given by:

RW g
τ

(n, n+ k) = E {(Xτ+n −Xn) (Xτ+n+k −Xn+k)} (12)

= E {(Xτ −X0) (Xτ+k −Xk)} (13)

= RX (τ, τ + k)−RX (0, τ + k)−RX (τ, k) +RX (0, k) (14)

= RX (0, k)−RX (0, τ + k)−RX (0, k − τ) +RX (0, k) (15)

= σ2 (2δ (k)− δ (τ + k)− δ (τ − k)) , (16)

and

RW g
τ

(n, n) = 2σ2.

Therefore, the variance of the increments can serve as a suitable statistic for detecting fBm versus

white noise. Since both processes are Gaussian, this quantity is the simplest statistic to use, as the

fractal property cannot be assessed via �rst-order statistics.

A complete hypothesis testing scheme requires knowing the probability law of the test statistic.

In many cases, one uses approximations for the probability law for large number of samples. The

F-test, for instance, is a commonly used test in the case of regression coe�cient �tting [27]. In our

case, however, we would like to compare the two hypotheses in for a small number of samples, which

renders asymptotical approximations to be impractical. Further, we extract regression coe�cients

using a series of increment variances, that are inherently dependent even in the case of i.i.d noise

(16), and therefore the independence assumption is not valid here.

The sample size, N , a�ects the quality of estimating RWτ (n, n). We would, therefore, like to

use the sample variance R̂Wτ (n, n) as a test statistic, which is dependent on N . As the sample

variance is of a correlated Gaussian sequence (16), it does not have a known form [27]. Instead, we

8



0 10 20 30 40 50 60 70
n

0

2

4

6

8

(a)

0 10 20 30 40 50 60 70
n

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

M
S
E
(H

,Ĥ
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Figure 2: Assessing minimal patch size for fractal behaviour. (2a) The variance of the sample
variance: dashed lines indicate analytical results, markers and solid lines depict means and standard
deviations of experiments of various sample sizes. The variances of the sample variance of fBm
increments with H = 0.5 (depicted in thin blue lines) are compared with the same statistical
function of i.i.d noise sequences (depicted in thick black lines). We observe that a patches of size
smaller than 10× 10 are not su�cient for distinction between white noise and fractal images. (2b)
An Hurst parameter estimation experiment, further indicating that a sample size of less than 10×10
is insu�cient for satisfactory estimation.

evaluate only the variance of the sample variance for a general correlated sequence (Appendix A).

Assuming σ2 is known, R̂W g
τ

(n, n), an estimator for RW g
τ

(n, n) has a mean 2σ2 and standard

deviation as given by (53), a function of the sample size, N . Comparing the variance for the sample

variance in the two cases of white noise versus fBm (Fig. (2a); solid lines depict the estimator

means and dashed lines indicate standard deviations), we observe that patch sizes commonly used

for natural images with lower dimensions than 8 × 8 are not enough to detect fractal behaviour,

whereas patch sizes of 16×16 and 32×32 are more probable to be di�erentiated from i.i.d noise (Fig.

3). We note, however, that this analysis refers to a local processing of patches, done independently

on other patches. To complement this experiment, H-estimation was performed for di�erent patch

sizes (Fig. 2b), indicating that a patch size of 16× 16 is su�cient for an MSE of less than 0.1.

3 Phase analysis for 1D and 2D signals

3.1 The phase of one-dimensional signals

In 1D signals, the geometric shapes considered are edges, rectangular windows, signals with linear

slopes (ramps), and noise. The former three types correspond to some coherence in terms of the

phase, whereas the latter corresponds to random phase. While the goal of phase analysis is 2D

images, in which there is true textural anisotropy, we consider this case in order to show some

9
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Figure 3: Example for various patch sizes and their fractal behaviour. Each column shows a
realization of white noise (�rst row), fBm with H = 0.5 (second row) and their increment log-
variance of order τ (third row), shown in dashed-blue and solid-red for the white noise and fBm,
respectively. The R2 values for the white noise were (in increasing patch size excluding the smallest
patch size) 0.68, 0.01, 0.56 and 0.34 and the R2 values for the fBm were 0.36, 0.18, 0.97 and 0.98.
High values of R2 are obtained for large patch sizes, whereas for small patch sizes the fractal surface
is visually and statistically indistinguishable from white noise.
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principal phase-based properties.

Let xe (t) be an edge de�ned on a limited support, −T < t < T , as follows:

xe (t) =


1, 0 < t < T

−1, −T < t ≤ 0

0, otherwise,

and let us calculate its phase:

x̂e (ω) =

ˆ T

−T
xe (t) e−jωtdt

=

ˆ T

−T
xe (t) cos (ωt) dt− j

ˆ T

−T
xe (t) sin (ωt) dt

= −2j

ˆ T

0
1 · sin (ωt) dt = 2j

[
1

ω
cos (ωt)

]T
0

= 2j
1

ω
(cos (ωT )− 1)

we obtain a purely imaginary Fourier transform, and therefore a constant phase, indicating that all

the frequency component are required to be in the same phase to create the edge. Let xr (t) denote

a rectangular centered window:

xr (t) =

1, −c < t < c

0, otherwise,

where c < T . A similar analysis yields:

x̂r (ω) =

ˆ T

−T
xr (t) e−jωtdt

=

ˆ T

−T
xr (t) cos (ωt) dt− j

ˆ T

−T
xr (t) sin (ωt) dt

=

ˆ c

−c
1 · cos (ωt) dt = 2

ˆ c

0
cos (ωt) dt

= 2
1

ω
(sin (ωc)− 1) .

The Fourier transform is purely real, indicating a constant phase in this case as well.

Let xs (t) denote a constant slope signal (a ramp):

xs (t) =

t, −T < t < T

0, otherwise,
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with the following Fourier transform:

x̂s (ω) =

ˆ T

−T
te−jωtdt

= −j
ˆ T

−T
t sin (ωt) dt.

While the calculation requires extra steps, we observe the same phenomenon. We can conclude by

showing that symmetry (including anti-symmetry) is a su�cient conditions for a constant phase.

The versions of edges or rectangular windows we discussed are all special cases of this statement:

let xq (t) be a symmetric (or anti-symmetric) signal with symmetric support, de�ned with the

parameter q = ±1 as follows:

xq (t) =

q · xq (−t) , −T < t < T

0, otherwise,

x̂q (ω), the Fourier transform of xq (t), is given by:

x̂q (ω) =

ˆ T

−T
xq (t) e−jωtdt

=

ˆ 0

−T
xq (t) e−jωtdt+

ˆ T

0
xq (t) e−jωtdt

=

ˆ T

0
xq (−t) ejωtdt+

ˆ T

0
xq (t) e−jωtdt

=

ˆ T

0
xq (t)

[
qejωt + e−jωt

]
dt

=

ˆ T

0
xq (t) [q cos (ωt) + qj sin (ωt) + cos (ωt)− j sin (ωt)] dt

=

ˆ T

0
xq (t) [cos (ωt) (q + 1) + j sin (ωt) (q − 1)] dt.

Since cos (ωt) (q + 1) + j sin (ωt) (q − 1) is either real or imaginary, we conclude that xq (t) has a

constant phase, either 0 or π.

Further, let y (t) = x (t+ t0) be a shifted version of any symmetric (or anti-symmetric) signal,

x (t). Without loss of generality, assume x (t) is symmetric and has, therefore, zero phase. Using

known Fourier transform properties, we have:

ŷ (ω) = ejωt0 x̂ (ω)

∠ŷ (ω) = ∠ejωt0 + ∠x̂ (ω) = ωt0.
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We observe that a shift of a symmetric signal causes a signi�cant change in the phase of the signal.

A shift is, in general, only a minor modi�cation that has little visual e�ect; consider, for instance, a

slightly shifted patch of an edge segment in an image. We see that the zero-phase property of edges

is not shift invariant. Further, the amount of shift, t0, also a�ects the phase structure.

As a conclusion from this analysis, let us consider the histograms of two signals, y (t) and z (t).

y (t) is a shifted symmetric signal, as de�ned earlier, and z (t) is a zero-mean, unit variance, white

Gaussian noise (WGN). The Fourier transform of z (t) is given by:

ẑ (ω) =

ˆ T

−T
z (t) e−jωtdt

=

ˆ ∞
−∞

z (t)h (t, ω) dt,

where

h (t, ω) = 1t∈[−T,T ]e
−jωt.

Since z (t) is WGN, passing through the linear system h (t, ω) yields a complex Gaussian signal.

Denote

ẑr (ω) = <ẑ (ω) =

ˆ T

−T
z (t) cos (ωt) dt

ẑi (ω) = =ẑ (ω) =

ˆ T

−T
z (t) sin (ωt) dt

we observe that

Cov{ẑr (ω) , ẑi (ω)} = E {ẑr (ω) ẑi (ω)}

= E
{´ T
−T z (t) cos (ωt) dt

´ T
−T z (t) sin (ωt) dt

}
= E

{´ T
−T
´ T
−T z (s) z (t) sin (ωs) cos (ωt) dsdt

}
=

ˆ T

−T

ˆ T

−T
δ (s− t) sin (ωs) cos (ωt) dsdt

=

ˆ T

−T
sin (ωt) cos (ωt) dt = 0,

and the two counterparts are, therefore, uncorrelated for each ω (since this is a Gaussian process,

they are also independent), and the marginal distributions have zero mean. We are interested in

the phase histogram. Let Az be a random variable de�ned as follows:

Az (ω) = arctan

(
ẑi (ω)

ẑr (ω)

)
.
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The ratio ẑi(ω)
ẑr(ω)

is a normal ratio. The variances of the two variables are di�erent, but there exist

some constant σ > 0 so that R = ẑi(ω)
ẑr(ω)

d
= σiX

σrY
, σZ where X,Y ∼ IN (0, 1). Therefore, Z ∼

Cauchy (0, 1), and R ∼ Cauchy
(

0, σiσr

)
. Explicitly,

σ2i (ω) = E

[ˆ T

−T
z (t) sin (ωt) dt

ˆ T

−T
z (s) sin (ωs) ds

]
− E [ẑi (ω)]

= E

[ˆ T

−T

ˆ T

−T
z (t) z (s) sin (ωt) sin (ωs) dtds

]
=

ˆ T

−T
sin (ωt)2 dt =

1

2

ˆ T

−T
1− cos (2ωt) dt

= T −
ˆ T

0
cos (2ωt) dt = T − 1

2ω
sin (2ωT )

σ2r (ω) =
1

2

ˆ T

−T
1 + cos (2ωt) dt = T +

1

2ω
sin (2ωT )

Therefore,

σ2 (ω) =
T − 1

2ω sin (2ωT )

T + 1
2ω sin (2ωT )

.

The cdf for R is:

FR (x) =
1

π
arctan

(
x

σ (ω)

)
+

1

2
.

A histogram bin Bj is de�ned as:

Bj =
∑
i

1Az(ωi)∈[bj−1,bj ],

where {b1, ..., bm} denote the bin limits of a histogram with m− 1 bins. The expected value of Bj

is given by:

E {Bj} =
∑
i

E
{
1Az(ωi)∈[bj−1,bj ]

}
(17)

=
∑
i

P {Az (ωi) ∈ [bj−1, bj ]} (18)

=
∑
i

P {R (ωi) ∈ [tan bj−1, tan bj ]} (19)

=
1

π

∑
i

[
arctan

(
tan bj
σ (ωi)

)
− arctan

(
tan bj−1
σ (ωi)

)]
. (20)
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Figure 4: E�ects of shifts on the phase histogram of edge signals. (4a) A symmetric edge (solid
black) and two shifted edges (dotted blue and dashed red), with signal length of 512 samples. (4b)
20-bin histograms of the phase of the depicted edges. Each edge signal's histogram is shown in the
same color as the edge signal. While a symmetric edge has an approximately zero phase response,
indicated by a peak in the zero bin, the shifted versions have signi�cantly varied histograms, more
distinctive of white noise.

To calculate the variance, �rst consider that for i 6= k, Az (ωi) and Az (ωj) are independent, as

functions of the independent variables ẑ (ωi) and ẑ (ωj), respectively, as follows from the properties

of the Fourier transform and Gaussianity. Therefore, the variance of Bj is the sum of variances of

each indicator can be represented using (20).

It can be con�rmed by a deterministic simulation that both the mean and variance of Bj are

approximately independent of j, the bin location. As a practical example for a 20-bin histogram,

consider a noise sequence, z (t), with T = 100, with frequency discretization to w = 1024 fre-

quency components. Applying the formulas above, we obtain σ2 (ω) ≈ 1 with sample standard

deviation (w.r.t ω) 32.9 × 10−5, E {Bj} ≈ 51.2 with sample standard deviation 18.7 × 10−5 and

Var (Bj) ≈ 48.64 with sample standard deviation 16.9 × 10−5. The sample standard deviations

decreases with the number of histogram bins, but we observe that a practical number of bins is

enough for approximate independence of the bin statistics to its location, j.

The conclusion from this derivation is the somewhat intuitive result that the phase histogram

of the noise signal, z (t), is approximately constant, indicative of a uniform distribution. On the

other hand, the phase histogram of the shifted symmetric signal, y (t), will also be approximately

constant, inasmuch as the phase is linear (modulo 2π). Therefore, the phase histogram cannot

distinguish even between these two simple cases (Fig. 4).

Another observation for the description of edges in terms of the statistical structure of their phase

is as follows. While the histogram of the phase itself is not enough to distinguish between z (t) and

y (t), the phase's spatial derivative will be provide important information; the derivative of the
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phase of z (t) will still be random with a uniform histogram, whereas the corresponding derivative

of y (t) will be constant in all places other than several discontinuous points caused by the modulo

operation. The spatial phase derivatives, may, therefore, serve as a tool for edge detection from

phase.

3.1.1 Magnitude and phase relationships

Let x (t) be a one-dimensional signal with its Fourier transform, x̂ (ω). In the case where x (t)

is an edge, we have an analytic expression for x̂ (ω), and the exact reconstruction of the edge

requires all Fourier coe�cients. However, in many practical cases, not all coe�cients are required

for satisfactory reconstruction of a signal. That is, the signal can be reconstructed via only a subset

of its coe�cients with negligible visual di�erence.

Assume the frequency indices {ωi} can be divided to two distinct subsets, {vi} and {ui}, in-
dicating �strong� and �weak� frequency coe�cients, respectively, so that {vi} ∪ {ui} = {ωi} and
{vi} ∩ {ui} = ∅. A method for partitioning {ωi} into these two subsets is based on a magnitude

threshold, t, so that ωi ∈ {vi} ⇐⇒ |x̂ (ωi)| > t, where t is chosen so that most of the signal's

energy is retained considering only the frequencies in {vi}.
Empirically, we observe that the phases of coe�cients from frequencies in {ui} tend to be

independent and uniform even if the signal itself has some structural information. Weak frequencies

in magnitude tend to have low energy, a property that can be evaluated easily. In the case of

phases, however, a weak coe�cient will tend to be exhibit no dependence with other coe�cients

and have uniform marginal distribution. A possible explanation for this phenomenon is as follows:

if |x̂ (ωk)| =
√
x̂2r (ωk) + x̂2i (ωk) is a small enough magnitude (where subscripts r and i indicate real

and imaginary parts, respectively), we have that

∠x̂ (ωi) = arctan

(
x̂i (ωk)

x̂r (ωk)

)
.

Since the argument of the arc-tangent is a quotient of two small coe�cients, there is very little

dependence in the true values and we obtain unstable, or unexpected, behaviour, which is observed

empirically as uniform distribution over all possible phase values. These properties are hard to

detect, since they require some joint �ltering of a large group of coe�cients. The weak coe�cient's

phases act as noise when performing phase-based analysis of all coe�cients, and should, therefore,

be ignored.

3.2 The phase of two-dimensional signals

An anisotropic signal exhibits, by de�nition, di�erent behaviour in di�erent orientations. This

behaviour cannot be captured by a one-dimensional signal. Therefore, while 1D analysis is simpler,

we must extend it to two dimensions. We will focus in the analysis of the local phase.
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Figure 5: Discarding nearly all frequency components of patches (5b) from an anisotropic image
(5a) yields patches with similar visual appearance (5c).

As a simple example, consider the following signal:

f (x, y) = 2 [cos (ax+ by) + cos (cx+ dy)]

with its Fourier transform,

F (u, v) = δ (u− a, v − b) + δ (u+ a, v + b) +

+ δ (u− c, v − d) + δ (u+ c, v + d) .

f (x, y) is anisotropic, and F (u, v) is real, indicating zero phase. Further, any generalization of

f (x, y), in the form of

g (x, y) =
N∑
i=1

αi cos (aix+ biy) ,

where {αi} , {(a, b)i} and N are known, will have the same properties. Therefore, non-zero phase

is not a necessary condition for anisotropy: adding a random phase to each of the components of

g (x, y) will change their relative phase, but the anisotropy will be retained, as the same frequency

components (the location of the delta functions in frequency) are retained.

As an example, consider an anisotropic texture image (Fig. 5a). While this image does not

contain edges in the usual sense - as boundaries between objects, it does exhibit high frequencies.

Decomposing into 8 × 8 patches (Fig. 5b depicts a random selection), we observe that by recon-

structing the patches using the 4 frequency components with the highest magnitude, the anisotropy

of the patch is retained.

While a model for the local phase might be obtained, it would need to model a small number

of coe�cients for each patch, corresponding to the highest magnitudes. In this report, however, we

focus on a di�erent aspect of the phase structure. We observe that a patch may be anisotropic as well
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as contain strong local frequencies (with high magnitudes), su�cient for description of anisotropic

textures, even when the phase is randomized (and uniformly distributed).

Let gθi (x, y) be the following patch-based model:

gθ (x, y) =
N∑
i=1

αi cos (aix+ biy + φi) , (21)

for a known parameter vector θ = (N, {αi, ai, bi, φi}i). Consider two patches, P1 and P2, with their

corresponding parameter vectors, θ1 and θ2. If the texture is visually homogeneous, it is reasonable

to assume that their strong frequency magnitudes, {ai, bi} will be similar. However, their phase

components, {φi}, will not. Consider the 1D case with a single component:

f (t) = sin (at) , 0 < t < T,

where T > 3
2 , and consider two patches of length 1, P1 (t) and P2 (t), de�ned as follows:

P1 (t) = f (t) , 0 < t < 1

P2 (t) = f (t) ,
1

2
< t <

3

2
.

While both patches will contain the same frequency component, the di�erent support of each patch

dictates its phase; while P1 (t) = sin (at),

P2 (t) = sin (at) ,
1

2
< t <

3

2

= sin

(
a

(
t+

1

2

))
, 0 < t < 1

= sin

(
at+

1

2
a

)
, 0 < t < 1.

We observe that while the frequency magnitude of P1 (t) and P2 (t) are equal, the di�erence in the

spatial domain is due to their di�erence in phase. A typical image patch will naturally contain more

frequency components, but this phenomenon will be approximately retained. It is, therefore, useful

to consider the magnitude and phase components separately when analyzing and processing.

Consider P0 (x, y) = gθ (x, y) to be a prototype patch with several frequency components

(21), whose origin coincides with the image origin, t = 0. The phase shift for a general patch,
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(a) (b) (c)

Figure 6: Typical images: (6a) Isotropic texture, (6b) anisotropic texture and (6c) asotropic texture.

Px0,y0 (x, y) = gθ (x+ x0, y + y0), shall be:

gθ (x+ x0, y + y0) =
N∑
i=1

αi cos (aix+ aix0 + biy + biy0 + φi)

=

N∑
i=1

αi cos (aix+ biy + φi + hi (x0, y0)) ,

where

hi (x0, y0) = aix0 + biy0 (22)

is the local phase shift. Therefore, for each frequency index, i, considered in the patch representation,

the phase shift is a linear function (that can be modulo 2π as well) with respect to the patch

coordinates, (x0, y0).

The phase function (22) only applies to frequencies propagating throughout the texture. Fre-

quencies with low magnitudes are expected to have less structured non-local phase. It is, therefore,

required to decide which frequencies to consider as globally strong frequencies that will satisfy the

requirement presented by hi (x0, y0) for a given patch, Px0,y0 (x, y). In this work we use a threshold

for the frequency coe�cients' magnitude.

We demonstrate this phenomenon for three types of typical images (Fig. 6): an isotropic texture,

an anisotropic texture and an asotropic texture (i.e. a texture not exhibiting isotropy or anisotropy.

We analyze the phase by dividing the image into overlapping patches of size 8× 8 and calculating

the phase of the largest frequencies, for adjacent patch locations (Fig. 7). We observe that for the

structured images � anisotropic and asotropic � the frequencies approximately correspond to the

phase model (22), whereas the isotropic texture exhibits random phase. The same behaviour can

be observed in 2D as well (Fig. 8). The anisotropic and asotropic texture phases depict a surface

similar to the surface implied by the phase model (22), up to modulo 2π.
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Figure 7: The phase progression of strongest frequencies throughout patch location. The �rst,
second and third rows correspond to the isotropic, anisotropic and asotropic images (Figs. 6a,
6b and 6c), respectively. The �rst, second and third columns (F1, F2 and F3) correspond to the
frequencies with the largest magnitudes, in ascending order. Each �gure shows the progression of
the unwrapped phase for a patch with a certain o�set. Each line depicts the progression of a patch
moving from top to bottom. The di�erent lines correspond to di�erent horizontal locations in the
image. Anisotropic and asotropic textures exhibit a phase much closer to linear, due to the similar
structure in adjacent locations. Isotropic texture exhibits close to random phase.
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(a) F1, isotropic (b) F2, isotropic (c) F3, isotropic

(d) F1, anisotropic (e) F2, anisotropic (f) F3, anisotropic

(g) F1, asotropic (h) F2, asotropic (i) F3, asotropic

Figure 8: The phases of strongest frequencies throughout 2D patch location. The rows are de�ned
similarly to Fig. 7. Each point in each �gure shows the phase of a certain frequency in a patch
whose center is located at that point. Similarly to Fig. 7, the anisotropic and asotropic textures
exhibit a phase much closer to linear, especially in the second and third strongest frequencies, due
to the similar structure in adjacent locations.
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To demonstrate the applicability of the Fourier-based model we perform reconstruction of the

three images (Fig. 6) using a di�erent number of globally strongest frequencies for reconstruction.

Each image is reconstructed via 3, 5 or 10 frequency components per 8× 8 patch (Figs. 9 and 10).

The anisotropic and asotropic textures are successfully reconstructed even with a low number of

frequency components. The isotropic texture is not reconstructed successfully even using a relatively

high number of frequency components.

We note that in anisotropic textures, the magnitude plays a smaller role than the phase. Ev-

idently, reconstructing the anisotropic texture (Fig. 6b) by the aforementioned model can be per-

formed using the global frequencies without any magnitude information (Fig. 11); while the results

are worse than the full model-based reconstruction, the texture is visually similar. Further, using

known models for magnitude may yield better results than using a constant magnitude.

3.2.1 Estimating globally strongest frequencies

The locally strongest frequencies obtained from each patch need to be composed into a single array

of frequency locations that will be considered to be the globally strongest frequencies. There may be

various combination possibilities for this calculation; for instance, consider the following trade-o�:

it is not clear apriori whether a frequency with moderate energy, encountered in a large number

of patches, is globally strongest than a frequency encountered in a smaller number of patches, but

with higher energy in each patch. We choose the following method for this evaluation. A frequency

coe�cient is assigned a score, de�ned as follows:

si = vTi · wi, (23)

where [vi]j is the number of times a frequency, fi, has been the jth strongest local frequency, and

wi = [(N)r , (N − 1)r , ..., 1r] is a decreasing weights vector for a vector length N with r = 0.5. The

globally strongest frequencies are the K frequency locations with the highest values of si (23). The

aforementioned trade-o� is not resolved using this proposed method, but it can be controlled by the

weighting parameter, r.

4 Reconstruction

One of the main goals in creating image models is reconstruction, that is accomplishing inverse-

type tasks such as deblurring and deconvolution. To this end it is necessary to understand how the

magnitude and phase coe�cients are a�ected when the image undergoes various degradations.
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(a) R = 3, SSIM 0.482 (b) R = 5 SSIM 0.585 (c) R = 10 SSIM 0.684

(d) R = 3 SSIM 0.763 (e) R = 5 SSIM 0.875 (f) R = 10 SSIM 0.922

(g) R = 3 SSIM 0.803 (h) R = 5 SSIM 0.829 (i) R = 10 SSIM 0.914

Figure 9: Reconstruction of typical textures with varying number of frequency components (R). Sat-
isfactory reconstruction quality is obtained in anisotropic and asotropic textures (second and third
rows, respectively), whereas the isotropic texture (�rst row) requires a high number of frequency
components.
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Figure 10: Objective reconstruction assessment as a function of the number of frequency components
used (Fig. 9). The isotropic, anisotropic and asotropic images (Fig. 6) are depicted by the blue,
red (with triangular markers) and black (with star markers), respectively. The SSIM corresponds
better to visual assessment.

(a) Ground truth (b) R = 10, SSIM 0.922 (c) R = 10 SSIM 0.834

Figure 11: Phase-only reconstruction. for R = 10 frequency components. (11b) Image recon-
struction by the full model. (11c) Image reconstruction with magnitudes set to 1 in the frequency
components used for reconstruction.
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4.1 Noise

Similarly to the analysis in Section 3.1, we treat limited support signals. Denoting by x (t) the

ground-truth signal and by n (t) the independent Gaussian noise with variance σ2, the measurement,

y (t) = x (t) + n (t), can be analyzed as follows:

ŷ (ω) =

ˆ T

−T
[x (t) + n (t)] e−jωtdt

= x̂ (ω) +

ˆ T

−T
n (t) e−jωtdt

= x̂ (ω) +

ˆ T

−T
cos (ωt) dt+ j

ˆ T

−T
sin (ωt) dt

= x̂r (ω) + n̂r (ω) + jx̂i (ω) + jn̂i (ω)

where n̂r (ω) and n̂i (ω) are Gaussian with zero mean and the following variances:

E
{
n̂r (ω)2

}
= σ2

ˆ T

−T
cos (ωt)2 dt

= σ2
ˆ T

−T

1 + cos (2ωt)

2
dt

= σ2
(
T +

ˆ T

0
cos (2ωt) dt

)
= σ2

(
T + T

[
sin (2ωt)

2ωT

]T
0

)

= σ2T

(
1 +

[
sin (2ωt)

2ωT

]T
0

)
= (1 + sinc (2ωT ))σ2T,

E
{
n̂i (ω)2

}
= σ2

ˆ T

−T
sin (ωt)2 dt

= σ2
ˆ T

−T

1− cos (2ωt)

2
dt

= (1− sinc (2ωT ))σ2T,

indicating that the range of variances of n̂r (ω) and n̂i (ω) is
(
0, 2σ2T

)
.

The magnitude of a noisy signal is given by |ŷ (ω)|2 = |x̂r (ω) + n̂r (ω)|2 + |x̂i (ω) + n̂i (ω)|2. On
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average,

E
{
|ŷ (ω)|2

}
= E

{
|x̂r (ω) + n̂r (ω)|2

}
+ E

{
|x̂i (ω) + n̂i (ω)|2

}
= E

{
x̂2r (ω) + n̂2r (ω)

}
+ E

{
x̂2i (ω) + n̂2i (ω)

}
= E

{
x̂2r (ω) + x̂2i (ω)

}
+ E

{
n̂2r (ω) + n̂2i (ω)

}
= E

{
x̂2r (ω) + x̂2i (ω)

}
+ 2σ2T.

We observe that on average, the signal's spectral magnitude is degraded by an addition of a constant

value. The relative order of magnitudes is retained, and therefore, estimating the globally strongest

frequencies can be performed by using the noisy image directly.

4.2 Blur

A blurred signal, y (t) = (x ∗ b) (t), where b (t) is a blur �lter, has a diminished high frequency

content. While in many practical cases, the phase is not modi�ed by blurring, the frequency

magnitude varies signi�cantly. The order of frequency magnitudes may also change; considering a

signal, x (t), and a blur �lter, b (t), with the Fourier transforms x̂ (ω) and b̂ (ω), de�ned as:

x̂ (ω) = δ (ω) + 2δ (ω ± 1) + 2
1

3
δ (ω ± 2)

b̂ (ω) = C ·max

{
0, 1− |ω|

6

}
,

where C is some normalization constant. The blurred image, y (t), has the following Fourier trans-

form:

ŷ (ω) = x̂ (ω) b̂ (ω) = C

[
δ (ω) +

15

9
δ (ω ± 1) +

14

9
δ (ω ± 2)

]
,

with a changed order of descending magnitudes. Therefore, unlike the case of noisy images, in this

case we need to estimate the initial order of magnitudes. In the case of noiseless textures and a

blur �lter with nonzero frequency response, b̂ (ω) 6= 0 , we can obtain the original frequencies. In

practice, we employ an optimization scheme, as will be described hereinafter.

4.3 Deconvolution of anisotropic textures

The proposed texture model is sparse in the Fourier domain. While many sparsity-based algorithms

exploit this property (possibly in other bases than Fourier) [28], our algorithm di�ers in several

aspects. First, we take advantage of the phase of the images, either by using a model for the phase,

or by retaining the existing phase; therefore, the processing is performed on the Fourier magnitudes,

and not the transform coe�cients directly. Further, we assume non-locality in the sense of existence

of the globally strong frequencies.
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Algorithm 1 A Global magnitude-local phase deconvolution algorithm

1. Partition the image into patches.
2. Solve the BPDN problem (26) for each patch to estimate the frequency magnitudes.
3. Obtain a set of K globally-strongest magnitudes via the estimated local magnitudes.
4. Estimate the local phase for each globally-strongest frequency.
5. Reconstruct each patch using the globally-strongest magnitudes and estimated phases.
6. Perform PDE-based post-processing on the entire image.

The globally-strongest frequencies are obtained via patch-wise analysis. To obtain the local

magnitudes as accurately as possible, the local magnitude estimation of the latter is formulated as

follows: let â+ (ω) , â (ω) |ω≥0, i.e. the non-negative frequencies of â (ω), represent the Fourier

transform of some signal, a (t). Inasmuch as a (t) is real, knowing â+ (ω) is su�cient for reconstruc-

tion of a (t). The same principle applies in 2D images as well, de�ning â+ (u, v) , â (u, v) |u≥0.
Let f (x, y) and b (x, y) denote a patch and a blur �lter and let f̂ (u, v) and b̂ (u, v) denote their

Fourier transforms, respectively. Denote ŷ (u, v) as the Fourier transform of the blurred patch,

y (x, y), de�ned in the noiseless case as follows:

ŷ+ (u, v) = x̂+ (u, v) b̂+ (u, v)

|ŷ+ (u, v)| =
∣∣∣b̂+ (u, v)

∣∣∣ |x̂+ (u, v)|

In vectorized form, we have:

β = Aα, (24)

where α and β denote the vectorized versions of |x̂+ (u, v)| and |ŷ+ (u, v)|, respectively, and A =

diag
{∣∣∣b̂+ (u, v)

∣∣∣} is a diagonal matrix. Denoting x̂m (u, v) to be the model-based representation of

x (u, v), we obtain:

x̂m (u, v) =
K∑
j=1

x̂+ (uj , vj) δ (u− uj , v − vj) , (25)

where K is the number of coe�cients used. Therefore, the vector α is sparse. A well-known method

to promote sparsity in the solution of (24) is to minimize the L1 norm. To do so, we use the basis

pursuit denoising (BPDN) scheme:

α = arg min
α
‖α‖1 + λ

∥∥β − âα∥∥
2
. (26)

We note that this formulation is commonly used as sparsity-based denoising, but in this case it is

used to recover the magnitude vector. Further, it is degenerated, as A is a diagonal matrix.

Using this formulation, we propose the following algorithm for deconvolution of anisotropic

textures (Alg. 1). The local phase (step 4) is estimated either via the phase model (22), or by using

the phase of the degraded signal, since the phase is, in many cases, invariant to blurring.

27



This algorithm is proposed for textures that have been severely degraded by combined e�ects of

blur and noise. The dominant non-locality is exploited for reconstruction of oscillating structures.

However, the model is too simplistic to fully model complex textures. Therefore, after the texture

structure has been recovered, the image undergoes post-processing (step 6) by means of PDE-

based deblurring, using anisotropic di�usion [29]. This step completes the reconstruction process,

recovering further details.

4.3.1 Remarks

Our formulation of the BPDN scheme (26) is ill-conditioned in the sense that the blur �lter yields

magnitudes very close to zero, and we cannot expect satisfactory results considering all magnitude

coe�cients. Therefore, we use the magnitude coe�cients of the blur �lter to set a threshold;

only frequency coe�cients in which the blur �lter is su�ciently large will be considered for the

reconstruction.

While the current method is essentially non-local, the typical image size in our experiments was

(64× 64 - 128× 128), indicating that moderately sized images can be analyzed and processed even

in the case of spatially non-homogeneous texture, and possibly images containing texture and other

image content. Further, since our reconstruction method is patch-based, a non-homogeneous blur

�lter can be considered as well, provided it is patch-wise-spatially invariant.

4.4 Example results

We show several typical examples to assess the algorithm's performance. Our objective assessment

will be based on SSIM, that is known to be better than PSNR in the case of textures [30] (both

�gures are nevertheless calculated and displayed). The leading method in the case of degraded

textures shall be a subjective (visual) assessment, as both SSIM and PSNR can yield results that

do not correspond to the latter [30].

The algorithm successfully restores details of an 128 × 128-sized anisotropic texture (Fig. 12),

using patch size of 16 × 16 and 15 frequency components per patch. We observe that the initial

reconstruction (Fig. 12c) has restored much of the ground-truth image structure, even though

the image is not strictly anisotropic, in the sense that there are some uncharacteristic directional

patterns in some areas of the image. The main observation of the initial reconstruction is that it

is almost noise-free, but it appears to be blurred. The post-processed result (Fig. 12f) has been

deblurred using PDE-based methods that successfully restored the image structure from the blurred,

but noiseless, initial reconstruction. While the reconstruction is not perfect, many of the details

have been restored.

While the Wiener �lter (Fig. 12d) is considered e�ective in deconvolution of textures, in the

case of severe blur and noise, as in this case, it produces many noisy artifacts. BM3D (Fig. 12e)
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(a) Ground-truth (b) Degraded (c) Initial reconstruction

(d) Wiener (e) BM3D (f) Proposed

Figure 12: Anisotropic texture deconvolution using Alg. (1). (12a) Ground truth, (12b) image
degraded by Gaussian blur with width σf = 1 and AWGN with σN = 0.1 (PSNR 17.47dB, SSIM
0.567), (12c) initial reconstruction (PSNR 18.51dB, SSIM 0.697), (12d) Wiener �ltering reconstruc-
tion (PSNR 17.37dB, SSIM 0.619), (12e) BM3D result (PSNR 20.43dB, SSIM 0.713), and (12f)
proposed algorithm result (PSNR 20.33dB, SSIM 0.841).

reconstructs some of the degraded edges, but much of the detail is still missing in the reconstructed

image.

The second example is of 128× 128-sized asotropic textures (Fig. 13 and Fig. 14). Similarly to

the previous example, and using the same degradation and reconstruction parameters, we observe

the recovered details in the initial reconstruction (Fig. 13c and Fig. 14c, respectively), and the

deblurred and recovered details of the �nal reconstruction (Fig. 13f and Fig. 14f, respectively). This

texture's orientation is less pronounced than the previous example, but details are still reconstructed

successfully, due to the fact that the same characteristic frequencies are dominant throughout the

image.

To further assess the algorithm, the algorithm was evaluated on 10 randomly selected images

from the Brodatz database [31] (Table 1). The degradation was performed by Gaussian and motion

blurring of various widths and lengths, respectively, and two values of noise variances. The results

indicate that in the case of textures, the proposed algorithm produces better SSIM scores on almost

all experiments, corresponding to the subjective results presented in the previous experiments on
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(a) Ground-truth (b) Degraded (c) Initial reconstruction

(d) Wiener (e) BM3D (f) Proposed

Figure 13: Asotropic texture deconvolution using Alg. (1). (13a) Ground truth, (13b) image de-
graded by Gaussian blur with width σf = 1 and AWGN with σN = 0.1 (PSNR 19.24dB, SSIM
0.549), (13c) initial reconstruction (PSNR 19.41dB, SSIM 0.710), (13d) Wiener �ltering reconstruc-
tion (PSNR 19.5dB, SSIM 0.605), (13e) BM3D result (PSNR 22.38dB, SSIM 0.755), and (13f)
proposed algorithm result (PSNR 22.51dB, SSIM 0.879).
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(a) Ground-truth (b) Degraded (c) Initial reconstruction

(d) Wiener (e) BM3D (f) Proposed

Figure 14: A second asotropic texture deconvolution, using the same degradation and reconstruction
parameters as Fig. 13). (14a) Ground truth, (14b) degraded image (PSNR 17.48dB, SSIM 0.692),
(14c) initial reconstruction (PSNR 16.39dB, SSIM 0.618), (14d) Wiener �ltering reconstruction
(PSNR 17.49dB, SSIM 0.696), (14e) BM3D result (PSNR 19.23dB, SSIM 0.760), and (14f) proposed
algorithm result (PSNR 19.75dB, SSIM 0.897).

(a) Ground-truth (b) Degraded (c) Proposed (d) BM3D

Figure 15: Non-texture deconvolution. (15a) Ground truth, (15b) image degraded by Gaussian
blur with width σf = 1 and AWGN with σN = 0.1 (PSNR 19.51dB, SSIM 0.317), (15c) proposed
algorithm (PSNR 16.49dB, SSIM 0.553), and (15d) BM3D result (PSNR 24.92, SSIM 0.804).
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individual images (Fig. 12, Fig. 13 and Fig. 14).

In the case of non-textured, non-homogeneous content, the algorithm does not deconvolve the

images properly (Fig. 15). This is due to the fact that the non-local assumption means attempting

to perform local reconstruction using unsuitable frequency coe�cients. In this work we assume,

however, that images of a suitable type can be correctly classi�ed prior to using the algorithm.

5 A combined model for isotropic and anisotropic textures

In Section 3 we analyzed the phase of anisotropic textures. In previous studies [7, 32] we have

addressed the isotropic, fractal textures, and proposed the fractional Brownian motion (fBm) [18]

as a suitable model. In this section we focus on modeling textures containing both elements,

structured as well as stochastic.

5.1 De�nition of the model

Recall Eq. (25):

x̂m (u, v) =
K∑
j=1

x̂+ (u, v) δ (u− uj , v − vj) ,

the anisotropic texture model, de�ned on a half-plane of the frequency domain. Let x̂ (u, v) denote

the frequency response on the entire plane. According to the model, we can consider the frequency

response to be a sum of �nite frequency coe�cients. Consider a single coe�cient pair of symmetric

frequency components in 1D, denoting the frequency coe�cients and the frequency by ai ∈ C and

fi, respectively, then

|ai| ej∠aiδ (f − fi) + |ai| e−j∠aiδ (f + fi)
F↔ |ai|

(
ej∠aiejωit + e−j∠aie−jωit

)
= |ai|

(
ej(∠ai+ωit) + e−j(∠ai+ωit)

)
= 2 |ai| cos (ωit+ ∠ai) . (27)
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G σG = 0.5 G σG = 1 G σG = 2 M S = 3 M S = 5 M S = 7

Noisy 24.31[dB] 20.06[dB] 18.01[dB] 21.68[dB] 19.55[dB] 18.10[dB]

Wiener 21.47[dB] 20.01[dB] 18.55[dB] 19.13[dB] 17.88[dB] 17.24[dB]

BM3D 25.73[dB] 22.20[dB] 20.32[dB] 22.91[dB] 21.48[dB] 20.23[dB]

Our 27.32[dB] 22.50[dB] 19.49[dB] 24.20[dB] 21.09[dB] 18.99[dB]

(a) PSNR[dB], noise standard deviation σ = 0.05

G σG = 0.5 G σG = 1 G σG = 2 M S = 3 M S = 5 M S = 7

Noisy 19.68[dB] 17.77[dB] 16.66[dB] 18.56[dB] 17.50[dB] 16.66[dB]

Wiener 17.92[dB] 18.31[dB] 17.42[dB] 17.26[dB] 16.53[dB] 16.00[dB]

BM3D 22.48[dB] 20.79[dB] 19.37[dB] 21.34[dB] 20.10[dB] 19.00[dB]

Our 25.01[dB] 22.32[dB] 19.83[dB] 23.17[dB] 20.90[dB] 19.12[dB]

(b) PSNR[dB], noise standard deviation σ = 0.1

G σG = 0.5 G σG = 1 G σG = 2 M S = 3 M S = 5 M S = 7

Noisy 0.832 0.637 0.486 0.724 0.597 0.485

Wiener 0.762 0.669 0.588 0.675 0.582 0.523

BM3D 0.870 0.749 0.655 0.783 0.705 0.638

Our 0.936 0.824 0.660 0.864 0.730 0.586

(c) SSIM, noise standard deviation σ = 0.05

G σG = 0.5 G σG = 1 G σG = 2 M S = 3 M S = 5 M S = 7

Noisy 0.645 0.477 0.355 0.553 0.448 0.359

Wiener 0.571 0.559 0.501 0.537 0.467 0.411

BM3D 0.769 0.670 0.585 0.708 0.641 0.570

Our 0.898 0.799 0.635 0.832 0.704 0.564

(d) SSIM, noise standard deviation σ = 0.1

Table 1: Deconvolution results. (1a), (1b): The PSNR results for σ = 0.05 and σ = 0.1, respectively.
(1c), (1d): The SSIM results for σ = 0.05 and σ = 0.1, respectively. Columns indicated by G
represent a Gaussian �lter with standard deviation σG, speci�ed next to each result, and columns
indicated by M represent a 45◦ motion blur with size S, speci�ed next to each result, respectively.
The results in all tables are averaged over all images in the dataset. The maximal results, shown in
bold-faced font, were obtained by our algorithm in most of the scenarios.
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A similar analysis can be performed for the 2D case:

|ai| ej∠ai (δ (u− ui) δ (v − vi) + δ (u+ ui) δ (v + vi))

FX⇔ |ai| ej∠ai
(
e−juixδ (v − vi) + e+juixδ (v + vi)

)
FY⇔ |ai| ej∠ai

(
e−juixe−jviy + e+juixe+jviy

)
|ai| ej∠ai

(
e−j(uix+viy) + e+j(uix+viy)

)
= |ai|

(
e−j(uix+viy+∠ai) + e+j(uix+viy+∠ai)

)
= 2 |ai| cos (uix+ viy + ∠ai) , (28)

where FI denotes Fourier transform in the I ∈ {X,Y} direction. Therefore, the model can be

represented in the spatial domain as follows:

c (x, y) =

K∑
i=1

mi cos (uix+ viy + θi) , (29)

where {mi, θi}Ki=1 are the magnitude-phase pair and {ui, vi}Ki=1 are the frequency locations.

Let c (x, y) be an anisotropic texture (29), and let f (x, y) be a 2D-fGn/fBm image with Hurst

parameter H ∈ (0, 1). Assume H, {mi}Ki=1 and {ui, vi}
K
i=1 are global parameters (applicable across

patches), and {θi}Ki=1 are local parameters. Denote the combined model by g (x, y):

g (x, y) = αf (x, y) + (1− α) c (x, y) , (30)

where α ∈ [0, 1] is a weighting factor. The images f (x, y) and c (x, y) are assumed to be independent.

We note that Wold's theorem [26] appears to be applicable to the decomposition of g (x, y)

(30), but this is not the case. In Wold's theorem, a wide-sense stationary process is separated

into a predictable process and a stationary process, where the predictable process has a punctate

spectrum (sum of Dirac delta functions). This requires the autocorrelation to be composed of sines

and cosines. In our case, however, the space-domain signal has a constant phase, rendering it to be

non-stationary, since in a predictable signal, the phase should be uniformly distributed. Further, if

f (x, y) is assumed to be fBm, the process itself is not stationary.

In our formulation hereinafter we assume that f (x, y) is either fGn or fBm, but the derivation

can be applied to any zero-mean Gaussian image with a known covariance matrix.

(PAPER ONLY:) An optimal estimator in the MMSE sense can be derived for the mixture

parameter, α, given a texture image, g (x, y). This is derived elsewhere using statistics of natural

textures [33].
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Figure 16: Example of the coe�cient model with 10 strongest-magnitude frequency coe�cients.
(16a) Image form Brodatz, (16b) strongest frequency coe�cient log-histogram across all patches
(with �tted Gaussian pdf overlaid in blue), (16c) correlation matrix of the dominant frequencies
(bright values correspond to high absolute correlation), (16d) and (16e) coe�cient's mean and
standard deviation, respectively; the samples are depicted in blue with round markers and the
linear �t is depicted in red. This texture approximately satis�es the model assumptions.

5.1.1 Statistics of frequency coe�cient, c

We propose the following model for c, the magnitude coe�cients: each of the non-zero elements of

c̃ = log (c) is independent of the other elements. Let c̃[j] be the jth largest element in c̃. Its variance

and its mean decline linearly with j:

E
{
c̃[j]
}

= p0 + p1j, p1 < 0.

σc̃[j] = q0 + q1j, q1 < 0.

The variables that should be estimated prior to estimation of α are, therefore, p0, p1, q0 and q1.

This is an approximated model, based on analysis of the Brodatz dataset [31]. While its accuracy

is not statistically signi�cant (Fig. 16 and Fig. 17), it will su�ce for our application. We note that

some textures do not satisfy the assumptions in full (Fig. 18).

The global parameters that are also required are the phases, θ, and the dominant frequency

locations of c.
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Figure 17: A similar example for a Brodatz texture, approximately satisfying the model assumptions.
The �gure de�nitions are similar to Fig. 16.
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Figure 18: A Brodatz texture not satisfying the model assumptions, as indicated by the non-
Gaussian coe�cient histogram (18b), and the dependency between coe�cients (18c).
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5.2 Estimation of α for a 2D signal

We are interested in quantifying the fractal content of a textured image. This can be indicated by

estimation of the parameter α (30), which corresponds to the ratio of the fGn/fBm content in the

image, relative to the anisotropic content.

In this section we use following vectorized (column-stacked) formulation for 2D images:

g = αf + (1− α) c = α · Σ0.5
H w + (1− α) · Tθm (31)

, αS1 + (1− α)S2, (32)

where w is a standard i.i.d normal vector, ΣH is a the covariance for 2D-fGn/fBm with some

H ∈ (0, 1), c is a log-normal random vector; Tθ is a 2D operator matrix (operating on vectorized

images), e.g.

Tθ = D1
θ ⊗D1

θ , Tθ = F 1
θ ⊗ F 1

θ ,

where ⊗ denotes the Kronecker product, D1
θ is a 1D-DCT matrix and F 1

θ is a 1D-DFT matrix,

in which all harmonics are shifted by a known phase, θ. In general, Tθ can be any transform in

which the phase is controllable. A shift in phase does not change the unitary property of such

transforms (Appendix B). We note that an additional representation will be T 1
θC
(
T 1
θ

)T
where C is

the image matrix corresponding to c. The phase, θ, is assumed to be known and is chosen for each

patch according to the phase model (estimated globally). The frequency locations, {i : ci > 0}, are
determined globally as well.

The anisotropic texture is sparse in the transform domain, i.e. |c|0 = K � N where N is the

number of elements in c. To include the sparsity in the model (31), let U ∈ {0, 1}n×K denote a

rectangular indicator matrix that creates c from c′: c , Uc′, where c′ ∈ RK contains the nonzero

values of c.

The mixture parameter, α, is assumed to be random:

α ∼ U [0, 1]

E {α} = 0.5

E
{
α2
}

= E
{

(1− α)2
}

=
1

3
.

We consider the linear MMSE estimator:

α̂lin
(
g
)

= E {α} + Cov
{
α, g

} T
Λ−1g

(
g − E

{
g
} )

,
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where

µ
s2

, E {S2}

m , E {(1− α)S2} =
1

2
E {S2} =

1

2
µ
s2

E
{
g
}

= E {αS1 + (1− α)S2} = E {α} E {S1} +m =
1

2
µ
s2
.

The last equality follows from the zero-mean assumption of the fBm/fGn. The covariance of g is

given by:

Λg = E
{

(αS1 + (1− α)S2 −m) (αS1 + (1− α)S2 −m)T
}

=
1

3
E
{
S1S

T
1

}
+ E

{
((1− α)S2 −m) ((1− α)S2 −m)T

}
=

1

3
ΣH + Λ2,

where

Λ2 = E
{

((1− α)S2 −m) ((1− α)S2 −m)T
}

= E
{

(1− α)2 S2S
T
2 − (1− α)mST2 − (1− α)S2m

T +mmT
}

=
1

3
E
{
S2S

T
2

}
− 1

2
mE {S2}

T − 1

2
E {S2} mT +mmT

=
1

3
E
{
S2S

T
2

}
− 1

2
· 1

2
µ
s2
µT
s2
− 1

2
· 1

2
µ
s2
µT
s2

+
1

4
µ
s2
µT
s2

=
1

3

(
ΛS2 + µ

s2
µT
s2

)
− 1

4
µ
s2
µT
s2

=
1

3
ΛS2 +

1

12
µ
s2
µT
s2
.
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Further the covariance between α and g is given by:

Cov
{
α, g

}
= E

{
(α− E {α} )

(
g − E

{
g
} )}

= E
{(
α− 1

2

) (
g − 1

2µs2

)}
= E

{
αg
}
− 1

2
E
{
g
}
− 1

2
µ
s2
E {α} +

1

4
µ
s2

= E
{
αg
}
− 1

4
µ
s2

= E {α (αS1 + (1− α)S2)} −
1

4
µ
s2

= E
{
α2S1 + α (1− α)S2

}
− 1

4
µ
s2

=
1

3
E {S1} + E

{
α− α2

}
E {S2} −

1

4
µ
s2

= µ
s2

(
4

24
− 6

24

)
= − 1

12
µ
s2
.

The linear estimator is, therefore, given by:

α̂lin
(
g
)

= Cov
{
α, g

} T
Λ−1g

(
g − E

{
g
} )

(33)

=
1

2
− 1

12
µT
s2

(
1

3
ΣH +

1

3
ΛS2 +

1

12
µ
s2
µT
s2

)−1(
g − 1

2
µ
s2

)
(34)

=
1

2
− µT

s2

(
4ΣH + 4ΛS2 + µ

s2
µT
s2

)−1(
g − 1

2
µ
s2

)
. (35)

This estimator is a function of the �rst- and second-order statistics of S2, µS2
and ΛS2 :

S2 = Tθc = TθUc
′ (36)

µ
S2

= TθUE {c} (37)

Cov{S2} = Cov{TθUc′} = TθUCov{c′} UT Tθ . (38)

The determination of the statistics of c, the magnitude coe�cients of the anisotropic texture, is

performed empirically.
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Figure 19: Simulation of α̂lin
(
g
)
for two values of K and patch size of 16 × 16: (19a) K = 50,

(19b) K = 10. Each point depicts the averaged result of 200 evaluations. The true values of α
and the estimatied values are shown in dashed-black and blue, respectively. The theoretic estimator
standard deviations (41) are shown in dashed-red, and the error bars indicate the empirical standard
deviation of the estimator.

5.2.1 Performance of the estimator α̂lin
(
g
)

The estimator error, E
{(
α− α̂lin

(
g
))2}

, for a linear MMSE estimator, is given by [26]:

E
{(
α− α̂lin

(
g
))2}

=
1

12
− Cov

{
α, g

} TCov
{
g
} −1Cov{α, g} (39)

=
1

12
−
(
− 1

12
µT
s2

)(
1

3
ΣH +

1

3
ΛS2 +

1

12
µ
s2
µT
s2

)−1(
− 1

12
µ
s2

)
(40)

=
1

12

[
1− µT

s2

(
4ΣH + 4ΛS2 + µ

s2
µT
s2

)−1
µ
s2

]
. (41)

Performance assessment of the estimator is obtained by means of simulation, using T 1
θ = D1

θ where

D1
θ is a 1D DCT matrix. A set of signals are simulated according to the model (21), using the

following parameters: patch size of 16 × 16, Hurst parameter H = 0.5 and θ chosen arbitrarily to

have the value of 0.5. The simulated values of α span the range [0, 0.9] in step-size of 0.1. The case

of α = 1 is not simulated, as it misses the structural part completely. The simulated results for

K = {50, 10} (Fig. 19) indicate that the estimator performs better in the non-sparse case (K = 50),

due to the increased energy of the structural part of the signal. However, the practical case is the

latter, i.e. K = 10. We note that in both cases, the estimator performs reasonably within the range

of the theoretical standard errors. The relatively high empirical standard deviation of the estimator

accounts for both the estimator error, and the errors due to the covariance and mean estimation

(38), performed empirically from the simulated data.
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5.3 Finding a suitable representation for structured textures

We investigate several approaches to the modelling of structured textures; our method is patch-

based and we, therefore, formulate the structured part as a vector, which shall be a linear operator,

T , applied on a vector of coe�cients, c. Our texture model assumes punctate spectra of symmetric

Diracs, each having the following spatial representation (28):

|ai| ej∠ai (δ (u− ui) δ (v − vi) + δ (u+ ui) δ (v + vi))

F⇔ 2 |ai| cos (uix+ viy + ∠ai) ,

where F denotes the 2D Fourier transform. While this can be approximated by DCT or similar

separable transforms, An accurate, suitable, transform should have basis elements in the form of

cos (uix+ viy + ∠ai), rendering it to be non-separable - a disadvantage with respect to the ordinary

Fourier transform (or its discrete counterpart, the DFT or DCT).

5.3.1 A real-valued transform approach

Consider the following non-separable, real-valued transform:

[T ]u,v = cos (ux+ vy + ∠ai) .

It can be veri�ed that this transform is neither separable nor orthogonal (Appendix (C)). Thus,

while providing a sparse representation for a texture satisfying the model assumptions, discard-

ing low-energy coe�cients will yield undesired e�ects in the resulting image. Despite the relative

simplicity of the real-valued transform, we will employ the DFT.

5.3.2 A DFT-based, sparsity enhancing, optimization scheme

Using the DFT matrix, Fθ, as the linear operator applied on a set of complex coe�cients, c, our

goal is to �nd a sparse magnitude vector. Using the fact that c is a sparse vector (31), we propose

the following scheme for �nding c given θ and H, using the fact that the likelihood of g given c is
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a Gaussian, and assuming a Laplacian (L1-based) distribution for c to reward sparsity:

ĉ = arg max
c
p (c|g)

= arg max
c
p (g|c) p (c)

= arg max
c

exp

{
−1

2

(
g − (1− α)Fθc

)T 1

α2
RH

(
g − (1− α)Fθc

)}
e−

λ1
2
‖c‖1

= arg min
c

(
g − (1− α)Fθc

)T 1

α2
RH

(
g − (1− α)Fθc

)
+ λ1 ‖c‖1

= arg min
c

(
1

α
Φg − 1

α
Φ (1− α)Fθc

)T ( 1

α
Φg − 1

α
Φ (1− α)Fθc

)
+ λ1 ‖c‖1

= arg min
c

∥∥∥∥ 1

α
Φg − 1

α
Φ (1− α)Fθc

∥∥∥∥2
2

+ λ1 ‖c‖1 (42)

where RH = ΦΦT is the fBm/fGn covariance matrix (4). Denoting an R-norm to be

‖·‖2R , |·|T R−1 |·| , (43)

the problem can be formulated for c ∈ RK as follows:

ĉ = arg min
c

∥∥∥∥ 1

α
g − 1

α
(1− α)F−1θ c

∥∥∥∥2
R

+ λ ‖c‖1 (44)

where g is the given patch, F−1θ is a phase-shifted inverse DFT matrix, c = |c| exp {j∠c}, and the

norms are complex. We note that this problem di�ers from the usual Lasso problem [28] in that c

is a complex vector. We shall now obtain an iterative solution of (44).

5.3.3 A preliminary step: the unitary case

Consider the following model:

g = F−1c+ n,

where F is an inverse DFT matrix, c are complex coe�cients, and n ∼ N
(
0, σ2I

)
is an independent

noise source. We wish to obtain a sparse solution in the magnitude of the vector c:

ĉ = arg min
c
L :=

∥∥g − F−1c∥∥2 + λ ‖c‖1 .

We observe that the L1 norm is non-di�erentiable with a complex vector c:

∂ (‖c‖1)
∂ci

=
∂
∣∣ci∣∣
∂ci

.
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Considering the function f (z) = u (a, b) + iv (a, b) = |z| =
√
a2 + b2, where z = a+ ib. We observe

that the Cauchy-Riemann equations are not satis�ed:

∂u (a, b)

∂a
=

a√
a2 + b2

6= 0 =
∂v (a, b)

∂y
,

and, therefore, the derivative does not exist. However, the derivative does not exist even in the

real-valued case, due to the non-di�erentiability of the absolute value function at zero. In our case,

we can obtain a necessary condition for a minimal value by zeroing the partial derivatives with

respect to the real and imaginary terms.

Recall our main problem (44). In the case where the R norm is an L2 norm, we can take

advantage of the fact that F is a unitary transform (DFT):

ĉ = arg min
c

1

2

∥∥∥∥ 1

α
g − 1

α
(1− α)F−1θ c

∥∥∥∥2 + λ ‖c‖1 . (45)

Noting that c0 = 1
αFθg, the solution of (45) is obtained by solving K scalar equations of the form:

ĉi = arg min
c
l :=

1

2

∣∣∣∣ci0 − 1

α
(1− α) ci

∣∣∣∣2 + λ
∣∣ci∣∣ ,

where ci0 = ξ0 + jη0 and ci = ξ + jη are complex numbers. Therefore:

l =
1

2

∣∣∣∣ci0 − 1

α
(1− α) ci

∣∣∣∣2 + λ
∣∣ci∣∣

=
1

2

(
ξ0 −

1

α
(1− α) ξ

)2

+
1

2

(
η0 −

1

α
(1− α) η

)2

+ λ
√
ξ2 + η2. (46)

Denote
∣∣ci∣∣ =

√
ξ2 + η2. A necessary condition for extremum is obtained by: ∂l

∂ξ = 1
α (1− α)

(
ξ0 − 1

α (1− α) ξ
)

+ λ
|ci|ξ = 0

∂l
∂η = 1

α (1− α)
(
η0 − 1

α (1− α) η
)

+ λ
|ci|η = 0.

(47)

We, therefore, obtain a set of two non-linear, coupled equations for each entry in c, and the solution

of which is a candidate for the solution to the minimization problem. Fortunately, these equations

(47) can be solved analytically, and the following soft-thresolding-based solution is obtained (See

Appendix D; (60)):
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η =


βz0−λγ0
β2γ20

, βz0
γ0

> λ

0,
∣∣∣βz0γ0 ∣∣∣ ≤ λ

βz0+λγ0
β2γ20

, −λ > βz0
γ0
,

(48)

and ξ = γη, where z0 = η0 + γξ0, γ0 =
√

1 + γ2 and γ = η0
ξ0
. λ is a threshold value that needs to

be determined.

5.3.4 The non-unitary case

Unfortunately, the norm in our case is not L2, but scaled by the fBm covariance inverse matrix (43).

Using ΦΦT = R−1 (see also Section 2.2.1 for use in cases of non-invertible matrices) we get:

∥∥g − F−1c∥∥2
R

=
(
g − F−1c

)T
ΦΦT

(
g − F−1c

)
=
(
ΦT
(
g − F−1c

))T (
ΦT
(
g − F−1c

))
.

Recall that in the unitary case, we use the following derivation:

∥∥F−1 (Fg − c)∥∥ =
(
F−1

(
Fg − c

))H (
F−1

(
Fg − c

))
=
(
Fg − c

)H (
F−1

)H
F−1

(
Fg − c

)
=
∥∥Fg − c∥∥ .

Therefore, the unitary case requires the following condition:
(
F−1

)H
F−1 = I. In our case, however,

this is not satis�ed:

ΦT
(
g − F−1c

)
= ΦTF−1

(
Fg − c

)
(
ΦTF−1

)H (
ΦTF−1

)
= FΦΦTF−1,

rendering the case to be non-unitary.

5.3.5 A Separable Surrogate Functionals (SSF) approach

In the non-unitary case, we turn to one of the available schemes proposed to solve similar mini-

mization problems. Since our problem di�ers from the usual sparsity-rewarding formulation due to

the complex vector, c, we reiterate the algorithm stages with the required changes. This follows the

formulation in [34], Chapter 6.3.1.
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Consider the following cost function:

f (c) =
1

2

∥∥∥∥ 1

α
g − 1

α
(1− α)F−1c

∥∥∥∥2
R

+ λ1Tρ (c)

=
1

2

∥∥∥∥ 1

α
ΦT g − 1

α
(1− α) ΦTF−1c

∥∥∥∥2 + λ1Tρ (c)

,
1

2
‖b−Ac‖2 + λ1Tρ (c) ,

where b = 1
αΦT g, A = 1

α (1− α) ΦTF−1, and c is a complex vector. Let d (c, c0) denote the following

distance term:

d (c, c0) =
α

2
‖c− c0‖

2 − 1

2
‖Ac−Ac0‖

2 ,

where αc is chosen so that αcI − AHA � 0, a condition satis�ed by choosing αc > λmax
(
AHA

)
.

The new objective function is:

f̃ (c) =
1

2
‖b−Ac‖2 + λ1Tρ+

αc
2
‖c− c0‖

2 − 1

2
‖Ac−Ac0‖

2

= β0 − cH
(
AH (b−Ac0) + αcc0

)
+ λ1Tρ (c) +

αc
2
‖c‖2 , (49)

where β0 is a constant that does not a�ect the optimization. Let v0 = 1
αc
AH (b−Ac0) + c0.

Substituting v0 in the previous equation (49), we get:

f̃ (c) = β1 +
λ

αc
1Tρ (c) +

1

2
‖c− v0‖

2 ,

where β1 is a constant. This function presents an optimization problem whose solution is obtained

by the same manner as in the unitary case (47) for ρ (c) = |c| . Therefore, optimization of f̃ (c) is

obtained by K scalar optimization problems of the following form:

ĉi = arg min
c
l :=

1

2

∣∣ci − vi0∣∣2 +
λ

αc

∣∣ci∣∣
= arg min

1

2

[(
ξi − ξiv0

)2
+
(
ηi − ηiv0

)2]
+

λ

αc

∣∣ci∣∣ ,
where vi0 = ξiv0 + jηiv0 . A necessary condition for obtaining extremum is: ∂l

∂ξi
=
(
ξi − ξiv0

)
+ λ

αc|ci|ξ
i = 0

∂l
∂ηi

=
(
ηi − ηiv0

)
+ λ

αc|ci|η
i = 0.

(50)

This adapted version of the SSF algorithm is performed similarly to the original one, in which the

shrinkage step is replaced by the solution of a set of non-linearly coupled equations (50). The rest

of the steps are performed similarly to the SSF algorithm [34].
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Algorithm 2 Image decomposition

1. First iteration (n = 0): estimate initial values for H(0) and α(0) (51).
2. Solve the modi�ed SSF problem (42) and obtain h(n), the structured image.
3. Produce the stochastic image, s(n) and calculate α(n+1) by minimizing the L1 norm of Fh(n)

(52).
4. Calculate the stochastic image, ∆(n) = g−

(
1− α(n+1)

)
h(n), and calculate its Hurst parameter,

H(n+1).
5. Repeat steps 2-4 until the change in estimated parameters is small enough.

5.4 Application in texture decomposition

We show a direct application of the aforementioned model. Practically, we observe that in the

noiseless case, g can be decomposed into its structured and stochastic counterparts, even if the

true value of H is unknown (and H = 0.5 is assumed). Further, recall the required information for

estimation of the mixing parameter, α (35). We propose an iterative image decomposition algorithm

(Algorithm 2) that sequentially performs decomposition and parameter estimation.

Since this algorithm is non-convex, the initial guess of the parameters, α and H, should be

considered carefully. The initial value of α is obtained as follows: a wavelet-based fractal estimation

is performed, yielding the variance-scale plot of the image. Then, α(0) is derived via the R2 value

for the linear �t as follows:

α(0) = 4 ·
[
max

{
3

4
+
ε

4
, R2

}
− 3

4

]
, (51)

where ε is a small number. Since R2 indicates the goodness of �t, it shows the overall fractal

behavior of the given image, and therefore, it should correspond to the mixing parameter, α. For

instance, high R2 values indicate a values of α close to 1. We consider R2 < 3
4 to indicate non-fractal

behaviour, for which the initial guess for α shall be ε. H(0), the initial value of H, is given by the

fractal dimension of the given image.

Due to the non-convexity of the algorithm, we found empirically that a correct estimation of α

via the optimal estimator (35) gives unsatisfactory results. Instead, for each iteration, we produce

ĥ, the estimated structural image:

ĥ =
1

1− α̂
[
g − α̂ŝ

]
,

where ŝ is the decomposed stochastic image for the current iteration. Then, we iterate through

values of α̂ ∈ [0, 1], and choose the value that maximizes the L1 norm of the transform's coe�cients

of ĥ:

α̂ = arg min
α∈[0,1]

∥∥∥Fĥ∥∥∥
1
. (52)
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5.4.1 Global, local and non-local texture decomposition algorithms

The texture model is valid if the strongest local frequencies can be composed into a single set of

globally-strongest frequencies. This is the basic assumption of the texture model and the decom-

position algorithm. However, in many textures, the leading frequencies may change throughout

the image. Therefore, two variants for the decomposition algorithm are proposed, a local and a

non-local algorithm, to complement the global decomposition algorithm.

The local algorithm assumes globally strongest frequencies to be valid only in a local neighbor-

hood of a certain patch. The set of globally-strongest patches in this case is, therefore, not a single

set across the image, but changes with the spatial location. A typical neighborhood size shall be

a margin of 50% from each direction of a certain patch. This algorithm captures locally varying

information better, but does not exploit global structures if they are present in a textured image.

The non-local algorithm combines the local and the global approaches. First, the texture is

divided into several non-overlapping regions that span the entire image, where each region contains

patches of similar textural and fractal characteristics. Then, for each region, a globally-strongest

set of frequencies is estimated, similarly to the global case. These regions are created by extracting

structural and fractal features from a speci�c patch: the structural features are the contrast, corre-

lation, energy and homogeneity Haralick features from the grey-level co-occurrence matrix [35], and

the fractal features are the H value, the R2 of the log-linear �t for the variance/scale plot, and the

polynomial �tting parameters for a third-order polynomial �tting of the variance/scale plot of the

patch. These features then undergo feature reduction by means of PCA for 3 dimensions, and the

regions are the clustering labels obtained by K-means, applied on the resulting PCA coe�cients.

The non-local texture decomposition algorithm has the advantage of extracting local features

when a certain area of the image has di�erent textural characteristics than other areas, while still

exploiting large segments of the textured image to extract the globally-strongest frequencies. It is,

therefore, the algorithm used in the following simulations and examples.

5.4.2 Simulated examples

To evaluate the algorithm, we �rst present a series of experiments based on manual composition

of the stochastic and structured images. The simulated values spanned the reasonable range H ∈
[0.2, 0.8] and α ∈ [0.2, 0.8], from which estimation of these parameters, as well as the decomposition

of the images, were obtained. We repeated the experiment 5 times for each set of (H,α), in which

the stochastic image was simulated randomly. The total number of experiments was 245. Each

obtained image then underwent decomposition (Alg. 2) to yield α̂, Ĥ, and the two reconstructed

images.

The experiment was assessed via the average MSE values for α̂ and Ĥ, and the SSIM for the

image reconstruction, comparing to the ground truth. We note (Fig. 20) the following remarks

regarding the simulations' results: the stochastic image was reconstructed better for higher values
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Figure 20: Decomposition simulation results: (20a), (20b) SSIM reconstruction results of the
stochastic and structured images, respectively. (20c), (20d) MSE of the estimated α and H values,
respectively. All �gures depict the simulation result for experiments with various values of α and
H (indicated by the legend (20b)), where each point represents an average of 5 experiments (with
corresponding error bars depicting the standard deviation). We observe that the mixing and frac-
tal parameters (α and H, respectively) have been estimated with low MSE. The stochastic image
reconstruction quality is better for higher values of α, indicating higher stochastic content, and the
structural image reconstruction depicts the expected, inverse, outcome.

of α, and vice versa - the structured image was reconstructed better for lower values of α; the

overall estimation quality of α shows low MSE, indicating satisfactory estimation; the estimation of

H shows reasonable results in high values of α, or in low values of H. This is due to the fact that

high values of H depict an image with smooth behaviour (with LRD), which is harder to estimate

in images with small spatial size.

To further demonstrate the quality of the algorithm, we analyze one of the examples used in

the simulation (Fig. 21), with the parameter set (α = 0.4, H = 0.3). We observe that despite the

relatively low SSIM value for the stochastic image (0.634), the two images appear to have been

reconstructed correctly, despite the challenging initial simulated image (Fig. 21a). Gaussianity

(Fig. 21e) and fractal behavior (Fig. 21h) are observed in the stochastic images, whereas sparsity

is observed in the transform coe�cients of the structural image (Fig. 21i). We note that due

to artifacts near edges, the reconstructed stochastic image underwent edge-tapering by a 3 × 3

neighborhood low-pass �lter.

5.4.3 Examples with natural images

We evaluate the proposed algorithm using natural images (Fig. 22 shows an elaborate example of

the fractal extraction) and compare the proposed decomposition algorithm to two state-of-the-art

texture-cartoon decomposition methods, TV-G [36, 37] and MCA [38, 39]. This is not a completely

compatible comparison, since the purpose of the proposed decomposition method is di�erent; our

method separates a texture into a stochastic and structural part, whereas the other methods de-

compose a general image into its cartoon-type skeleton and its texture. Therefore, in TV-G, we
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Figure 21: Decomposition example: (21a), (21b) and (21c): ground truth, reconstructed stochastic
(SSIM 0.634) and structured (SSIM 0.797) images, respectively, with their corresponding histograms,
(21d), (21e) and (21f), respectively. The stochastic image shows Gaussian and fractal behavior (21h),
relative to the ground truth (21g), whereas the structured image is sparse in the transform domain
(21i).

manually choose appropriate parameters (for cartoon and texture regularization) that yield the

resulting two layers. In MCA, we consider the stochastic part to be the image residual, and the

structured part to be the sum of the cartoon and texture. Whereas there exists a paper with a

similar application [40], a code for providing comparisons could not be obtained.

A comparison was performed on several textures from the KTH-TIPS2b dataset (Fig. 23, �rst

row). Observe that the structural parts of the proposed algorithm (Fig. 23, second row) is much

more visually clear and free of noise relative to the results obtained by using the other algorithms

(Fig. 23, third and fourth rows). While the images do not contain noisy or stochastic details, the

49



(a) Orig. image (b) Stochastic (c) Structured

0.2 0.4 0.6 0.8
0

100

200

300

(d) Histogram

-2 0 2 4
0

100

200

300

400

(e) Histogram

-2 0 2
0

50

100

150

200

250

(f) Histogram

2 4 6
Scale

-6

-5

-4

Lo
g(

V
ar

ia
nc

e)

(g) Var/Scale

2 4 6
Scale

0

1

2

Lo
g(

V
ar

ia
nc

e)

(h) Var/Scale

2 4 6
Scale

0

0.5

1

1.5

2

Lo
g(

V
ar

ia
nc

e)

(i) Var/Scale

Figure 22: Example of image decomposition: 22a original image, 22b stochastic image and 22c
structured image with their corresponding histograms, 22d, 22e and 22f, and variance/scale plots,
22g, 22h and 22i, repsectively. The R2 for the variance/scale �t of the original image, stochas-
tic image and structured image were 0.52, 0.82 and 0.03, and the KL-divergences (w.r.t normal
distribution) were 0.0172, 0.0036 and 0.0253, respectively. Observe the enhanced sparsity of the
structured image and enhanced Gaussianity and fractal behavior of the stochastic image, relative
to the original image.

quality of the structured edges in the image has been retained, and has not been over-emphasized.

Comparing the stochastic parts of the same images (Fig. 24), we note that the result of the

proposed algorithm (Fig. 24, �rst row) yields surfaces close to fractal, depicting some long-range

dependencies (it is especially apparent in texture in the second column), distinctive of fractal sur-

faces. We observe that comparing with the other algorithms (Fig. 24, second and third rows),

the stochastic layer contains signi�cant information (and does not resemble white noise), while not
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Figure 23: Decomposition comparison. Columns depict di�erent textures from the KTH-TIPS2b
dataset. The �rst row depicts the ground truth; rows 2�4 depict the structural part using the
proposed algorithm, TV-G and MCA, respectively.

containing structural information. It may, therefore, be concluded that it has successfully extracted

the fractal details from the textures. This is also corroborated by the fractal �t R2 values, shown

in the caption of Fig. 24.

The proposed decomposition algorithm does not separate images into a high- and low-pass-type

images. The separated fractal image part clearly contains both high and low frequencies, and the

emphasis of the decomposition is on the suitable representation of each image component. We note

that while the sparsity-based method provides only an approximated solution, an exact solution,

optimal in the MMSE-sense, is not tractable using a direct approach (Appendix E).

6 Discussion

The phase of stochastic textures is an elusive subject. While it has a prominent structure, pro-

nounced non-locally in the harmonic decomposition of the periodic ingredients of textures, as well

as in anisotropic, orientational sharp details, it is useful in many tasks to retain the phase and

process only the magnitude, due to robustness of phase to blur and noise degradations. Further,

the concept of phase, while usually discussed in the Fourier domain, can be advantageous in its in-

corporation into recently-proposed more recent transforms, such as the complex steerable wavelets
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Figure 24: Decomposition comparison of the stochastic part of the textures in Fig. 23. Columns
correspond to the textures in Fig. 23. Rows 1�3 depict the complementary stochastic part, using
the proposed algorithm, TV-G and MCA, respectively. Fractal �t R2: Row 1 (proposed), left to
right: 0.82, 0.92, 0.85 and 0.96; row 2 (TV-G): 0.02, 0.37, 0.57 and 0.98; row 3 (MCA): 0.30, 0.60,
0.59 and 0.47.

[41].

The utilization of phase in textures has been considered in this work by addressing the magnitude

and phase separately for image deconvolution and decomposition. We observe that while retaining

the phase for deconvolution, successful restoration of details was obtained even for asotropic textures

that may not follow the phase model exactly, thus showing the generality of this type of algorithm.

The proposed combined model was used in this study for decomposition of textures. The main

optimization decomposition problem (42) di�ers from the typical sparse coding or basis pursuit

denoising-type problems, in which an image is decomposed into a sparsely represented image (or

several images, in the case of morphological component analysis) and a noise image. The noise is

usually discarded as non-informative interference. In our case, however, the objective is separation

of a given image into two conceptually di�erent but meaningful ingredients: a sparsely-represented

image and a densely-represented image, in our case - an fBm/fGn image. Our formulation is general

and can be applied to any linear transform applied on a random vector.

The proposed model can also be used for further image processing tasks such as super-resolution

or deconvolution. This is due to the fact that the model separates the image content conceptually

into two relatively straightforward structures: a well-de�ned random process and a harmonic se-

quence. In the case of super-resolution, for instance, each of these ingredients can be interpolated

with known methods.
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Appendices

A The variance of the sample variance of correlated Gaussian vari-

ables

Let X be a correlated multivariate Gaussian vector. There exist a matrix A and a vector m such

that

X = AZ +m,

where Z is an i.i.d Gaussian vector with zero mean and unit variance. The sample variance of X is

given by:

s2 =
1

N

N∑
i=1

(
Xi − X̄

)2
,

and the variance of the sample variance is then given by:

E
{(
s2 − E

{
s2
} )2}

= E
{(
s2
)2} − E

{
s2
} 2

=
1

N2
E
{((

X − X̄
)T (

X − X̄
))2}

− 1

N2
E
{(
X − X̄

)T (
X − X̄

)} 2

E
{((

X − X̄
)T (

X − X̄
))2}

= E
{(

(AZ)T (AZ)
)2}

= E
{(
ZTATAZ

)2}
= E

{(
ZTΛZ

)2}
.

55



For the calculation of ZTΛZ, assume Z = (z1, z2, ..., zN )T and Λ = (λi,j). Then:

ZTΛZ =


z1
...

zN




λ11 λ12 . . . λ1N
...

. . .

λN1 λNN

 (z1, ..., zN )

=


zTλ·1
...

zTλ·N


T

(z1, ..., zN )

=
∑
i

zi · zTλ·i

=
∑
i,j

zi · zjλji,

where λ·i denotes the ith column of Λ. Therefore,

E
{
ZTΛZ

}
= E

{∑
ij zizjλji

}
=
∑
ij

λjiE {zizj}

=
∑
ij

λjiδ (i, j) =
∑
i

λii = Tr {Λ} ,

and

E
{(
ZTΛZ

)2}
= E

{
ZTΛZ · ZTΛZ

}
= E

{∑
i,j zizjλji ·

∑
k,l zkzlλlk

}
= E

{∑
k,l

∑
i,j zizjzkzlλjiλlk

}
.

Recall that

E {zizjzkzl} = E {zizj} E {zkzl} + E {zizl} E {zkzj} + E {zizk} E {zjzl}

= δ (i, j) δ (k, l) + δ (i, l) δ (k, j) + δ (i, k) δ (j, l) ,
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therefore:

E
{(
ZTΛZ

)2}
=
∑
k,l

∑
i,j

λjiλlkE {zizjzkzl}

=
∑
i,k

λiiλkk + 2
∑
i,j

λ2ij

=
∑
i,j

λiiλjj + 2
∑
i,j

λ2ij

= Tr {Λ}2 + 2Tr
{

Λ2
}
.

Using the aforementioned calculation, the variance of the sample variance is given by:

Var
{
s2
}

=
2

N2
Tr
{

Λ2
}
, (53)

and is, therefore, approaching zero in quadratic rate.

B The shifted-phase DCT matrix

The shifted-phase DCT matrix, Dθ, is de�ned via the 1D-DCT matrix, D1
θ , for 0 ≤ k ≤ N − 1,

0 ≤ n ≤ N − 1 as follows:

[
D1
θ

]
k,n

=

√
2

N
wk cos

[ π
2N

(2n+ 1) k + 2πθn

]
,

where

wk =


1√

1+cos(4πθ0)
, k = 0

1, k > 0,
(54)

and 0 ≤ θn ≤ 1 depends on the frequency, n. According to the phase model, a di�erent phase may

be added (according to the absolute patch position in the image, or at least with respect to adjacent

patches) to each frequency.

The standard DCT does not encode phase information, and in that sense it is not invariant to

phase shifts, as a shifted signal would have a di�erent decomposition of zero-phase waves (c.f. DFT,

which encodes phase information). The shifted-phase transform, Dθ, remains an orthogonal matrix,

since a phase shift of one harmonic w.r.t the other does not change this property. Speci�cally, we

calculate the inner product between two such basis functions with di�erent frequencies, k and l,
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and di�erent phases, θk and θl, respectively:

(ek, el) =
(

cos
( π

2N
(2n+ 1) k + 2πθk

)
, cos

( π

2N
(2n+ 1) l + 2πθl

))
(55)

=

N−1∑
n=0

cos
( π

2N
(2n+ 1) k + 2πθk

)
cos
( π

2N
(2n+ 1) l + 2πθl

)
(56)

=
1

2

N−1∑
n=0

[
cos
( π

2N
(2n+ 1) (k + l) + 2π (θk + θl)

)
+ cos

( π

2N
(k − l) + 2π (θk − θl)

)]
.

(57)

Denote θ′ , 2π (θk + θl) and τ , π (k + l). The �rst term in (57) is as follows:

N−1∑
n=0

[
cos
(
τ
n

N
+

τ

2N
+ θ′

)]
= <

N−1∑
n=0

exp
{
j
(τn
N

+
τ

2N
+ θ′

)}
(∗) = <ej(

τ
2N

+θ′)
N−1∑
n=0

(
ejτ/N

)n
,

and this sum vanishes for k 6= l, similarly to the standard DCT. If k = l, we get a similar calculation

to that of the standard DCT, with τ = 2πk and θ′ = 4πθk:

(∗) = <ej(
τ
2N

+θ′) 1− ej2πk

1− ej2πk/N
= 0.

Similarly, the calculation for the second term in (57), with θ′ = 2π (θk − θl) and τ , π (k − l), yields
zero for k 6= l, and N when k = l. In the case of k = l = 0, we obtain cos (4πθk) as a multiplicative

constant for the �rst term in (57). Therefore, using wk as de�ned in (54), we get orthogonality. We

note that the shiftet-phase DCT degenerates to standard DCT for θk = 0∀k.
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C Orthogonality of the non-separable DCT transform

Let (n,m) denote spatial coordinates and (kx, ky) denote spatial frequencies. The inner product of

two elements, el and ek, is as follows:

(ek, el) =
∑
n,m

cos

(
π

(2n+ 1) kx + (2m+ 1) ky
2N

)
cos

(
π

(2n+ 1) lx + (2m+ 1) ly
2N

)
=
∑
n,m

[
cos

(
π

(2n+ 1) kx
2N

)
cos

(
π

(2m+ 1) ky
2N

)
− sin

(
π

(2n+ 1) kx
2N

)
sin

(
π

(2m+ 1) ky
2N

)]
·

· cos

(
π

(2n+ 1) lx + (2m+ 1) ly
2N

)
=
∑
n,m

[
cos

(
π

(2n+ 1) kx
2N

)
cos

(
π

(2m+ 1) ky
2N

)
− sin

(
π

(2n+ 1) kx
2N

)
sin

(
π

(2m+ 1) ky
2N

)]
·

·
[
cos

(
π

(2n+ 1) lx
2N

)
cos

(
π

(2m+ 1) ly
2N

)
− sin

(
π

(2n+ 1) lx
2N

)
sin

(
π

(2m+ 1) ly
2N

)]

=
∑
n,m

cos

(
π

(2n+ 1) kx
2N

)
cos

(
π

(2m+ 1) ky
2N

)
cos

(
π

(2n+ 1) lx
2N

)
cos

(
π

(2m+ 1) ly
2N

)
+

−
∑
n,m

cos

(
π

(2n+ 1) kx
2N

)
cos

(
π

(2m+ 1) ky
2N

)
· sin

(
π

(2n+ 1) lx
2N

)
sin

(
π

(2m+ 1) ly
2N

)
−
∑
n,m

sin

(
π

(2n+ 1) kx
2N

)
sin

(
π

(2m+ 1) ky
2N

)
cos

(
π

(2n+ 1) lx
2N

)
cos

(
π

(2m+ 1) ly
2N

)
+

+
∑
n,m

sin

(
π

(2n+ 1) kx
2N

)
sin

(
π

(2m+ 1) ky
2N

)
sin

(
π

(2n+ 1) lx
2N

)
sin

(
π

(2m+ 1) ly
2N

)

=
∑
n

cos

(
π

(2n+ 1) lx
2N

)
cos

(
π

(2n+ 1) kx
2N

)∑
m

cos

(
π

(2m+ 1) ky
2N

)
cos

(
π

(2m+ 1) ly
2N

)
+

−
∑
n

cos

(
π

(2n+ 1) kx
2N

)
sin

(
π

(2n+ 1) lx
2N

)∑
m

cos

(
π

(2m+ 1) ky
2N

)
sin

(
π

(2m+ 1) ly
2N

)
−
∑
n

sin

(
π

(2n+ 1) kx
2N

)
cos

(
π

(2n+ 1) lx
2N

)∑
m

sin

(
π

(2m+ 1) ky
2N

)
cos

(
π

(2m+ 1) ly
2N

)
+

+
∑
n

sin

(
π

(2n+ 1) kx
2N

)
sin

(
π

(2n+ 1) lx
2N

)∑
m

sin

(
π

(2m+ 1) ky
2N

)
sin

(
π

(2m+ 1) ly
2N

)
,Scc,xScc,y − Scs,xScs,y − Ssc,xSsc,y + Sss,xSss,y (58)
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From known properties of 1D-DCT he have the following:

Scc,x = Sss,x =

0, lx 6= kx

N, lx = kx
, Scc,y = Sss,y =

0, ly 6= ky

N, ly = ky.

The last equality stems from the orthogonality of the 1D-DCT transform; the inner product of two

basis elements of the DCT,
(
e1k, e

1
l

)
, is zero:

(ek, el) =
∑
n

cos
( π

2N
(2n+ 1) k

)
cos
( π

2N
(2n+ 1) l

)
=

1

2

∑
n

cos
( π

2N
(2n+ 1) (k + l)

)
+ cos

( π

2N
(2n+ 1) (k − l)

)
= 0,

where the last equality follows from the following result, for any k 6= 0:

∑
n

cos
( π

2N
(2n+ 1) k

)
=
∑
n

<ej
π
2N

(2n+1)k = <ej
π
2N

k
∑
n

ej(
π
N
k)n

= <ej
π
2N

k sin
(
1
2N
(
π
N k
))

sin
(
1
2

(
π
N k
)) ej(

π
N
k)N−1

2

=
cos
(
1
2πk

)
sin
(
1
2πk

)
sin
(
1
2
πk
N

) =
1
2 (sin 0 + sinπk)

sin
(
1
2
πk
N

) = 0,

where <x denotes the real part of a complex variable, x. It remains to check the cross terms (58)

for orthogonality:

Ssc,x =
∑
n

sin
( π

2N
[(2n+ 1) kx]

)
cos
( π

2N
[(2n+ 1) lx]

)
=

1

2

∑
n

sin
( π

2N
[(2n+ 1) (kx + lx)]

)
+ sin

( π

2N
[(2n+ 1) (kx − lx)]

)
,

where ∑
n

sin
( π

2N
(2n+ 1) k

)
=
∑
n

=ej
π
2N

(2n+1)k =
∑
n

=ej
πk
2N ejπ

n
N
k

= =ej
πk
2N

∑
n

ej(π
k
N )n = =ej

πk
2N

sin
(
1
2N

π
N k
)

sin
(
1
2
πk
N

) ej(
π
N
k)N−1

2

= =
sin
(
1
2πk

)
sin
(
1
2
πk
N

)ej 12πk =
sin
(
1
2πk

)2
sin
(
1
2
πk
N

) =

1
2

(
1− (−1)k

)
sin
(
1
2
πk
N

) .
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Therefore, denoting xp = kx + lx, y
p = ky + ly, x

m = kx − lx, ym = ky − ly,

Scs,x = Ssc,x =
1

4

[
1− (−1)x

p

sin
(
1
2
π
N x

p
) +

1− (−1)x
m

sin
(
1
2
π
N x

m
)]

Scs,y = Ssc,y =
1

4

[
1− (−1)y

p

sin
(
1
2
π
N y

p
) +

1− (−1)y
m

sin
(
1
2
π
N y

m
)] .

These terms vanish only if xp and xm are both even, or if yp and ym are both even, and are,

therefore, non-zero in general, indicating the cross-terms are not orthogonal. The inner product

between two basis elements of the non-separable transform is, therefore, as follows:

Scs,xScs,y + Ssc,xSsc,y = Scs,xScs,y + Scs,xScs,y = 2Scs,xScs,y.

D Analytical solution to the modi�ed SSF problem

The core of the unitary SSF problem is the following nonlinear equation system:β (ξ0 − βξ) + λ
|ci|ξ = 0

β (η0 − βη) + λ
|ci|η = 0,

(59)

where β , 1
α (1− α) and

∣∣ci∣∣ =
√
ξ2 + η2. The �rst equation can be written as follows:

0 = β (ξ0 − βξ) +
λ

|ci|
ξ

0 = βξ0 + ξ

(
λ

|c|
− β2

)
ξ = βξ0

1

β2 − λ
|c|

= βξ0
1

β2|c|−λ
|c|

ξ = βξ0
|c|

β2 |c| − λ

η = βη0
|c|

β2 |c| − λ
ξ

η
=
ξ0
η0

∴ξ =
ξ0
η0
η , γη.

Therefore, ∣∣ci∣∣ =
√
ξ2 + η2 =

√
η2 (1 + γ2) = |η|

√
1 + γ2.
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Further, according to (46), after substituting |η|
√

1 + γ2 for
∣∣ci∣∣, we have:

l =
1

2

∣∣∣∣ci0 − 1

α
(1− α) (ξ + jη)

∣∣∣∣2 + λ
√

1 + γ2 |η|

=
1

2

∣∣∣∣ci0 − η 1

α
(1− α) (γ + 1j)

∣∣∣∣2 + λ
√

1 + γ2 |η|

=
1

2

∣∣∣∣ξ0 − γη 1

α
(1− α) + j

(
η0 − η

1

α
(1− α)

)∣∣∣∣2 + λ
√

1 + γ2 |η|

=
1

2

[
(ξ0 − γβη)2 + (η0 − ηβ)2

]
+ λ

√
1 + γ2 |η| .

Taking the derivative w.r.t η, we obtain:

∂l

∂η
= −γβ (ξ0 − γβη)− β (η0 − ηβ) + λ

√
1 + γ2sign {η}

= −β (η0 + γξ0) + β2
(
1 + γ2

)
η + λ

√
1 + γ2sign {η} .

If η > 0, we obtain:

0 = −β (η0 + γξ0) + β2
(
1 + γ2

)
η + λ

√
1 + γ2

η =
β (η0 + γξ0)− λ

√
1 + γ2

β2 (1 + γ2)
,

with the condition for η > 0:

η > 0⇔ β (η0 + γξ0)− λ
√

1 + γ2

β2 (1 + γ2)
> 0

⇔ λ <
β (η0 + γξ0)√

1 + γ2
.

Similarly, for η < 0, we obtain:

0 = −β (η0 + γξ0) + β2
(
1 + γ2

)
η − λ

√
1 + γ2

η =
β (η0 + γξ0) + λ

√
1 + γ2

β2 (1 + γ2)
,

η < 0⇔ β (η0 + γξ0)√
1 + γ2

< −λ.
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Therefore, the optimal solution for η is:

η =


βz0−λγ0
β2γ20

, βz0
γ0

> λ

0,
∣∣∣βz0γ0 ∣∣∣ ≤ λ

βz0+λγ0
β2γ20

, −λ > βz0
γ0
,

(60)

where z0 = η0 + γξ0 and γ0 =
√

1 + γ2.

E MMSE-based decomposition

Recalling (31), the signal c (x, y) can be represented in matrix form as Dθc. Therefore, the signal

g (x, y) is given in its vectorized version by

g = αΦξ + (1− α)Dθc (61)

=

[
αΦ 0

0 (1− α)Dθ

][
ξ

c

]
,Mv. (62)

Let us summarize the variables to be estimated from (62): α is the mixing parameter; Φ is a

variable which depends on the Hurst parameter, H; {mi, θi}Ki=1 and {ui, vi}Ki=1 are the magnitude-

phase pairs and the frequency locations from (29), respectively. Denoting the parameter set as Θ,

its maximum-likelihood estimator, Θ̂ (g) is given by:

Θ̂ (g) = arg maxL (Θ|g) := p (g|Θ) ,

where p (g|Θ) is the density of g conditioned on the parameter set, Θ. We observe that this

problem is intractable under our current assumptions; whereas the �rst term in (62) is Gaussian,

the second term is a linear combination of log-normally-distributed variables, which does not lend

itself to a simple analytic expression. We, therefore, solve this problem assuming that c are normally

distributed. Given Θ,

g = Mv ∼ N
(
µ,Σ

)
,

where

µ = E {g} = αΦE {ξ} + (1− α)DθE {c}

= (1− α)Dθµc,
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and

Σ = Cov{Mv} = MCov{v} MT

= MΣVM
T .

ΣV is a diagonal matrix, whose �rstK entries are equal to one, and the rest of the entries correspond

to c and are denoted σ2c . Therefore,

Σ =

[
α2ΦΦT 0

0 (1− α)2Dθσ
2
cD

T
θ

]
=

[
α2ΣH 0

0 (1− α)2Dθσ
2
cD

T
θ

]
,

where ΣH is an fBm/fGn covariance matrix. The likelihood function then follows a multivariate

normal distribution,

L (Θ|g) =
1

((2π)n |Σ|)1/2
exp

{
−1

2

(
x− µ

)T
Σ−1

(
x− µ

)}
.

The maximum-likelihood estimator for Σ is given by Σ̂ = 1
n

∑
i

(
xi − µ

)T (
xi − µ

)
. However, we

would like to evaluate the derivative

∂L (Θ|g)

∂θi
= tr

(
∂L (Θ|g)

∂Σ
· ∂Σ

∂θi

)
.

Unfortunately, this gives rise to far more complex equations than can be solved precisely.
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