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Abstract

Motivated by applications of biometric identification and content identification systems, we
consider the problem of random coding for channels, where each codeword undergoes lossy com-
pression (vector quantization), and where the decoder bases its decision only on the compressed
codewords and the channel output, which is in turn, the channel’s response to the transmission
of an original codeword, before compression. For memoryless sources and memoryless channels
with finite alphabets, we propose a new universal decoder and analyze its error exponent, which
improves on an earlier result by Dasarathy and Draper (2011), who used the classic maximum
mutual information (MMI) universal decoder. Further, we show that our universal decoder
provides the same error exponent as that of the optimal, maximum likelihood (ML) decoder, at
least as long as all single–letter transition probabilities of the channel are positive. We conjec-
ture that the same argument remains true even without this positivity condition.

Index Terms: Content identification, biometric identification, channel capacity, error expo-
nent, rate–distortion coding, universal decoding, MMI.
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1 Introduction

The problems of biometric identification (see, e.g., [5, Chap. 5], [11], [14], [15] and references

therein) and content identification ([2], [3] see also the related problem of pattern recognition [13])

have received some considerable attention in the last few years.

Both of these problems have a certain version that, in a nutshell, can be described in two phases,

as follows. In the first phase, a.k.a. the enrollment phase, enR mutually independent, randomly

drawn vectors of length n are quantized and stored in a database. In the second phases, a.k.a.

the identification phase, a noisy version of one of the original random vectors (before quantization)

is presented to the system, which in turn has to identify the index of the corresponding stored

(compressed) vector. In the case of biometric identification systems, the various signals are bio-

metric ones (e.g., voices, fingerprints, face photographs, irises, etc.) corresponding to a group of

individuals who subscribe to the biometric system in the enrollment phase, and the storage of these

signals (which are naturally analog in their original form), using a finite amount of memory, can

be carried out, of course, within finite accuracy only, due to the quantization. In content iden-

tification, the scenario is similar except that the various signals represent contents (for example,

documents, images or video files [12]), which are desired to be identified (in spite of some possible

modifications) and found in the system, whenever existent therein.

From the information–theoretic point of view, this problem naturally falls within the framework

of coded communication in the random coding regime,1 where the decoder does not have direct

access to the original transmitted codewords themselves, but only to distorted versions of these

codewords, that are obtained after lossy compression. Nonetheless, the channel output that is

presented to the decoder is obtained as the response of the channel to one of the original codewords,

before the lossy compression. For a memoryless source and channel, the maximum achievable rate

R (i.e., the capacity) of this model setting has already been established by Tuncel [11] (see also [13],

[14], [15]). Two years later, Dasarathy and Draper [2] have derived a lower bound to the achievable

reliability (achievable error exponent) at a given rate R, and then after three more years [3], the

same authors have also derived an upper (converse) bound to the reliability function based on a

1While in classic information theory, the concept of random coding is, first and foremost, a trick for a non–
constructive proof for the existence of good codes, here it is part of the model, which represents the biometric source,
or the source that generates the contents, depending on the application.
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sphere–packing argument.

In this paper, we improve on the analysis in [2]. In particular, while Dasarathy and Draper chose

to analyze the performance of the well–known maximum mutual information (MMI) decoder [1],

without an apparent explanation and justification for this choice of decoder, here we argue that, in

this special setting, there is room for improvement over the MMI decoder, in two different aspects.

The first is relevant even without lossy compression: the MMI decoding metric is universally

optimal (in the sense of the random coding error exponent) when the code ensemble is defined by

the uniform distribution within a given type class, but when the random coding distribution is

i.i.d. (as in the model considered in [2] and here), the MMI decoding metric should be modified by

adding a divergence term between the empirical distribution of the codeword being tested and the

true random coding distribution (see [8, eq. (16)]). On top of that, when the compression ingredient

is brought back into the picture, this divergence term should be modified too. The second aspect

of the improvement over the MMI decoder, is that the MMI metric should also be modified to

account to the fact that after compression, the support of the induced random coding distribution

is limited to the reproduction codebook of the lossy source encoder. As a consequence, instead of

the normalized log–cardinality of the conditional type of the codeword given the channel output

(which appears in the analysis of the usual setting and yields the conditional empirical entropy term

that is part of the MMI metric), it turns out that one should better use the normalized logarithm

of the number of reproduction vectors that are jointly typical with the channel output.

The main part of this paper is in the performance analysis of a new universal decoder that is

obtained after the two above described modifications, and our main contributions are as follows.

1. Exponentially tight error performance analysis for the new proposed universal decoder.

2. Comparison with the result in [2]. The error exponent of the proposed decoder is at least as

large as that of [2], and often, strictly so.

3. It is shown that the new universal decoder provides the same random coding error exponent as

the optimal maximum likelihood (ML) decoder at least as long as all single–letter transition

probabilities of the channel are positive. We believe that this positivity limitation is merely

a technical issue, and in fact, this finding continues to hold true even without this limitation.
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The source of this belief is the fact that random coding exponents are normally continuous

in the channel parameters.

4. The new proposed decoder is shown to be no worse than any other decoder that bases its

decision solely on the joint empirical distribution of the codebook vector being tested and

the channel output, and this holds for any memoryless channel, even without the positivity

limitation mentioned in item 3.

5. As a byproduct of the above, we also provide a good approximation to the ML decoder that

is based on empirical distributions only (in the sense of item 4). This approximation applies

to the vast majority of lossy compression codebooks in the ensemble, as long as the channel

satisfies the positivity condition. The approximation could be useful because even when the

channel is known, the exact ML decoder is hard to implement, due to the compression part.

The outline of the remaining part of this paper is as follows. In Section 2, we establish notation

conventions. Section 3 is devoted to the formal description of the problem. Section 4 provides an

informal outline of the basic idea of this work. In Section 5, we formally introduce the proposed

universal decoder, and then, state and prove the main result of this work, along with a discussion

that contains, among other things, a comparison with [2]. In Section 6, we derive a matching lower

bound to the average error probability of the ML decoder. Finally, in Section 7, we summarize and

conclude.

2 Notation Conventions

Throughout the paper, random variables will be denoted by capital letters, specific values they may

take will be denoted by the corresponding lower case letters, and their alphabets will be denoted by

calligraphic letters. Random vectors and their realizations will be denoted, respectively, by capital

letters and the corresponding lower case letters, both in the bold face font. Their alphabets will be

superscripted by their dimensions. For example, the random vectorX = (X1, . . . , Xn), (n – positive

integer) may take a specific vector value x = (x1, . . . , xn) in X n, the n–th order Cartesian power of

X , which is the alphabet of each component of this vector. Sources and channels will be subscripted

by the names of the relevant random variables/vectors and their conditionings, whenever needed
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and if applicable, following the standard notation conventions, e.g., QX , QY |X , and so on. When

there is no room for ambiguity, these subscripts will be omitted. For a given QX and QY |X , the

notation (QX ×QY |X)Y will be used to denote the operation that returns the induced marginal of

Y , that is, QY (y) =
∑

x∈X QX(x)QY |X(y|x), and a similar notation rule will apply to other pairs (or

triples) of random variables. For a generic joint distribution QXY = {QXY (x, y), x ∈ X , y ∈ Y},
which will often be abbreviated by Q, information measures will be denoted in the conventional

manner, but with a subscript Q, that is HQ(X) is the marginal entropy of X, HQ(X|Y ) is the

conditional entropy ofX given Y , IQ(X;Y ) = HQ(X)−HQ(X|Y ) is the mutual mutual information,

D(QX‖G) is the relative entropy between QX and another distribution G = {G(x), x ∈ X}, and
so on. The weighted divergence between two conditional distributions (channels), say, QZ|X and

W = {W (z|x), x ∈ X , z ∈ Z}, with weighting QX is defined as

D(QZ|X‖W |QX) =
∑

x∈X
QX(x)

∑

z∈Z
QZ|X(z|x) log QZ|X(z|x)

W (z|x) . (1)

The probability of an event E under P will be denoted by P [E ], and the expectation operator with

respect to (w.r.t.) a probability distribution P will be denoted by EP {·}. Again, the subscript will
be omitted if the underlying probability distribution is clear from the context. For two positive

sequences an and bn, the notation an
·
= bn will stand for equality in the exponential scale, that

is, limn→∞ 1
n
log an

bn
= 0. Similarly, an

·
≤ bn means that lim supn→∞

1
n
log an

bn
≤ 0, and so on.

The indicator function of an event E will be denoted by I{E}. The notation [x]+ will stand for

max{0, x}.

The empirical distribution of a sequence x ∈ X n, which will be denoted by P̂x, is the vector

of relative frequencies P̂x(x) of each symbol x ∈ X in x. The type class of x ∈ X n, denoted

T (x), is the set of all vectors x′ with P̂x′ = P̂x. When we wish to emphasize the dependence of

the type class on the empirical distribution P̂ , we will denote it by T (P̂ ). Information measures

associated with empirical distributions will be denoted with ‘hats’ and will be subscripted by the

sequences from which they are induced. For example, the entropy associated with P̂x, which is

the empirical entropy of x, will be denoted by Ĥx(X). Similar conventions will apply to the

joint empirical distribution, the joint type class, the conditional empirical distributions and the

conditional type classes associated with pairs (and multiples) of sequences of length n. Accordingly,

P̂xy would be the joint empirical distribution of (x,y) = {(xi, yi)}ni=1, T (x,y) or T (P̂xy) will
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denote the joint type class of (x,y), T (x|y) will stand for the conditional type class of x given y,

Ĥxy(X,Y ) will designate the empirical joint entropy of x and y, Ĥxy(X|Y ) will be the empirical

conditional entropy, Îxy(X;Y ) will denote empirical mutual information, and so on. When we wish

to emphasize the dependence of T (x|y) upon y and the relevant empirical conditional distribution,

QX|Y = P̂x|y, we denote it by T (QX|Y |y). Similar conventions will apply to triples of sequences,

say, {(x,y, z)}, etc. Likewise, when we wish to emphasize the dependence of empirical information

measures upon a given empirical distribution given by Q, we denote them using the subscript Q,

as described above.

3 Problem Formulation

3.1 General Setting

Consider a discrete memoryless source (DMS), G, which, in the enrollment phase, generates M =

enRI vectors of length n, x1, . . . ,xM , xm ∈ X n, m = 1, 2, . . . ,M , X n being the n–th Cartesian

power of a finite alphabet X , and RI being the identification rate. Each such vector is generated

according to

G(x) =
n
∏

i=1

G(xi), (2)

where G = {G(x), x ∈ X} designates the source. To complete the enrollment phase, each vector

xm, m = 1, 2, . . . ,M , is fed into a lossy source encoder (vector quantizer), whose output is ym =

f(xm) ∈ Yn (the n–th Cartesian power of another finite alphabet, Y), and then ym is stored in

the database. The construction of f(·), which must trade off between compression constraints and

identification performance, will be described in Subsection 3.2.

In the identification phase, an index m is selected uniformly at random and then a noisy version

z, of xm, is presented to the system with the query to identify m, based on z and on the codebook

C = {y1, . . . ,yM} of quantized enrollment vectors. This noisy version z ∈ Zn (Zn being the n–th

Cartesian power of yet another finite alphabet, Z), is generated by a discrete memoryless channel

(DMC), according to W (z|xm), where for a generic x ∈ X n,

W (z|x) =
n
∏

i=1

W (zi|xi), (3)

6



and we denote by W the matrix of the single–letter transition probabilities, {W (z|x), x ∈ X , z ∈
Z}.

As in [2], we are interested in an achievable exponential bound to the error probability in

decoding the index m for the query in the identification phase. In principle, the problem falls in

the ordinary framework of ML decoding with the likelihood function

P (z|ym) =
P (ym, z)

P (ym)
=

∑

x∈Xn G(x)W (z|x)I{x ∈ f−1(ym)}
∑

x∈Xn G(x)I{x ∈ f−1(ym)} , (4)

where f−1(ym) = {x ∈ X n : f(x) = ym} is the inverse image of ym induced by the lossy encoder f .

We would like to characterize an ensemble of source encoders {f}, that satisfy a certain compression

constraint, and a universal decoder m̂ = g(z, C), whose average (over the ensemble of {f}) error

probability,

P̄e =
1

M

M
∑

m=1

Pr{g(z, C) 6= m}, (5)

is as small as possible, or more precisely, its error exponent,

E(R) = lim
n→∞

[

− log P̄e

n

]

, (6)

is as large as possible (provided that the limit exists).

Let L be a length function of a lossless code, that is, a function from C to the positive integers,

satisfying the Kraft inequality,
∑

y∈C 2
−L(y) ≤ 1. Also, let RC > 0 be given. The compression

constraint can be formalized in many ways. A few examples are the following.

1. Expected length constraint: E{L(Y )} ≤ nRC.

2. Excess–length probability constraint: Pr{L(Y ) ≥ nRC} ≤ e−nEC for a given EC > 0.

3. Exponential moment constraint: E{exp[sL(Y )]} ≤ enΛ for given s > 0 and Λ > 0.

3.2 The Ensemble of Lossy Encoders

We now move on to describe the construction of lossy encoder f : X n → C, or more precisely, the

ensemble of lossy encoders. In essence, it is similar to the one in [2], but there are a few technical

differences, which we use mainly for convenience.
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For certain technical reasons that will become apparent later, we will assume first that |Y| ≥ |X |
(and in Section 5, we will discuss the case where this assumption is dropped). Fix an arbitrarily

small number ∆ > 0. The codebook C = {y1, . . . ,ym} is selected at random as as follows: For

each x from a type class T (QX) with HQ(X) <
√
∆, set the encoder output to be y ≡ x, that

is, no distortion is incurred.2 For each type class with HQ(X) ≥
√
∆ choose a certain conditional

type QY |X = {QY |X(y|x) x ∈ X , y ∈ Y} (depending on QX), and then select uniformly at

random MQ = enRQ , RQ = IQ(X;Y ) + ∆ members of T (QY ) to form a sub-code CQ = {yℓ, ℓ =

1, 2, . . . ,MQ}. The choice of QY |X is subjected to a compression constraint, considering the fact

that the compressed description of the encoder output is of length approximately nRQ (plus an

overhead of O(log n) bits that specify the type QX). For example, to meet the expected length

constraint, IQ(X;Y ) should not exceed RC for all QX in the vicinity of G. For the excess length

probability constraint, IQ(X;Y ) must be kept less than RC for every QX with D(QX‖G) ≤ EC.

For the exponential length moment constraint, sIQ(X,Y )−D(QX‖G) must not exceed Γ for any

QX , namely, IQ(X;Y ) ≤ (Λ−D(QX‖G)/s for every QX .

For reasons that will become apparent later, we will assume that the choice of QY |X , for each

QX , is such that the induced mapping QX → QY is one–to–one, namely, each QY is induced by no

more than one QX .3 This means that given either QX or QY , the entire joint type QXY is fully

determined. Moreover, for technical reasons, we will assume that for each QX with HQ(X) ≥
√
∆,

QY |X is selected such that HQ(X|Y ) ≥ ∆ + 3ǫ, for some 0 < ǫ ≪ ∆. As said, each yℓ ∈
CQ is selected independently at random under the uniform distribution within the type class of

QY = {QY (y) y ∈ Y}, where QY (y) =
∑

xQX(x)QY |X(y|x). The rate–distortion encoding rule

is as follows. Each conditional type T (QY |X |x), x ∈ X n (with QY |X matched to the type of

x), undergoes ranking according to a randomly chosen ordering of the members of T (QY |X |x),
under the uniform distribution across all |T (QY |X |x)|! possible permutations.4 The orderings are

independent for the various conditional types {T (QY |X |x), x ∈ X n}. Let M(x,y) denote the rank

2This distinction between HQ(X) <
√
∆ and HQ(X) ≥

√
∆ is carried out for technical reasons only, and it

will be needed only in Section 6, where we derive the compatible lower bound on the error probability of the ML
decoder (in other words, in Section 5, one can take ∆ = 0). In essence, for input sequences with very low empirical
entropy, it makes sense to apply lossless compression. This can only improve the identification performance without
compromising the compression constraint.

3As a consequence of this fact, for QX with HQ(X) <
√
∆, we also have HQ(Y ) <

√
∆. To maintain the

one–to–one relation, it then follows also that HQ(X) ≥
√
∆ implies HQ(Y ) ≥

√
∆.

4The concept of ranking was already introduced in the dual context, of channel decoding [4], [6] as a convenient
rule for resolving ties.
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of y ∈ T (QY |X |x). Let M denote the set of randomly chosen ranking functions {M(x,y), x ∈
X n, y ∈ Yn}. Now, each xm ∈ T (QX) is encoded into the member of TQY |X

(xm)
⋂ CQ with

the smallest rank, M(xm,y). If TQY |X
(xm)

⋂ CQ = ∅, the encoder outputs an arbitrary n–tuple

designating an error message (say, the all–zero sequence), without a hope for successful operation.

Let f denote the resulting rate–distortion coding function, i.e., y = f(x). The rate–distortion

encoder f is therefore defined by the independent random selection of both C = ∪QCQ and M.

4 The Basic Idea

The problem with the exact likelihood function (4) is that it is difficult to work with, both in

the operative level, as an actual decoding metric, and in the theoretical level, of a single–letter

performance analysis, and the reason, of course, is the multiplicative term I{x ∈ f−1(ym)}, that
appears both in the numerator and the denominator. Dasarathy and Draper [2] have therefore

analyzed a simpler decoder – the well known MMI decoder, which estimates m according to the

quantized enrollment vector ym with the highest value of Îymz(Y ;Z). They have derived an

achievable error exponent for a random selection of f , which indicates that the MMI decoder is

good enough to achieve the maximum rate R (channel capacity), given by max I(Y ;Z), where the

joint distribution of (Y, Z) is induced by a Markov chain Y → X → Z and the maximization is

over the conditional distribution of Y given X, which is subjected to a compression constraint,

I(X;Y ) ≤ RC, RC being the allowed compression rate (see also [11]).

While the MMI decoder was shown to be sufficiently good to achieve capacity, no further

justification for this choice of decoder was provided in [2]. A somewhat closer inspection, however,

reveals that there may be room for improvement in the choice of the universal decoder, in order to

achieve a better error exponent for a given rate below capacity. This follows from the two following

observations, which together form the basic idea of the paper.

The first observation is relevant even in the classical random coding scenario, without the

ingredient of lossy compression (i.e., ym ≡ xm). Consider then the ordinary random coding regime,

where each codeword is selected independently at random under the memoryless source G. Let

the transmitted codeword x and the corresponding channel output z be given. The pairwise error

event, that an independently generated competing codeword x′ would pose a threat to the correct
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decoding is lower bounded as follows:

∑

{x′: W (z|x′)≥W (z|x)}
G(x′) ≥

∑

x′∈T (x|z)

G(x′)

=
∑

x′∈T (x|z)

G(x)

= |T (x|z)| ·G(x)

·
= exp{−n[Îxz(X;Z) +D(P̂x‖G)]}, (7)

which is easily shown (using the method of types) to be achieved by the universal decoder m̂ =

arg maxm[Îxmz(X;Z)+D(P̂xm‖G)] (see also [8, eq. (16)]). In other words, while the MMI decoding

metric is asymptotically optimal (in the random coding sense) for the ensemble of fixed composition

codes, when it comes to the ensemble of i.i.d. random codewords, under G, this metric should be

supplemented with the divergence term, D(P̂xm‖G).

The second observation comes about when we put back the lossy compression ingredient into

our system model. In this case, the x–vectors in eq. (7) should be replaced by y-vectors from

the given codebook C, and the channel W should be replaced by the channel P defined in eq. (4).

Similarly, G(x′) should be replaced by P (y′), which is the denominator of (4). Suppose now that

we can5 approximate P (y′) by e
−nα(P̂y′ )

(for y′ ∈ C) and P (z|y) by e−nβ(P̂yz), where α(·) and β(·)
are certain functions. Then, taking into account that P (y′) > 0 only for y′ ∈ C, the analogue of

the third line of (7) would now read |T (y|z)∩C| · e−nα(P̂y), a lower bound, which is asymptotically

achieved by the universal decoder,

m̂u = arg minm[logN(ym|z)− nα(P̂ym
)], (8)

where N(y|z) = |T (y|z)∩C|, i.e., the number of codebook vectors that are in the conditional type

T (y|z). In other words, our second observation is that in the problem setting considered here,

the MMI decoder should be modified, not only to account for the non–uniform input distribution,

as mentioned in the first observation above, but also to account for the fact the support of this

distribution is only C, and not Yn in its entirety. In the next section, we will first specify the

function α(·) and thereby fully define the proposed universal decoder (8).

5This will indeed be shown later to be possible for most encoders {f} in the ensemble.
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5 Main Result

As mentioned in Section 3.2, since we assume that for each input assignment QX , the channel

QY |X is selected such that the mapping from QX to QY = (QX ×QY |X)Y is one–one, a given QY

can be induced from only one QX , which in turn dictates QY |X , and hence also the entire joint

distribution QXY . In view of this, for a given QY (or equivalently, a given QXY ), let us define

AQ(Y ) = IQ(X;Y ) +D(QX‖G). (9)

To emphasize the dependence of AQ(Y ) upon the empirical distribution of a given y, we also use

the alternative notation α(P̂y) instead of AQ(Y ), for every y ∈ T (QY ) (i.e., P̂y = QY ). Defining

the universal decoder (8) with this choice of the function α(·), we are now ready to state our main

result.

Theorem 1 Consider the model and the assumptions described in Section 3 and the universal

decoder (8) with the above definition of the function α(·). Then, for a given choice of QY |X as a

functional of QX , the random coding error exponent associated with the ensemble of codes, described

in Subsection 3.2, is given by

E(RI) = min
QX

min
QZ|Y

{

D(QX‖G) + min
Q̃X|Y Z∈U(QX|Y )

D(Q̃XZ|Y ‖QX|Y ×W |QY )+

+max{[IQ(Y ;Z)− IQ(X;Y )]+, [IQ(Y ;Z) +D(QX‖G)−RI}]+} , (10)

where, for a given QY Z , the set U(QX|Y ) is defined to consist of all conditional distributions

{Q̃X|Y Z} that are consistent with QX|Y , that is,
∑

z∈Z Q̃X|Y Z(x|y, z)QY |Z(y|z) = QX|Y (x|y) for

every (x, y) ∈ X × Y.

Before we prove this theorem, a brief discussion is in order.

First, observe that the objective function to be minimized in (10) is a functional of QX (or

equivalently, QXY ) and QY Z , or, equivalently, QZ|Y , as QY is already dictated by QX . Since QX

and QZ|Y are not subject to our control, they undergo minimization. The controllable part is the

choice of QY |X , which is allowed to depend on QX , but not on QZ|Y . Therefore, the expression of

E(RI) should, in principle, include also maximization over QY |X in between minQX
and minQZ|Y

.

This maximization should be carried out, of course, subject to the compression constraint, which
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limits QY |X to some subset denoted Q. The caveat is, however, that there is no apparent guarantee

that the optimal QY |X , as a functional of QX , would induce a one–to–one mapping from QX to

QY , a requirement that was already mentioned in Subsection 3.2, and whose motivation will be

explained in the next paragraph. Nonetheless, we show in the appendix (subsection A.1) that it is

possible to slightly modify the optimal QY |X by an arbitrarily small perturbation (and thus lose

an arbitrarily small amount from the optimal error exponent, due to continuity) and thereby make

the mapping QX → QY one–to–one. It follows then that we can approach arbitrarily closely the

min–max–min expression,

min
QX

max
QY |X∈Q

min
QZ|Y

{

D(QX‖G) + min
Q̃X|Y Z∈U(QX|Y )

D(Q̃XZ|Y ‖QX|Y ×W |QY )+

+max{[IQ(Y ;Z)− IQ(X;Y )]+, [IQ(Y ;Z) +D(QX‖G)−RI]+}} . (11)

As promised in the previous paragraph (and earlier), we now explain the motivation for insisting

on a one–to–one mapping QX → QY . The easiest way to see this is to look at the expression

|T (y|z)∩C| · exp{−nα(P̂y)}, which appears in the last paragraph of Section 3, in the context of an

achievable lower bound to the pairwise error probability for a given (y, z). We would like, of course,

to keep this quantity as small as possible. Now, in general, if QX → QY is not necessarily one–

to–one, T (y|z) ∩ C may include reproduction vectors that correspond to x–vectors from all types

{QX} that are mapped to the given QY = P̂y, but if QX → QY is one–to–one, then there is only

one such QX . Moreover, a many–to–one relation QX → QY may decrease the above exponential

term α(P̂y) (i.e., increase the factor exp{−nα(P̂y)}) since the given y may have more types {QX}
of source vectors {x} that could yield the given y using the source encoder. In particular, the

definition of AQ(Y ) should then include also a minimization over all {QX|Y } pertaining to {QX}
that are mapped to the given QY , which may again result in degradation in performance. But

when QX → QY is one–to-one, as required, there is only one such QX . More precisely, in view

of the above discussion, it is possible to show that if the requirement of a one–to–one mapping

QX → QY is dropped (and then there is no longer need to assume |Y| ≥ |X , and we can also take

∆ = 0), then the term in the second line of (11) should be replaced by the following expression:

[

IQ(Y ;Z)− max
Q̃X|Y ∈S(QY )

IQ̃(X;Y )

]

+

+

[

min
Q̃X|Y ∈S(QY )

{IQ̃(X;Y ) +D(Q̃X‖G)}−

12



[

max
Q̃X|Y ∈S(QY )

IQ̃(X;Y )− IQ(Y ;Z)

]

+

−RI





+

, (12)

where S(QY ) is the collection of all Q̃X|Y such that Q̃X = (QY ×Q̃X|Y )X is mapped to QY . Clearly,

the larger is the set S(QY ), the smaller is the resulting expression, and so, the best one can hope

for is that S(QY ) would be a singleton, in which case, it becomes identical to the term in the second

line of (11). Nonetheless, it should be pointed out that even in the general case, where QX → QY is

not one–to–one, and hence S(QY ) is not a singleton, the resulting error exponent cannot be worse

than that of [2], since our proposed universal decoder is at least as good as any other decoder whose

metric depends only on the empirical joint distribution of (ym, z) (see item 4 in the Introduction)

and in particular, it is also as good as the ML decoder (see Section 6). Here, we should remark that

the modification (12) significantly complicates the optimization of QY |X for a given QX , because

(12) depends on the mapping QX = U [QY |X ] in a global manner (via the sets S(QY ), induced by

U [·]) and not only in a local, pointwise manner, of optimizing QY |X for each given QX separately.

Therefore, the appropriate way to present the error exponent expression, in this more general case,

is in terms of the series of optimizations, supU [·]minQX
minQX|Y

, rather than the min–max–min as

before. (Of course, the supremum over U [·] is subject to the compression constraint.)

Finally, a word on the comparison between our result (11) and the one in [2, Theorem 1], is in

order. The first two terms in (11) are identical to those in [2, Theorem 1], as they are just the terms

of the exponential probabilistic weighting of the dominant type QY Z , i.e., the one that contributes

most to the probability of error. However, the third term in (11) is different from the one in [2],

which, in our notation, is simply [IQ(Y ;Z)−RI]+. Even if we ignore the term [IQ(Y ;Z)−IQ(X;Y )]+

in the second line of (11), and lower bound our third term just by [IQ(Y ;Z)+D(QX‖G)−RI]+, it

obviously cannot be smaller than [IQ(Y ;Z)− RI]+, of [2], due to the divergence term, D(QX‖G).

It is clear then that, at least at low rates (say, even RI = 0), the exponent (11) is strictly larger

than that of [2] whenever the minimizing QX differs from G, which can indeed be the case in many

situations (see Subsection A.2 of the appendix for a demonstration of this fact).

Proof of Theorem 1. We begin with a simple upper bound to P (y) for y ∈ C ∈ T (QY ), which

applies to every f = (C,M) since f−1(y) ⊆ T (QX|Y |y), where QX|Y is the reverse channel that
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corresponds to QY :

P (y) =
∑

x∈Xn

G(x)I{x ∈ f−1(y)} (13)

≤ |T (QX|Y |y)| ·G(x) (14)

≤ exp{nHQ(X|Y ) +O1(log n)} · exp{−n[HQ(X) +D(QX‖G)]} (15)

= exp{−n[IQ(X;Y ) +D(QX‖G) +O1(log n)]} (16)

= e−nAQ(Y )+O1(logn), (17)

where O1(log n) is a quantity (resulting from the method of types), whose leading term is propor-

tional to log n. Similarly, for (y, z) ∈ T (QY Z) with y ∈ C ∈ T (QY ), we have

P (y, z) =
∑

x∈Xn

G(x)W (z|x)I{x ∈ f−1(y)} (18)

≤
∑

{T (QX|Y Z |y,z): QX|Y Z∈U(QX|Y )}
|T (QX|Y Z |y.z)| · [G(x)W (z|x)](x,z)∈T (QXZ) (19)

≤ max
QX|Y Z∈U(QX|Y )

exp{nHQ(X|Y, Z) +O2(log n)} ×

exp{n
∑

x,z

QXZ(x, z) log[G(x)W (z|x)} (20)

= exp

{

−n min
QX|Y Z∈U(QX|Y )

∑

x,y,z

QXY Z(x, y, z) log
QX|Y Z(x|y, z)
G(x)W (z|x) +O2(log n)

}

(21)

∆
= e−nBQ(Y,Z)+O2(logn), (22)

where O2(log n) is again a quantity dominated by a term proportional to log n. For later use, the

following algebraic manipulation will be found useful.

BQ(Y, Z) = min
QX|Y Z∈U(QX|Y ,0)

∑

x,y,z

QXY Z(x, y, z) log
QX|Y Z(x|y, z)
G(x)W (z|x)

= min
QX|Y Z∈U(QX|Y )

[HQ(X,Z) +D(QXZ‖G×W )−HQ(X|Y, Z)]

= min
QX|Y Z∈U(QX|Y )

[HQ(X) +HQ(Z|X)−HQ(X|Y, Z) +D(QXZ‖G×W )]

= min
QX|Y Z∈U(QX|Y )

[IQ(X;Y, Z) +HQ(Z|X) +D(QXZ‖G×W )]

= min
QX|Y Z∈U(QX|Y )

[HQ(Y, Z)−HQ(Y, Z|X) +HQ(Z|X) +D(QXZ‖G×W )]

= HQ(Y, Z) + min
QX|Y Z∈U(QX|Y )

[D(QXZ‖G×W )−HQ(Y |X,Z)]. (23)

Now, consider the universal decoding metric

d(y, z) = logN(y|z)− nα(P̂y). (24)
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Then, defining Eu(y, z) = {y′ : d(y′, z) ≤ d(y, z)} ∩ C, we have

∑

y′∈Eu(y,z)

P (y′) =
∑

{T (y′|z): T (y′|z)∩C⊆Eu(y,z)}
P [C ∩ T (y′|z)] (25)

=
∑

{T (y′|z): T (y′|z)∩C⊆Eu(y,z)}
|C ∩ T (y′|z)| · P (y′) (26)

·
≤

∑

{T (y′|z): T (y′|z)∩C⊆Eu(y,z)}
N(y′|z) · e−nα(P̂y′ )

(27)

≤
∑

{T (y′|z): T (y′|z)∩C⊆Eu(y,z)}
N(y|z) · e−nα(P̂y) (28)

·
= N(y|z) · e−nα(P̂y). (29)

Then, for a given f = (C,M), the probability of error of the universal decoder (8), Pe,u(f), is upper

bounded as follows.

Pe,u(f) =
∑

y∈C

∑

z∈Zn

P (y, z) ·min







1, enRI ·
∑

y′∈Eu(y,z)

P (y′)







·
≤

∑

y∈C

∑

z∈Zn

P (y, z) ·min

{

1, en[RI−α(P̂y)] ·N(y|z)
}

=
∑

y∈Yn

I{y ∈ C} ·
∑

z∈Zn

P (y, z) ·min

{

1, en[RI−α(P̂y)] ·N(y|z)
}

. (30)

From this point onward, we will average the upper bound on Pe,u(f) across the ensemble of {f}.
This will be done in two steps. In the first step, we average over all incorrect codewords, whose

contributions are expressed in the random variable N(y|z). In the second step, we average over

the correct codeword (which is drawn independently of all incorrect codewords), that is expressed

in the factor I{y ∈ C} in the last expression. Now, for a given pair (y, z) ∈ T (QY Z), the number

N(y|z) is a binomial random variable (RV) with en[IQ(X;Y )+∆] trials and probability of success of the

exponential order of e−nIQ(Y ;Z). Thus, for a given ǫ > 0, if IQ(X;Y )+∆ ≥ IQ(Y ;Z), thenN(y|z) ≤
en[IQ(X;Y )−IQ(Y ;Z)+∆+ǫ] with probability at least as larger as 1 − exp[−(nǫ − 1)enǫ] (as can easily

been seen from a derivation similar to the one in [7, pp. 167–168]). For IQ(X;Y ) +∆ < IQ(Y ;Z),

the RV N(y|z) exceeds unity with probability of the exponential order of e−n[IQ(Y ;Z)−IQ(X;Y )−∆]

(similarly to [7, eq. (6.36)]) and it exceeds the value enǫ, with probability less than exp[−(nǫ−1)enǫ].

It follows then that for a given deterministic s, and for IQ(X;Y ) + ∆ ≥ IQ(Y ;Z),

E
[

min
{

1, e−nsN(y|z)}]
·
≤ min

{

1, e−ns · en[IQ(X;Y )−IQ(Y ;Z)+∆+ǫ]
}

(31)

·
= exp{−n[s+ IQ(Y ;Z)− IQ(X;Y )−∆− ǫ]+}, (32)
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whereas for IQ(X;Y ) + ∆ < IQ(Y ;Z),

E
[

min
{

1, e−nsN(y|z)}]
·
≤ e−n[IQ(Y ;Z)−IQ(X;Y )−∆] ·min

{

1, e−ns
}

(33)

= exp{−n[IQ(Y ;Z)− IQ(X;Y )−∆+ [s]+]}. (34)

Since we are interested merely in the exponential order, from now on, we shall neglect the ∆ and

ǫ terms, which eventually tends to zero anyway. The last two equations can now be unified as

follows:

E
[

min
{

1, e−nsN(y|z)}]

·
≤ exp {−n ([IQ(Y ;Z)− IQ(X;Y )]+ + [s− [IQ(X;Y )− IQ(Y ;Z)]+]+)} . (35)

This exponential upper bound will be applied with the assignment s = α(P̂y)−RI (or equivalently,

s = AQ(Y ) − RI). As for averaging over the randomness of the correct codeword, note that for a

given y ∈ T (QY ),

E[I{y ∈ C}] = Pr{y ∈ C} = 1−
(

1− 1

|T (QY )|

)e
n[IQ(X;Y )+∆]

·
= e−n[HQ(Y |X)−∆]. (36)

Putting all this altogether, we obtain (again, neglecting ∆):

P̄e,u

∆
= E {Pe(f)}
·
≤

∑

QY

|T (QY )| · e−nHQ(Y |X)
∑

QZ|Y

|T (QZ|Y )| · e−nBQ(Y,Z) ×

exp {−n ([IQ(Y ;Z)− IQ(X;Y )]+ + [AQ(Y )− [IQ(X;Y )− IQ(Y ;Z)]+ −RI]+)}
·
= exp

{

−nmin
QY Z

(BQ(Y, Z)−HQ(Z|Y )−HQ(Y ) +HQ(Y |X)+

[IQ(Y ;Z)− IQ(X;Y )]+ + [AQ(Y )− [IQ(X;Y )− IQ(Y ;Z)]+ −RI]+)}

= exp

{

−nmin
QY Z

(BQ(Y, Z)−HQ(Y, Z) +HQ(Y |X) + [IQ(Y ;Z)− IQ(X;Y )]++

+[IQ(X;Y ) +D(QX‖G)− [IQ(X;Y )− IQ(Y ;Z)]+ −RI]+)}

= exp

{

−n min
QX ,QZ|Y

(BQ(Y, Z)−HQ(Y, Z) +HQ(Y |X) + [IQ(Y ;Z)− IQ(X;Y )]++

[IQ(X;Y ) +D(QX‖G)− [IQ(X;Y )− IQ(Y ;Z)]+ −RI]+)} . (37)

To simplify the above expression, and to modify its form to one that is more easily comparable to

[2], we first observe (using (23)) that

BQ(Y, Z)−HQ(Y, Z) +HQ(Y |X)
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= min
Q̃X|Y Z∈U(QX|Y )

[D(QXZ‖G×W )−HQ(Y |X,Z)] +HQ(Y |X) (38)

= min
Q̃X|Y Z∈U(QX|Y )

[D(QXZ‖G×W ) + IQ̃(Y ;Z|X)] (39)

= D(QX‖G) + min
Q̃X|Y Z∈U(QX|Y )

[D(Q̃Z|X‖W |QX) + IQ̃(Y ;Z|X)] (40)

= D(QX‖G) + min
Q̃X|Y Z∈U(QX|Y )

∑

y,z

QY Z(y, z)× (41)

∑

x

Q̃X|Y Z(x|y, z) log
[

Q̃Z|X(z|x)
W (z|x) · Q̃Y Z|X(y, z|x)

Q̃Z|X(z|x)QY |X(y|x)

]

(42)

= D(QX‖G) + min
Q̃X|Y Z∈U(QX|Y )

∑

y,z

QY Z(y, z)× (43)

∑

x

Q̃X|Y Z(x|y, z) log
[

Q̃Y Z|X(y, z|x)
W (z|x)QY |X(y|x)

]

(44)

= D(QX‖G) + min
Q̃X|Y Z∈U(QX|Y )

∑

y,z

QY Z(y, z)× (45)

∑

x

Q̃X|Y Z(x|y, z) log
[

Q̃Z|XY (z|x, y)
W (z|x)

]

(46)

= D(QX‖G) + min
Q̃X|Y Z∈U(QX|Y )

∑

y,z

QY Z(y, z)× (47)

∑

x

Q̃X|Y Z(x|y, z) log
[

Q̃Z|XY (z|x, y)QX|Y (x|y)
W (z|x)QX|Y (x|y)

]

(48)

= D(QX‖G) + min
Q̃X|Y Z∈U(QX|Y )

∑

y,z

QY Z(y, z)× (49)

∑

x

Q̃X|Y Z(x|y, z) log
[

Q̃XZ|Y (x, z|y)
W (z|x)QX|Y (x|y)

]

(50)

= D(QX‖G) + min
Q̃X|Y Z∈U(QX|Y )

D(Q̃XZ|Y ‖QX|Y ×W |QY ), (51)

which are the first two terms in (10). As for the other terms of (37), we use the identities a−[a−b]+ ≡
b− [b− a]+ ≡ min{a, b} and b+ [a− b]+ ≡ max{a, b} to obtain

[IQ(Y ;Z)− IQ(X;Y )]+ + [IQ(X;Y ) +D(QX‖G)− [IQ(X;Y )− IQ(Y ;Z)]+ −RI]+ (52)

= [IQ(Y ;Z)− IQ(X;Y )]+ + [IQ(Y ;Z) +D(QX‖G)− [IQ(Y ;Z)− IQ(X;Y )]+ −RI]+ (53)

= max{[IQ(Y ;Z)− IQ(X;Y )]+, IQ(Y ;Z) +D(QX‖G)−RI} (54)

= max{[IQ(Y ;Z)− IQ(X;Y )]+, [IQ(Y ;Z) +D(QX‖G)−RI]+}, (55)

which is the last term in (10). This completes the proof of Theorem 1.
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6 A Matching Lower Bound on ML Decoding Performance

In this section, we argue that the proposed universal decoder is asymptotically optimal in the

sense that its error exponent is the same as that of the ML decoder, at least for channels with

strictly positive single–letter transition probabilities, {W (z|x)}. The limitation to strictly positive

{W (z|x)} is rather technical, but it is conjectured that this argument continues to hold true even

without this restriction. The reason for this belief is that random coding error exponents are

normally continuous functionals of the channel parameters, and therefore, it is seems inconceivable

that there would be significant differences between the error exponent of a channel where some

{W (z|x)} vanish and the one of a nearby channel where the parameters are slightly altered so that

all {W (z|x)} are positive.

Theorem 2 Let W be a DMC with strictly positive single–letter probabilities, {W (z|x)} and con-

sider the model described in Section 3 along with the ML decoder, based on (4). Then, for a

given choice of QY |X as a functional of QX , the random coding error exponent associated with the

ensemble of codes, described in Subsection 3.2 and ML decoding, is given by eq. (10).

Proof of Theorem 2. Since the ML decoder cannot be worse than the universal decoder (8), it is

enough to prove that average error probability of the ML decoder is lower bounded by an expression

of the exponential order of e−nE(RI). The analysis is basically with the same method as in the proof

of Theorem 1, except that here, we are after lower bounds (rather than upper bounds) to certain

expressions.

We begin with lower bounds on P (y) and P (y, z), but to this end, we first need some preparatory

steps. For a given x ∈ T (QX) and y ∈ CQ ∩ T (QY |X |x), we first observe that

I{x ∈ f−1(y)} =
∏

y′∈CQ∩T (QY |X |x)

[1− I{M(x,y′) < M(x,y)}]. (56)

Due to the symmetry of the random selection of M, it is clear that for a given x ∈ T (QX) and

CQ, every y ∈ CQ ∩ T (QY |X |x) has exactly the same probability to have the smallest rank among

all members of CQ ∩T (QY |X |x), and so, this probability is 1/|CQ ∩T (QY |X |x)|. Next observe that

|CQ ∩ T (QY |X |x)| is a binomial RV with |CQ| = en[IQ(X;Y )+∆] trials and probability of success of

the exponential order of e−nIQ(X;Y ), therefore |CQ∩T (QY |X |x)| concentrates double–exponentially
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rapidly around en∆. In fact, this is true for the vast majority of rate–distortion codes. More

precisely, let 0 < ǫ ≪ ∆ be given. Then, for every given QX with HQ(X) ≥
√
∆, its associated

QY |X , and x ∈ T (QX),

Pr
{

|CQ ∩ T (QY |X |x)| ≥ en(∆+ǫ)
}

≤ exp
{

−(nǫ− 1)en∆
}

(57)

and

Pr
{

|CQ ∩ T (QY |X |x)| ≤ en(∆−ǫ)
}

≤ exp
{

−[1− (nǫ+ 1)e−nǫ]en∆
}

. (58)

From now on, suppose that C belongs to the vast majority of codes that satisfy

en(∆−ǫ) ≤ |CQ ∩ T (QY |X |x)| ≤ en(∆+ǫ) ∀x ∈ ∪
QX : HQ(X)≥

√
∆T (QX). (59)

Next, for a given C = ∪QCQ, since the various random ordering functions {M(x, ·), x ∈ T (QX|Y |y)}
are independent, the quantity |T (QX|Y |y)∩f−1(y)| is a binomial RV with exponentially enHQ(X|Y )

trials and probability of success 1/|CQ ∩ T (QY |X |x)| ·
= e−n(∆±ǫ). Therefore, since HQ(X|Y ) is

assumed at least as large as ∆ + 3ǫ whenever HQ(X) ≥
√
∆ (by the code construction described

in Section 3.2), then

Pr
{

|T (QX|Y |y) ∩ f−1(y)| ≤ en[HQ(X|Y )−∆−2ǫ]
}

≤ exp {−enǫ + nǫ+ 1} . (60)

Let us define now the class G of codes f = (C,M) that satisfy (59) as well as the following two

conditions. The first condition is that

|T (QX|Y |y) ∩ f−1(y)| ≥ en[HQ(X|Y )−∆−2ǫ] (61)

for every y ∈ C ∩ T (QY ) with HQ(Y ) ≥
√
∆, and the second condition is that

|T (QX|Y Z |y, z) ∩ f−1(y)| ≥ en[HQ(X|Y Z)−∆−2ǫ] (62)

for every (y, z) ∈ T (QY Z) such that y ∈ C,HQ(Y ) ≥
√
∆, and withQX|Y Z such thatHQ(X|Y, Z) ≥

∆+ 3ǫ. The double–exponential decay of the probabilities (57), (58) and (60) imply that the vast

majority of codes f = (C,M) are in G, in particular, G contains a fraction of the codes that tends

to one double–exponentially.

Consider an arbitrary code f = (C,M) ∈ G, and let y ∈ C∩T (QY ) be given. Obviously, for QY

with HQ(Y ) <
√
∆, P (y) = G(y) = exp{−n[HQ(Y )+D(QY ‖G)]} since y ≡ x. For HQ(Y ) ≥

√
∆,
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since |CQ ∩ T (QY |X |x)| ≥ en(∆−ǫ), we have

P (y) =
∑

x
G(x)I{x ∈ f−1(y)} (63)

= G(x)

∣

∣

∣

∣

x∈T (QX)
· |T (QX|Y |y) ∩ f−1(y)| (64)

≥ exp{−n[HQ(X) +D(QX‖G)−HQ(X|Y ) + ∆ + 2ǫ]−O1(log n)} (65)

= exp{−n[AQ(Y ) + ∆ + 2ǫ]−O1(log n)}. (66)

Note that this lower bound to P (y) applies also to QY with HQ(Y ) <
√
∆, where X ≡ Y , since

AQ(Y, Y ) = IQ(Y ;Y ) +D(QY ‖G) = HQ(Y ) +D(QY ‖G).

Next, consider a pair (y, z) ∈ T (QY Z) with y ∈ C. Again, if HQ(Y ) <
√
∆,

P (y, z) = G(y)W (z|y) = exp{−n[HQ(Y, Z) +D(QY Z‖G×W )]}. (67)

For HQ(Y ) ≥
√
∆ (and hence also HQ(X) ≥

√
∆), define the set

U(QX|Y ,∆) = {QX|Y Z : HQ(X|Y, Z) ≥ ∆,
∑

z

QZ|Y (z|y)QX|Y Z(x|y, z) = QX|Y (x|y), ∀ x, y}, (68)

where, of course, U(QX|Y , 0) is identical to U(QX|Y ) defined before. Then, for f ∈ G,

P (y, z) =
∑

x∈Xn

G(x)W (z|x)I{x ∈ f−1(y)} (69)

=
∑

T (QX|Y Z |y,z): QX|Y Z∈U(QX|Y ,0)

[G(x)W (z|x)]
∣

∣

∣

∣

(x,z)∈T (QXZ)
×

∑

x∈T (QX|Y Z |y,z)

I{x ∈ f−1(y)} (70)

≥
∑

{T (QX|Y Z |y,z): QX|Y Z∈U(QX|Y ,∆+3ǫ)}
[G(x)W (z|x)]

∣

∣

∣

∣

(x,z)∈T (QXZ)
×

∑

x∈T (QX|Y Z |y,z)

I{x ∈ f−1(y)} (71)

≥
∑

{T (QX|Y Z |y,z): QX|Y Z∈U(QX|Y ,∆+3ǫ)}
[G(x)W (z|x)]

∣

∣

∣

∣

(x,z)∈T (QXZ)
×

exp{n[HQ(X|Y, Z)−∆− 2ǫ]−O2(log n)} (72)

≥ e−n(∆+2ǫ)−O2(logn) ×

exp

{

−n min
QX|Y Z∈U(QX|Y ,∆+3ǫ)

∑

x,y,z

QXY Z(x, y, z) log
QX|Y Z(x|y, z)
G(x)W (z|x)

}

(73)
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≥ exp

{

−n

[

∆+ 2ǫ+

(√
∆+

3ǫ√
∆

)

max
x,z

log
1

G(x)W (z|x)

]

−O2(log n)

}

×

exp

{

−n min
QX|Y Z∈U(QX|Y )

∑

x,y,z

QXY Z(x, y, z) log
QX|Y Z(x|y, z)
G(x)W (z|x)

}

(74)

∆
= exp{−nθ(∆, ǫ)−O2(log n)} · exp{−nBQ(Y, Z)}, (75)

where lim∆→0 limǫ→0 θ(∆, ǫ) = 0, provided that W (z|x) for every (x, z), and where the second to

the last step follows from the following consideration. Let Q∗
X|Y Z minimize

∑

x,y,z

QXY Z(x, y, z) log
QX|Y Z(x|y, z)
G(x)W (z|x)

over U(QX|Y ). Observe that

Q̃X|Y Z =

(

1−
√
∆− 3ǫ√

∆

)

Q∗
X|Y Z +

(√
∆+

3ǫ√
∆

)

QX ∈ U(QX|Y ,∆+ 3ǫ) (76)

since

HQ̃(X|Y, Z) ≥
(

1−
√
∆− 3ǫ√

∆

)

HQ∗(X|Y, Z) +

(√
∆+

3ǫ√
∆

)

HQ(X) (77)

≥
(√

∆+
3ǫ√
∆

)

·
√
∆ (78)

= ∆+ 3ǫ, (79)

and so,

min
QX|Y Z∈U(QX|Y ,∆+3ǫ)

∑

x,y,z

QXY Z(x, y, z) log
QX|Y Z(x|y, z)
G(x)W (z|x) (80)

≤
∑

y,z

QY Z(y, z)
∑

x

Q̃X|Y Z(x|y, z) log
Q̃X|Y Z(x|y, z)
G(x)W (z|x) (81)

=
∑

y,z

QY Z(y, z)
∑

x

Q̃X|Y Z(x|y, z) log
1

G(x)W (z|x) −HQ̃(X|Y, Z) (82)

≤
(

1−
√
∆− 3ǫ√

∆

)

∑

y,z

QY Z(y, z)
∑

x

Q∗
X|Y Z(x|y, z) log

1

G(x)W (z|x) +

+

(√
∆+

3ǫ√
∆

)

∑

y,z

QY Z(y, z)
∑

x

QX(x) log
1

G(x)W (z|x) −
(

1−
√
∆− 3ǫ√

∆

)

HQ∗(X|Y, Z)−
(√

∆+
3ǫ√
∆

)

HQ(X) (83)

≤
(

1−
√
∆− 3ǫ√

∆

)

∑

y,z

QY Z(y, z)
∑

x

Q∗
X|Y Z(x|y, z) log

Q∗
X|Y Z(x|y, z)
G(x)W (z|x) +
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(√
∆+

3ǫ√
∆

)

∑

x,z

QX(x)QZ(z) log
1

G(x)W (z|x) (84)

≤
(

1−
√
∆− 3ǫ√

∆

)

min
QX|Y Z∈U(QX|Y )

∑

x,y,z

QXY Z(x, y, z) log
QX|Y Z(x|y, z)
G(x)W (z|x) +

(√
∆+

3ǫ√
∆

)

max
x,z

log
1

G(x)W (z|x) (85)

< min
QX|Y Z∈U(QX|Y )

∑

x,y,z

QXY Z(x, y, z) log
QX|Y Z(x|y, z)
G(x)W (z|x) +

(√
∆+

3ǫ√
∆

)

max
x,z

log
1

G(x)W (z|x) . (86)

Observe that the special case where X ≡ Y , BQ(Y, Z) = HQ(Y, Z) +HQ(Y |Y, Z) +D(QY Z‖G ×
W ) = HQ(Y, Z) +D(QY Z‖G×W ), which is suitable also for the case where HQ(Y ) <

√
∆. Thus,

to summarize, for f ∈ G and y ∈ C, when ∆ (and hence also ǫ) is very small, then essentially,

P (y)
·
≥ e−nAQ(Y ) and P (y, z)

·
≥ e−nBQ(Y,Z). Earlier, we introduced the function α(P̂y) as an

alternative notation that emphasizes the dependence on y. By the same token, we now introduce

the notation β(P̂yz) and as alternative to BQ(Y, Z), for (y, z) ∈ T (QY Z). Since we have already

seen the matching6 upper bounds, P (y)
·
≤ e−nAQ(Y ) and P (y, z)

·
≤ e−nBQ(Y,Z), in the proof of

Theorem 1, then we observe that for the vast majority of codes {f}, the likelihood function (4) can

be approximated by

P (z|y) ·
= exp{−n[β(P̂yz)− α(P̂y)]} ∆

= e−nγ(P̂yz), (87)

whenever y ∈ C. More precisely, in view of the above upper and lower bounds to P (y) and P (y, z),

we have

P (z|y) ≥ exp{−n[γ(P̂yz) + θ(∆, ǫ)]−O1(log n)−O2(log n)} (88)

and

P (z|y) ≤ exp{−n[γ(P̂yz)−∆− 2ǫ] +O1(log n) +O2(log n)}. (89)

Thus, a good approximation to the ML decoder, which achieves the same exponent (in the limit

ǫ → 0 and ∆ → 0) is given by:

m̂a = arg minmγ(P̂ymz). (90)

We next derive a lower bound to the average7 error probability of the optimal, ML decoder. As

in [4] and [6], to obtain an efficient lower bound, we define a tie–breaking mechanism for the ML

6Matching – within infinitesimally small terms in the exponent.
7Averaging w.r.t. the randomness of {xm} while f ∈ G is given.
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decoder by means of a ranking function Mo(y, z), which for a given z, is a one–to–one mapping

from C to {1, 2, . . . , |C|}, that satisfies the rule that P (z|y) > P (z|y′) implies Mo(y, z) < Mo(y
′, z)

for every y,y′ ∈ C. Then, for f ∈ G,

Pe,o(f) ≥ 1

2

∑

y,z
P (y, z)min







1, enRI ·
∑

{y′: Mo(y′,z)≤Mo(y,z)}∩C
P (y′)







=
1

2

∑

z
P (z)

∑

y
P (y|z)min







1, enRI ·
∑

{y′: Mo(y′,z)≤Mo(y,z)}∩C
P (y′)







∆
=

1

2

∑

z
P (z) ·Π(z), (91)

where we have used Shulman’s lower bound [10, Lemma A.2] on the probability of the union of

pairwise independent events, relying on the fact that for a given f , the various quantized codewords

{ym} are independent due to the independence of {xm}. Let us also define

Π̃(z) =
∑

y
P (y|z) ·min







1, enRI ·
∑

{y′: P (z|y′)≥e−nδn(∆,ǫ)P (z|y)}∩C
P (y′)







, (92)

where δn(∆, ǫ) = θ(∆, ǫ) + ∆ + 2ǫ + 2[O1(log n) + O2(log n)]. We show in Subsection A.3 of the

appendix (as an extension of [6, Lemma 2] and similarly to [9, Lemma 1]) that

Π(z) ≥
[

1 + enδn(∆,ǫ)
(

1 + n ln
1

Gmin

)]−1

Π̃(z), ∀z ∈ Zn (93)

where Gmin
∆
= minx∈X G(x), and so, it follows that

Pe,o(f) ≥ 1

2

∑

z
P (z) ·Π(z) (94)

≥ 1

2

[

1 + enδn(∆,ǫ)
(

1 + n ln
1

Gmin

)]−1
∑

z
P (z) · Π̃(z) (95)

=
1

2

[

1 + enδn(∆,ǫ)
(

1 + n ln
1

Gmin

)]−1
∑

z
P (z) ·

∑

y∈C
P (y|z)×

min







1, enRI ·
∑

{y′: P (z|y′)≥e−nδn(∆,ǫ)P (z|y)}∩C
P (y′)







(96)

≥ 1

2

[

1 + enδn(∆,ǫ)
(

1 + n ln
1

Gmin

)]−1
∑

y∈C

∑

z
P (y, z)×

min















1, enRI ·
∑

{y′: γ(P̂y′z)≤γ(P̂yz)}∩C
P (y′)















(97)
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≥ 1

2

[

1 + enδn(∆,ǫ)
(

1 + n ln
1

Gmin

)]−1
∑

y∈C

∑

z
P (y, z)×

min







1, enRI ·
∑

{y′∈T (y|z)∩C}
P (y′)







(98)

=
1

2

[

1 + enδn(∆,ǫ)
(

1 + n ln
1

Gmin

)]−1
∑

y∈C

∑

z
P (y, z)×

min
{

1, enRI · P [T (y|z) ∩ C]
}

(99)

=
1

2

[

1 + enδn(∆,ǫ)
(

1 + n ln
1

Gmin

)]−1
∑

y∈C

∑

z
P (y, z)×

min
{

1, enRI · |T (y|z) ∩ C| · P (y)
}

(100)

=
1

2

[

1 + enδn(∆,ǫ)
(

1 + n ln
1

Gmin

)]−1
∑

y∈C

∑

z
P (y, z)×

min
{

1, enRI ·N(y|z) · P (y)
}

, (101)

where in the third inequality, we have used the fact that {y′ : γ(P̂y′z) ≤ γ(P̂yz)} is a subset of

{y′ : P (z|y′) ≥ e−nδn(∆,ǫ)P (z|y)}, as implied by eqs. (88) and (89). Since the last expression is of

the same exponential order as eq. (30), of the upper bound (after taking ǫ and ∆ to zero) then so

is its expectation8 w.r.t. the randomness of f , where here the above derived (exponentially tight)

lower bounds to P (y) and P (y, z) should be used. This would yield a lower bound to P̄e,o, which

is of the exponential order of e−nE(RI). This completes the proof of Theorem 2.

7 Summary and Conclusion

The main contributions of this work were as follows. We proposed a universal decoder, which is a

variant of the MMI decoder, but is different in the sense that it takes into account the distribution

of the quantized codewords (for a given lossy source encoder). We analyzed the error exponent

of this decoder and have shown that it improves on the ordinary MMI decoder, analyzed in [2],

and sometimes strictly so. We have also shown that our proposed decoder provides the same error

exponent as that of the ML decoder, at least as long as all single–letter transition probabilities of

8There is a minor issue that has to be kept in mind when taking the expectation. The lower bound for a given
f is applicable only for f ∈ G, not for every f . But since Gc is an extremely small minority of the codes (i.e., a
double–exponentially small fraction of them), then the contribution of codes outside G can safely be neglected in the
exponential scale, and so, the expectation over all codes is exponentially the same as the expectation over all codes
within G.
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the channel, {W (z|x)} are strictly positive, and we speculate that this positivity constraint can

be removed. Our decoder is also at least as good as any other decoder whose decoding metric

depends on (ym, z) only via the joint empirical distribution P̂ymz . As a byproduct of our analysis,

for a known channel W , we have also proposed a (non–universal) approximate ML decoder (90),

which is easier to implement than the exact ML decoder, based on (4), yet it yields the same error

exponent, E(RI).

Appendix

A.1 Modifying the Map QX → QY To Be One–to–One

Let Q∗
Y |X = U [QX ] denote our favorite choice of QY |X as a functional of QX , and let Q∗

Y =

(QX × Q∗
Y |X)Y

∆
= V [QX ]. The mapping V [·] may not necessarily be one–to–one. We would like

to perturb Q∗
Y |X very slightly (so that performance would be degraded by a small amount only),

to Q̃Y |X , such that Q̃Y = (QX × Q̃Y |X)Y = Ṽ [QX ] would be one–to–one. We next describe one

concrete way to do this.

Without loss of generality, assume the alphabet X to be {0, 1, . . . ,K − 1}, where K = |X |. For
convenience, we will also assume that |Y| = |X |, and so, Y will also be taken to be {0, 1, . . . ,K−1}
(the extension to the case |Y| > |X | will be straightforward). We first form a fine partition of

the simplex. One way of doing this is the following. Let ǫ > 0 be arbitrarily small, chosen such

that 1/ǫ is integer, and consider the partition of the simplex Q(X ), of probability distributions

{QX(x)} over X , into cells of size ǫ such that in each cell, the letter probabilities are bounded by

ixǫ ≤ QX(x) < (ix+1)ǫ, x = 1, 2, . . . ,K − 1, for some given non–negative integers, {ix}K−1
x=1 , which

will be denoted collectively by i. Let Qi denote the cell pertaining to the index vector i. Assuming

that U [·] (and hence also V [·]) is continuous at least within each cell (otherwise, form any other

fine partition of Q(X ) with this property), let V [Qi] denote the image of Qi under V and let Qi
Y

denote an arbitrary representative member of V [Qi], which is taken to have strictly positive letter

probabilities (if this is not the case, then slightly perturb the zero–probabilities to small positive

values). Thus, the number of distinct representatives, {Qi
Y |X}, cannot exceed the number of cells,

which is finite. Let Q0 be an arbitrary distribution over Y. Now, consider the mapping Ṽ that

maps QX ∈ Qi to Q̃Y = Qi
Y + δ · (QX −Q0), where δ > 0 is small enough such that 0 ≤ Q̃Y (y) ≤ 1
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for all y and that the sets {Qi
Y + δ · (QX −Q0) : QX ∈ Q(X )} are disjoint for every two different

index vectors {i} (in particular, δ should not exceed mini 6=i′ maxy |Qi
Y (y) − Qi

′

Y (y)|). Then, this

mapping from QX to Q̃Y is clearly one–to–one. Finally, one can always slightly perturb Q∗
Y |X to

obtain a new channel Q̃Y |X such that (QX × Q̃Y |X)Y = Q̃Y , as there are as many as K − 1 degrees

of freedom to this end. The perturbations that take us from Q∗
Y to Qi

Y , and then to Q̃Y , as well as

the perturbation from Q∗
Y |X to Q̃Y |X , are arbitrarily small, and hence so is the loss of performance.

A.2 D(Q∗
X‖G) Might Be Strictly Positive

For simplicity, let us consider the case where X = Y = {0, 1, . . . ,K−1} and there is no compression

constraint, so QY |X can be taken to be the identity matrix (clearly, this situation can be approached

in our setting, in the limit where the compression constraints are sufficiently soft) and let RI = 0.

Suppose further that W is also the identity matrix, i.e., the clean channel (which again, can be

thought of as a limit of very good channels). In this case, E(0) simplifies to

E(0) = min
QX

[2D(QX‖G) +HQ(X)], (A.1)

which is easily shown to be achieved by

Q∗
X(x) =

G2(x)
∑

x′∈X G2(x′)
, (A.2)

that differs from G (except some special cases) and hence D(Q∗
X‖G) > 0. On substituting Q∗

X back

into the expression of E(0), we obtain

E(0) = − log

[

∑

x

G2(x)

]

, (A.3)

as expected. On the other hand, the error exponent of [2], in this case, becomes

EDD(0) = min
QX

[D(QX‖G) +HQ(X)] = min
QX

∑

x

Q(x) log
1

G(x)
= − log

[

max
x

G(x)
]

, (A.4)

which is always smaller, except for some special cases. The same gap continues to apply at least

for a certain range of low rates, where E(RI) = E(0)−RI and EDD(RI) = EDD(0)−RI.

A.3 Proof of Eq. (93)

The proof is very similar to the proof of Lemma 1 in [9], which in turn, is an extension of [6, Lemma

2], and it is given here for the sake of completeness. For brevity, let us denote α = enδn(∆,ǫ) and
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define

∆(y, z)
∆
= {y′ : Mo(y

′, z) > Mo(y, z), P (z|y′) ≥ α−1P (z|y)} ∩ C (A.5)

= {y′ : Mo(y
′, z) > Mo(y, z), P (y)P (y′|z) ≥ α−1P (y′)P (y|z)} ∩ C, (A.6)

so that

Et(y, z)
∆
= {y′ : P (z|y′) ≥ α−1P (z|y)} ∩ C

is given by the disjoint union of ∆(y, z) and

Eo(y, z)
∆
= {y′ : Mo(y

′, z) < Mo(y, z)} ∩ C.

Let us also define the function φ(t) = min{1, t · enRI} for t ≥ 0, and observe that for t ≤ s,

φ(s) ≤ s
t
· φ(t), as can easily be seen from the concavity of φ(·) and the fact that φ(0) = 0. Thus,

Π(z) =
∑

y
P (y|z)φ(P [Eo(y, z)]) (A.7)

Π̃(z) =
∑

y
P (y|z)φ(P [Eo(y, z)] + P [∆(y, z)]) (A.8)

≤
∑

y
P (y|z)

(

P [Eo(y, z)] + P [∆(y, z)]

(P [Eo(y, z)]

)

φ(P [Eo(y, z)]), (A.9)

where in the last inequality, we have used the above mentioned property of the function φ(·). Now,
let us define

r(y, z)
∆
=

∑

y′∈Eo(y,z)

P (y′|z). (A.10)

Then, for y ∈ C,

P (y) =
∑

y′

P (y)P (y′|z) (A.11)

≥
∑

y′∈Eo(y,z)

P (y)P (y′|z) +
∑

y′∈∆(y,z)

P (y)P (y′|z) (A.12)

= P (y)r(y, z) +
∑

y′∈∆(y,z)

P (y)P (y′|z) (A.13)

≥ P (y)r(y, z) +
1

α

∑

y′∈∆(y,z)

P (y′)P (y|z) (A.14)

= P (y)r(y, z) +
P (y|z)

α
P [∆(y, z)], (A.15)
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and so,

P (y|z)P [∆(y, z)] ≤ αP (y)[1− r(y, z)]. (A.16)

We then have

Π̃(z)−Π(z) (A.17)

≤
∑

y∈C
P (y|z)P [∆(y, z)]

P [Eo(y, z)]
φ(P [Eo(y, z)]) (A.18)

≤ α ·
∑

y∈C

P (y)[1− r(y, z)]

P [Eo(y, z)]
φ(P [Eo(y, z)]) (A.19)

= α ·
∑

y∈C

∑

{y′∈C: Mo(y′,z)>Mo(y,z)}

P (y)P (y′|z)
P [Eo(y, z)]

φ(P [Eo(y, z)]) (A.20)

(a)
= α ·

∑

y′∈C

∑

{y∈C: Mo(y′,z)>Mo(y,z)}

P (y)P (y′|z)
P [Eo(y, z)]

φ(P [Eo(y, z)]) (A.21)

(b)
≤ α ·

∑

y′∈C

∑

{y∈C: Mo(y′,z)>Mo(y,z)}

P (y)P (y′|z)
P [Eo(y, z)]

φ(P [Eo(y
′, z)]) (A.22)

≤ α ·
∑

y′∈C
P (y′|z)φ(P [Eo(y

′, z)]) ·
∑

y

P (y)

P [Eo(y, z)]
(A.23)

= α ·Π(z) ·
∑

y∈C

P (y)

P [Eo(y, z)]
, (A.24)

where in (a) we have interchanged the order of the summation and in (b), we have used the

monotonicity of φ(·) together with the fact that Eo(y, z) ⊆ Eo(y
′, z) wheneverMo(y

′, z) > Mo(y, z).

To complete the proof, it remains to show then that for any z,

Kn(z)
∆
=
∑

y∈C

P (y)

P [Eo(y, z)]
=
∑

y∈C

P (y)
∑

{y′: Mo(y′,z)≤Mo(y,z)} P (y′)
(A.25)

cannot exceed 1+n ln(1/Gmin). For the given z, consider the ordering of all members of C according

to the ranking function Mo(y, z), i.e.,

P (z|y[1]) ≥ P (z|y[2]) ≥ . . . ≥ P (z|y[N ]), N = |C| (A.26)

and let us denote ai = P (y[i]), Ai =
∑i

j=1 aj , i = 1, . . . , N . Then, using the facts that A1 = a1 =

P (y[1]) and AN = 1, as well as the inequality

ln(1 + u) ≡ − ln

(

1− u

1 + u

)

≥ u

1 + u
, (A.27)
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we have

Kn(z) =
N
∑

i=1

ai
Ai

(A.28)

= 1 +
N
∑

i=2

ai
Ai−1 + ai

(A.29)

= 1 +
N
∑

i=2

ai/Ai−1

1 + ai/Ai−1
(A.30)

≤ 1 +
N
∑

i=2

ln

(

1 +
ai

Ai−1

)

(A.31)

= 1 +
N
∑

i=2

ln

(

Ai−1 + ai
Ai−1

)

(A.32)

= 1 +
N
∑

i=2

ln

(

Ai

Ai−1

)

(A.33)

= 1 + ln

(

AN

A1

)

(A.34)

= ln

[

1

P (y[1])

]

+ 1 (A.35)

≤ ln

(

1

Gn
min

)

+ 1 (A.36)

= n ln

(

1

Gmin

)

+ 1, (A.37)

where we have used the fact that for every code in G, and y ∈ C, P (y) > 0, and it is at least as

large as G(x) for some x ∈ f−1(y), which in turn, cannot be less than Gn
min. This completes the

proof of eq. (93).
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