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Abstract

We define ordered sequential consistency (OSC), a correctness criterion for concurrent
objects, which captures the typical behavior of many real-world services, e.g., ZooKeeper,
etcd, Chubby, Doozer, and Consul. A straightforward composition of OSC objects is not
necessarily OSC. To remedy this, we recently implemented a composition framework that
injects dummy updates in specific scenarios. We prove that injecting such updates, which we
call here leading updates, enables correct OSC composition.

We generalize OSC to define G-OSC, a generic criterion for concurrent objects, which
encompasses a range of criteria, including sequential consistency and linearizability.
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1 Introduction

The backends of large-scale distributed applications, e.g., social networks, web search engines,
content providers, and ecommerce platforms, rely on coordination services such as ZooKeeper [8],
etcd [5], Chubby [6], Doozer [4], and Consul [3]. A coordination service facilitates maintaining
shared state in a consistent and fault-tolerant manner. Such services are commonly used for
inter-process coordination (e.g., global locks and leader election), service discovery, configuration
and metadata storage, and more. They offer an abstraction of shared memory objects.

In this work we define a correctness criterion named Ordered Sequential Consistency (OSC),
which captures the semantics of such services [3, 4, 5, 6, 8]. These coordination services provide so-
called “strong consistency” for updates and some weaker semantics for reads. They are replicated
for high-availability, and each client submits requests to one of the replicas. Reads are not atomic
so that they can be served fast, i.e., locally by any of the replicas, whereas update requests are
serialized via a quorum-based protocol based on Paxos [11], e.g., Zab [9] or Raft [14]. Since reads
are served locally, they can be somewhat stale but nevertheless represent a valid system state.

In the literature, these services’ guarantees are described as linearizable, (or atomic), [7]
writes and FIFO order for each client [1, 8]. This definition is not accurate in two ways: First,
linearizability of updates has no meaning when no operation reads the written values. Second,
this definition enables reading from a future write, which obviously does not occur in any real-
world service. Our notion of OSC defines, for the first time, the precise guarantees of existing
coordination services. OSC is stronger than sequential consistency, but weaker than linearizability.

Although supporting OSC semantics instead of atomicity of all operations enables fast local
reads, this makes services non-composable: correct OSC coordination services may fail to provide
the same level of consistency when combined [2, 13], as we exemplify in Section 4. Intuitively, the
problem arises because OSC, similarly to sequential consistency [10], allows reads to occur “in the
past”, which can introduce cycles in the history of updates.

In a companion systems paper [13] we present ZooNet, a system for modular composition
of coordination services, which addresses this challenge: Consistency is achieved on the client
side by judiciously adding synchronization requests called leading updates. The key idea is to
place a “barrier” that limits how far in the past reads can be served from. ZooNet does so
by adding a “leading” update request prior to a read request whenever the read is addressed
to a different service than the previous one accessed by the same client. We provide here the
theoretical underpinnings for the algorithm implemented in ZooNet.

Proving the correctness of ZooNet is made possible by the OSC definition that we present
in this paper. For example, had the coordination services allowed reads from the future, the
composition would not have been correct. Interestingly, Vitenberg and Friedman [17] showed
that sequential consistency, when combined with any local (i.e., composable) property continues
to be non-composable. Our approach circumvents this impossibility result since leading updates
is not a local property.

Updates have a key role in coordination services; for example, a shared lock is acquired by the
first client to update the lock. Therefore, coordination services maintain a total order of updates
that preserves their real-time order. In our formal definitions, the fact that strong consistency is
required specifically for updates and not for reads plays no role. Indeed, we generalize our OSC
definition to consider an arbitrary subset of an object’s operations (not necessarily updates), and
require the stronger consistency notion for this subset only. This generalization, called G-OSC,
captures a range of criteria, including sequential consistency and linearizability.

We further model TSO [15, 16] as a composition of G-OSC objects, with strong consistency
required for memory barriers. Thus, our result implies that TSO can be made sequentially
consistent by adding leading memory barriers whenever a new object is accessed.
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We organize the paper as follows: Section 2 presents our model. Section 3 provides background
on coordination services, motivating our work. Section 4 defines OSC, and proves that OSC
is not composable. Section 5 defines the leading updates property satisfied by adding update
requests as in ZooNet, and shows that any composition of multiple OSC coordination services
that preserves leading updates is OSC. Section 6 generalizes our notion of OSC to capture a
range of criteria. Section 7 discusses the necessity of excluding “reads from the future”. Section 8
concludes the paper.

2 Model and Notation

In this section we define the model and basic notions.
We use a standard shared memory execution model [7], where a set φ of sequential processes

access shared objects from some set X. An object has a name label, a value, and a set of operations
used for manipulating and reading its value. An operation’s execution is delimited by two events,
invoke and response.

A history σ is a sequence of operation invoke and response events. An invoke event of operation
op is denoted iop, and the matching response event is denoted rop. For two events e1, e2 ∈ σ, we
denote e1 <σ e2 if e1 precedes e2 in σ, and e1 ≤σ e2 if e1 = e2 or e1 <σ e2. For two operations
op and op′ in σ, op precedes op′, denoted op <σ op′, if rop <σ iop′ , and op ≤σ op′ if op = op′ or
op <σ op′. Two operations are concurrent if neither precedes the other.

For a history σ, complete(σ) is the sequence obtained by removing operations with no response
events from σ. A history is sequential if it begins with an invoke event and consists of an
alternating sequence of invoke and response events, s.t. each invoke is followed by the matching
response.

For p ∈ φ, the process subhistory σ|p of a history σ is the subsequence of σ consisting of events
of process p. The object subhistory σx for an object x ∈ X is similarly defined. A history σ is
well-formed if for each process p ∈ φ, σ|p is sequential. For the rest of our discussion, we assume
that all histories are well-formed. The order of operations in σ|p is called the process order of p.

For the sake of our analysis, we assume that each subhistory σx starts with a dummy
initialization update of x to a dedicated initial value v0, denoted dix(v0), and that there are no
concurrent operations with dix(v0) in σx.

The sequential specification of an object x is a set of allowed sequential histories in which all
events are associated with x. For example, the sequential specification of a read-write object is
the set of sequential histories in which each read operation returns the value written by the last
update operation that precedes it.

In order to define OSC, for simplicity we classify operations into two categories: update
operations that read and change the object’s value (using any type of write, e.g., an unconditional
write, a general read-modify-write, etc.), and read operations that only read the object value.

3 Coordination Services – Background

Coordination services are deployed on a collection of servers. In asynchronous systems, in order
to overcome f failures, 2f + 1 servers are required [12], and therefore the common deployment
size is either three or five servers.

The servers maintain shared state that is accessible to client processes; each process is
connected to one server at a time, and it performs operations on the shared state, (such as
updates and reads), by sending requests to the server it is connected to. The updates’ strong
consistency is achieved by a protocol that allows a quorum, (typically a majority), of the servers
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reach consensus on the next accepted update operation; examples of such protocols include
Paxos [11] and its variants, e.g., Zab [9] and Raft [14]. Waiting for a majority to agree upon each
request entails long latency, and therefore reads offer weaker semantics, which allow servers to
immediately respond based on their local states.

In Figure 1 we see a coordination service that has three servers, and three processes, each
connected to a different server. Process 3 sends to Server1 a request to update x to be 1. The
update propagates to Server3. Since two out of three servers comprise a majority, they agree on
the update, and both servers set x = 1. Process 1 reads x from Server2 to which the update did
not propagate yet, therefore the read returns 0. Thus, process 1 reads “from the past”.

Coordination 
Service

Server1

Server2 Server3

write(x,1) quorum
x = 1

x = 0 x = 1

Process 1: read(x)→0 Process 2: read(x)→1

Process 3: write(x,1)

Figure 1: Coordination service with 3 servers and a shared state in which a value is assigned
to x, serving 3 processes.

If a process switches servers during execution, (e.g., due to a connectivity problem, or a server
failure), the coordination service maintains the process’ execution correctness by not allowing it
to connect to a server that is less up-to-date than the previous server of that process [8]. For
example, if in Figure 1 process 2 disconnects from Server3, it cannot connect to Server2 until the
update of x, (which process 2 saw), propagates to Server2.

Each coordination service maintains multiple objects, e.g., ZooKeeper maintains a file-system-
like structure, in which files and directories are objects. In the next section we define OSC, a
correctness criterion satisfied for a collection of objects managed by the same service instance.
However, when we combine multiple service instances, OSC is not guaranteed. Specifically, we
show that such composition may lead to a scenario in which different processes see different
update orders.

Nevertheless, there is strong motivation for composing coordination services, particularly in
large scale deployments. Given that the update latency depends on communication between
servers, if a coordination service runs over WAN, updates become slow. By offering a correct
composition of coordination services, we enable local updates that are both fast and consistent;
see ZooNet [13] for further discussion.

4 Ordered Sequential Consistency

In Section 4.1 we define ordered sequential consistency, and in Section 4.2 we prove that OSC is
not composable.
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4.1 Definition

We now define our correctness criterion for coordination services.

Definition 1 (OSC). A history σ is ordered sequentially consistent if there exists a history
σ′ that can be created by adding zero or more response events to σ, and there is a sequential
permutation π of complete(σ′), called a serialization of σ, satisfying the following:

OSC1 (sequential specification): ∀x ∈ X, πx belongs to the sequential specification of x.

OSC2 (process order): For two operations o and o′, if ∃p ∈ φ : o <σ|p o′ then o <π o′.

OSC3 (real-time order of updates): ∀x ∈ X, for an update operation uo and an operation o

s.t. uo, o ∈ σx, if o <σ uo then o <π uo.

An object is OSC if all of its histories are OSC.

Intuitively, OSC3 does not rule out “reads from the past”, in the sense that a read may return
an old value, (i.e., a read operation can be serialized after any update that precedes it in σ). On
the other hand, in contrast to the standard definition of sequential consistency, OSC3 disallows
“reads from the future” – a read may not return a value before it is written. The significance of
the latter is illustrated in Section 7 below.

If we examine OSC’s properties, we see that OSC1 and OSC3 are local properties – they
are defined per object. In Section 4.2, we will show that OSC2 is not local, in the sense that a
composition of objects that (locally) satisfy OSC2 does not necessarily (globally) satisfy OSC2.

Note that like linearizability and sequential consistency, OSC defines a serialization π for every
history, encompassing all objects. Due to OSC3’s real-time order of updates, OSC is stronger
than sequential consistency, and since real-time order of reads is not required, it is weaker than
linearizability.

4.2 Non-Composability

We now show that OSC is not a local property, i.e., not composable.

Theorem 1. There exists a history of OSC objects that is not OSC.

Proof. In Figure 2 we depict a history σ that is not OSC and consists of two OSC objects.
Process 1 first writes 5 to x, and then reads from y “in the past”, seeing y’s initial value 0.
Process 2 writes 5 to y and then reads 0 from x, which is x’s initial value.

First we observe that σx (and by symmetry, also σy) satisfies OSC properties: σx has the
following permutation:

πx = di(x, 0), (read(x) → 0), write(x, 5).

OSC1: πx belongs to the sequential specification of x.
OSC2: there are no process order relations.
OSC3: di(x, 0) <σ write(x, 5), and di(x, 0) <πx

write(x, 5) as needed. There is no additional
requirement on the order write(x, 5) and (read(x) → 0).

Assume towards contradiction that a serialization π of σ exists. W.l.o.g. write(x, 5) <π

write(y, 5). Given that write(y, 5) <σ|p2
(read(x) → 0), and that π satisfies OSC2, then

write(y, 5) <π (read(x) → 0). We get:

write(x, 5) <π write(y, 5) <π (read(x) → 0),

a contraction to OSC1.
In Theorem 1 and Figure 2, we showed the non-composability of two OSC services, one

maintaining x and another maintaining y. If x and y belong to the same OSC service, then the
scenario in Figure 2 does not arise, because OSC orders updates on all objects together.
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Figure 2: Inconsistent composition of two OSC objects x and y: there is no common serialization.

5 Composability via Leading Updates

In Section 5.1 we define a total order on operations in histories of compositions of OSC objects.
This order always satisfies OSC1 and OSC3, but not necessarily OSC2. In Section 5.2 we define
the leading updates property, and prove that in histories that satisfy it, the total order defined in
Section 5.1 does satisfy OSC2. This implies that any composition of OSC objects that satisfies
leading updates is OSC.

5.1 Π-Order on Operations

Given a history σ of OSC objects, we define a strict total order on all operations in σ. We begin
by defining the future set of an update operation:

Definition 2 (Update future set). Given a history σ of OSC objects, a serialization πx of σx,
and an update operation uo ∈ σx, the future set of uo in πx is Fπx(uo) , {o ∈ πx|uo ≤πx

o}.

We now define an update operation’s first response event to be the earliest response event of
an operation in its future set.

Definition 3 (First response event). Given a history σ of OSC objects, a serialization πx of σx,
and an update operation uo ∈ σx, the first response event of uo in πx, denoted frπx

σ (uo), is the
earliest response event in σ of an operation in Fπx(uo).

We make two observations regarding first responses.

Observation 1. Given a history σ of OSC objects and an update operation uo ∈ σx, for every
serialization πx of σx, iuo <σ frπx

σ (uo).

Proof. By definition, frπx
σ (uo) is a response event in σ of an operation o s.t. uo ≤πx

o. If
frπx

σ (uo) <σ iuo, i.e., ro <σ iuo, then o <σ uo, a contradiction to OSC3.
We now observe that the order of updates in a serialization corresponds to the order of their

first response events in that serialization:

Observation 2. Let σ be a history of OSC objects, and let πx be a serialization of σx for some
x. For two update operations o, o′ ∈ πx, if o <πx

o′, then frπx
σ (o) ≤σ frπx

σ (o′).

Proof. Since o <πx
o′, we get Fπx(o′) ⊂ Fπx(o). By Definition 3, frπu

σ (o′) is a response event
of an operation o1 ∈ Fπx(o′), and therefore o1 ∈ Fπx(o). Thus, frπx

σ (o) is either frπx
σ (o′) or an

earlier response event in σ.
To define our strict total order on operations we begin with updates:

Definition 4 (Update Π-order). Let σ be a history of OSC objects. Let Π = {πx}x∈X be a set of
serializations of {σx}x∈X. For two update operations uo1, uo2 ∈ σ, we define their update Π-order,
denoted <uΠ, as follows:

(<) If uo1, uo2 ∈ σx for some x ∈ X, then uo1 <uΠ uo2 iff uo1 <πx
uo2;
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(fr) otherwise, ∃x, y ∈ X, x 6= y : uo1 ∈ σx and uo2 ∈ σy, then uo1 <uΠ uo2 iff frπx
σ (uo1) <σ

fr
πy

σ (uo2).

Lemma 1. For a history σ of OSC objects and a set of serializations Π = {πx}x∈X of {σx}x∈X,
update Π-order is a strict total order on updates in σ.

Proof. Irreflexivity, antisymmetry, and comparability follow immediately from the definition of
<uΠ. We show that <uΠ satisfies transitivity.

Let uo1, uo2, and uo3 be three update operations s.t. uo1 <uΠ uo2 <uΠ uo3; we need to prove
that uo1 <uΠ uo3. We consider four cases according to the condition by which each of the pairs
is ordered:

(<,<) If ∃x ∈ X uo1, uo2, uo3 ∈ σx, then uo1 <πx
uo2 <πx

uo3 implies uo1 <πx
uo3, and thus

uo1 <uΠ uo3.

(<,fr) If ∃x, y ∈ X, x 6= y : uo1 <πx
uo2, uo3 ∈ σy, and frπx

σ (uo2) <σ fr
πy

σ (uo3), by Observation 2,
frπx

σ (uo1) ≤σ frπx
σ (uo2), therefore frπx

σ (uo1) <σ fr
πy

σ (uo3), and uo1 <uΠ uo3.

(fr,<) If ∃x, y ∈ X, x 6= y : uo1 ∈ σx, uo2 <πy
uo3, and frπx

σ (uo1) <σ fr
πy

σ (uo2), by Observation 2,
fr

πy

σ (uo2) ≤σ fr
πy

σ (uo3). We get frπx
σ (uo1) <σ fr

πy

σ (uo3), therefore uo1 <uΠ uo3.

(fr,fr) If ∃x, y, z ∈ X, x 6= y, y 6= z : uo1 ∈ σx, uo2 ∈ σy, and uo3 ∈ σz, this means that
frπx

σ (uo1) <σ fr
πy

σ (uo2) and fr
πy

σ (uo2) <σ frπz
σ (uo3). By transitivity of <σ, frπx

σ (uo1) <σ

frπz
σ (uo3). If z 6= x, then uo1 <uΠ uo3. If z = x, by the contrapositive of Observation 2,

uo1 <πx
uo3, and uo1 <uΠ uo3.

We extend <uΠ to a weak total order in the usual way: o1 ≤uΠ o2 if o1 <uΠ o2 or o1 = o2.
For a history σ, a serialization πx of σx, and an operation o in σx, the last update before o in πx,
denoted luπx

(o), is the latest update operation in the prefix of πx that ends with o. Note that
since every history starts with a dummy initialization, every read is preceded by at least one
update and so luπx

(o) is well-defined. We use last updates to extend the update Π-order to a
strict total order on all operations in σ.

Definition 5 (Π-order). Let σ be a history of OSC objects. Let Π = {πx}x∈X be a set of
serializations of {σx}x∈X. For two operations o1, o2 ∈ σ on objects x, y, resp., we define Π-order,
denoted <Π, as follows:

(luπx
(o1) 6= luπy

(o2)) if the last updates before o1 and o2 are different, then o1 <Π o2 iff luπx
(o1) <uΠ

luπy
(o2);

(luπx
(o1) = luπy

(o2)) otherwise, x = y, and o1 <Π o2 iff o1 <πx
o2.

We now observe that <Π generalizes all the serializations πx ∈ Π:

Observation 3. Let σ be a history of OSC objects, and πx ∈ Π a serialization of σx for some x.
For two operations o1, o2 ∈ πx, if o1 <πx

o2 then o1 <Π o2.

Proof. Since o1 <πx
o2, then luπx

(o1) ≤πx
luπx

(o2). If luπx
(o1) = luπx

(o2) then by Definition 5,
o1 <Π o2. Otherwise, by Definition 4, luπx

(o1) <uΠ luπx
(o2) and by Definition 5, o1 <Π o2.

Lemma 2. For a history σ of OSC objects, Π-order is a strict total order on all operations.

Proof. Irreflexivity, antisymmetry, and comparability follow immediately from the definition of
<Π. We show that <Π satisfies transitivity.
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Let o1, o2, and o3 be three operations on objects x, y, z, resp., s.t. o1 <Π o2 <Π o3; we need
to prove that o1 <Π o3.

For every oi and oj , by Definition 5, oi <Π oj implies luπi
(oi) ≤uΠ luπj

(oj). By transitivity
of ≤uΠ (Lemma 1), we get from luπx

(o1) ≤uΠ luπy
(o2) ≤uΠ luπz

(o3) that luπx
(o1) ≤uΠ luπz

(o3).
If luπx

(o1) <uΠ luπz
(o3) then by Definition 5 o1 <Π o3. If luπx

(o1) = luπz
(o3), then by

luπx
(o1) ≤uΠ luπy

(o2) ≤uΠ luπz
(o3) we get luπx

(o1) = luπy
(o2) = luπz

(o3), and x = y = z.
Therefore by o1 <Π o2 <Π o3 and Definition 5, o1 <πx

o2 <πx
o3, and thus by Definition 5

o1 <Π o3.
Note that Π-order is always defined for compositions of OSC objects. Since it generalizes all

the serializations πx (Observation 3), it preserves OSC1 and OSC3. Nevertheless, OSC2 is not
guaranteed. For example, consider the history σ depicted in Figure 2, for which

πx = di(x, 0), (read(x) → 0), write(x, 5), and πy = di(y, 0), (read(y) → 0), write(y, 5).

The first response event of each update operation is the response event of that update in σ. Given
that rdi(x,0) <σ rdi(y,0), we get

di(x, 0) <Π (read(x) → 0) <Π di(y, 0) <Π (read(y) → 0) <Π write(y, 5) <Π write(x, 5).

This means that <Π does not maintain the process order as required for OSC2. In the next
section we show that by adding leading updates, we ensure that Π-order satisfies also OSC2.

5.2 OSC Composition via Leading Updates

We say that in a history σ there are leading updates if for every read operation ro by a process p

in σ, the last operation of p before ro is on the same object. This means that between every two
read operations of different objects by the same process in σ, there is an update operation to the
second.

In ZooNet [13], this property is achieved by adding dummy updates whenever a client reads
from a different object than the one it last accessed. This is illustrated in Figure 3, where we add
dummy updates to the example of Figure 2.

Figure 3: Consistent composition of two objects x and y: adding dummy updates prior to reads
on new objects ensures OSC.

The history in Figure 3 is OSC with the following serialization:

di(x, 0), di(y, 0),

write(y, 5), write(x, x), read(x) → 0, write(x, 5), write(y, y), read(y) → 5.

We next prove that adding leading updates allows for correct OSC composition.

Theorem 2. If a history σ of OSC objects has leading updates, then σ is OSC.

Proof. Let Π = {πx}x∈X be a set of serializations of {σx}x∈X, and let π be the sequential
permutation of σ defined by <Π. We now prove that π satisfies OSC.
OSC1 and OSC3 follow immediately from Observation 3.
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We prove OSC2. Let o1 and o2 be two operations for which ∃p ∈ φ : o1 <σ|p o2. We now show
that o1 <Π o2.

We start by proving the claim for two consecutive operations in σ|p. If both operations are on
the same object, then by Observation 3, o1 <Π o2, as needed. Otherwise, ∃x, y ∈ X, x 6= y : o1 ∈
σx, o2 ∈ σy, and o1 immediately precedes o2 in σ|p. By leading updates, since o1 and o2 are not
on the same object, o2 is an update operation and hence luπy

(o2) = o2.
By definition, frπx

σ (luπx
(o1)) ≤σ ro1 . Since ro1 <σ io2 , and by Observation 1, io2 <σ fr

πy

σ (o2),
we get that frπx

σ (luπx
(o1)) <σ fr

πy

σ (o2). By Definition 4, luπx
(o1) <uΠ o2, and by Definition 5,

o1 <Π o2.
Thus, every two consecutive operations oi, oi+1 in σ|p satisfy oi <Π oi+1. By Lemma 2, <Π is

a strict total order on all operations, and therefore by transitivity, we get o1 <Π o2.

6 Generalization and Relationship to other Conditions

In Section 6.1 we define G-OSC, a generalization of OSC. In Section 6.2 we show that sequential
consistency and linearizability are special cases of G-OSC, and in Section 6.3 we show that a
composition of G-OSC objects can represent TSO.

6.1 Generalizing OSC

The OSC definition differentiates between update and read operations, requiring real-time order
only for the former. The focus on updates follows their role in coordination services, which
maintain a total order of updates that preserves their real-time order. Nevertheless, in the formal
definitions, the fact that the real-time ordered set of operations happens to be updates plays no
role. We observe that we can choose an arbitrary subset A of the objects’ operations instead of
updates. Note that A is a subset of the operations defined on all objects in X, which are not
necessarily the same for all objects. OSC can then be generalized as follows:

Definition 6 (G-OSC(A)). A history σ is general OSC w.r.t. a subset A of the objects’ operations
if there exists a history σ′ that can be created by adding zero or more response events to σ, and
there is a sequential permutation π of complete(σ′), called a serialization of σ, satisfying the
following:

OSC1 (sequential specification), as in Definition 1.

OSC2 (process order), as in Definition 1.

G-OSC3 (real-time order of A): ∀x ∈ X, for an operation o ∈ A and an operation o′ s.t.
o, o′ ∈ σx, if o′ <σ o then o′ <π o.

6.2 G-OSC, Linearizability, and Sequential Consistency

Linearizability and sequential consistency are both special cases of G-OSC. For linearizability,
we let A consist of all of the objects’ operations. On the other hand, if A = ∅, then OSC3 is
null, and G-OSC only follows the sequential specification and process order of an object. Thus,
sequential consistency is simply G-OSC(∅).

Our composition is based on adding leading A-s. In case A = ∅, i.e., in sequentially consistent
objects, one needs to add a special “sync” operation, which is not exposed to clients and is used
for allowing correct composition. In addition, we assume that each subhistory σx starts with a
dummy initialization operation that belongs to A. Similarly to sync operations, such dummy
updates are not exposed to clients, hence in the object’s public interface, A can remain ∅.
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6.3 G-OSC and TSO

TSO: background TSO (“Total Store Order”) [15, 16] is a widely used memory model, for
example, implemented in x86 processors.

TSO models a system where each process’ updates are stored in a local buffer, and applied
on the shared memory at some point in the future. A read of object x then returns either the
value of the most recent buffered update on x by the same process, or x’s value from the shared
memory, in case there is no such buffered operation. TSO is not sequentially consistent because
it allows read operations to be served by shared memory prior to applying updates that precede
them in process order. That is, for a history σ, an update operation o1 on x, and a read operation
o2 on y 6= x, o1 <σ|p o2 does not imply that o1 is applied on the shared memory before o2 reads
from the shared memory. This contradicts the process order, and thus contradicts sequential
consistency.

For example, the history depicted in Figure 2 satisfies TSO – it is possible for write(x, 5) of
Process 1 to respond before x is set to 5 in shared memory, and symmetrically for write(y, 5) to
respond before y is set to 5. Both processes then read the old values – Process 1 reads y = 0, and
Process 2 reads x = 0.

Since TSO diverges from sequential consistency only due to operations on different objects,
each object x in TSO by itself satisfies sequential consistency. In addition, for cases in which a
process needs to force process order on its updates and reads on different objects, TSO defines
special memory barrier operations, that prevent such reordering. For simplicity, we focus our
discussion on the general memory barrier. This barrier guarantees that all prior operations of the
same process are applied to shared memory before the barrier.

Modeling TSO using G-OSC We observe that a single TSO object can be modeled as
G-OSC({barrier}): it is sequentially consistent and enforces real-time order between every barrier
and every other operation. A composition of TSO objects is therefore, in particular, a compo-
sition of G-OSC({barrier}) objects. By modeling TSO this way we can conclude that adding
leading barriers every time a process performs an operation on a new object ensures correct TSO
composition:

Corollary 1. A composition of TSO objects with leading barriers is sequentially consistent.

7 Why not Read from the Future?

OSC3 requires that the serialization order between an update and any other operation follow
their real-time order. Since the serialization satisfies the object’s sequential specification, this
disallows “reads from the future”.

Requiring real-time order only between update operations would cause two problems: first, it
will allow impractical histories; second, it would give rise to the anomaly depicted in Figure 4,
where process 1 reads y = 5 and then updates x to 5, while process 2 reads x = 5 and only
then updates y to 5, creating a non-serializable dependency cycle. In this case, adding updates
anywhere in the history does not guarantee a correct composition.

Figure 4: Inconsistent composition of two objects x and y where reading from the future is
possible. Note that adding updates to the history cannot make it consistent.
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8 Conclusions

In this work we defined OSC, which accurately captures the semantics of coordination services,
which are broadly deployed nowadays in backends of large-scale distributed systems. OSC does
not require reads to maintain their real-time order, and so OSC is a weaker property than
linearizability, and like sequential consistency, non-composable in itself. Non-composability
precludes multi-data-center deployments that are both consistent and efficient. We showed a
way to compose OSC objects correctly using a simple non-local property called leading updates.
Composability of coordination services enables low-latency local updates, while having global
consistency among services.

In addition, we showed that OSC can be generalized, and that G-OSC captures a range of
criteria, including sequential consistency, linearizability and TSO; the latter implies a sufficient
condition on adding memory barriers so as to ensure sequential consistency.
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