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Abstract 

Ensuring the correct execution of a program while running 

on untrusted computing services is challenging. Specifically, 

protecting the integrity of the memory content against replay 

attacks while running on a platform with an untrusted 

memory requires dedicated tracking structures and an in-

chip state. For that, the Bonsai Merkle Tree (BMT)was sug-

gested as an efficient integrity tree. We present the Distrib-

uted Bonsai Merkle Tree, a multi-node version of the BMT 

suitable for parallel and distributed environments. 

1. Introduction 

Secure computing on untrusted environments is an emerg-

ing requirement. In these environments, it is commonly as-

sumed that the CPU is the only trusted element, leaving eve-

rything else (including the board and the off-CPU memory) 

untrusted. The use of encryption enables protecting the con-

fidentiality of the data while it resides in the untrusted 

memory, and the use of message authenticating code (MAC) 

enables protecting against forged or mis-located data; how-

ever, replay attacks, wherein old data is maliciously restored 

(e.g. by blocking the memory ‘write’ port) requires additional 

treatment. 

The Bonsai Merkle Tree (BMT) [1] was suggested for pro-

tecting a program running on a single-node setting; however, 

most of the workloads that benefit from the use of untrusted 

environments (e.g., public clouds) are parallel and distributed 

in nature. Multi-node applications commonly use distributed 

shared memory (DSM) [2] or message passing interface 

(MPI) [3], where in the latter the memory space itself is not 

distributed, so the single-node integrity solutions are suitable. 

However, DSM is easier to program by simply spawning 

threads that access the shared address space, therefore an in-

tegrity pre-serving mechanism that supports DSM is re-

quired.  

In this work we present the Distributed Bonsai Merkle Tree 

(DBMT). While extending the single node BMT's function-

ality, it does not require additional overhead on top of it.  

2. Bonsai Merkle Tree  

Bonsai Merkle Tree (BMT) [1] is an efficient integrity hash 

tree. BMT targets systems that protect their memory using 

counter mode encryption, wherein each memory block has its 

corresponding counter value. [1]'s observation is that instead 

of protecting the actual memory blocks using a secure hash 

tree, protecting the counters by a Merkle hash tree [4] (with 

an in-chip root hash) and using a per-block secure MAC will 

result in a smaller hash tree, the Bonsai Merkle Tree, which 

provides the same security guarantees as the original Merkle 

Tree. The smaller hash tree footprint results in better cache 

hit-rate, and therefore better performance than the Merkle 

Tree.   

Each memory block has a small MAC alongside the data, so 

when it is fetched into the cache and decrypted by the counter 

mode technique (assuming a correct counter), forged data 

will result in a mismatch between the fetched MAC and the 

one computed over the fetched, decrypted block. Forging a 

counter (e.g. old counter with old data and MAC) will be de-

tected on counter block fetch, since BMT directly protects the 

counter blocks (similarly to the way Merkle Tree protects the 

data blocks). 

  The BMT values are stored in the clear in the unprotected 

memory, and can be cached in the chip. 

BMT cannot be simply used for protecting a distributed pro-

gram, because its memory space spans multiple memories 

that are controlled by different CPUs. 

3. Distributed Bonsai Merkle Tree 

We assume the existence of a secure node-to-node data trans-

fer method, such as SDSM [5]. 

In Distributed Bonsai Merkle Tree, we use private per-CPU 

encryption counters (not shared), so other CPUs cannot ac-

cess them. We choose the counter corresponding to the data 

block to either contain the actual counter for an existing 

block, or NA for unmapped or a block currently resides in an-

other CPU's local memory. Since counters are kept in blocks, 

counters of existing and non-existing blocks may reside in the 

same counter block. A per-CPU local-BMT is maintained 

normally, and each CPU maintains a local root hash of its lo-

cal-BMT. See Fig. 1 for example. 

When a memory block is needed, its counter is fetched first. 

If the counter value is NA, then it is considered not existing 
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Fig. 1.  DBMT of blocks of multiple states: only in CPU1, shared 
between CPU1 and CPU2, and not allocated. 
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locally, and it is then requested from the directory. When a 

memory block arrives (securely) in the cache from another 

CPU, it does not have a local counter value (NA). Only when 

locally evicted, a new counter value is assigned and stored lo-

cally in the private counter block, and a MAC is calculated 

alongside the block. When a memory block is sent and inval-

idated, its local counter is again reset to NA.  

Any alteration of a memory block while in a CPU's local off-

chip (unprotected) memory will be detected as soon as it is 

fetched into the cache using its MAC, and any alteration of a 

local encryption counter will be detected at the same time us-

ing the local-BMT. 

Per-CPU encryption counters are advantageous over shared 

(among CPUs) counters: 

1) Private counter blocks never require write permission from 

the directory, or value updates from remote CPUs, saving sig-

nificant performance overheads for locks and communication 

overheads for permission re-quests. 

 2) Using shared counters, although a data block may only get 

modified by one CPU at any given time, different data blocks 

whose counters reside in the same counter block may get mod-

ified simultaneously. Therefore, a CPU needs exclusive write 

permissions for updating the counter block, so other copies at 

the other CPUs must be invalidated; therefore, shared counters 

may exhibit forced evictions although data blocks are not 

shared. In contrast, private counters are never shared among 

different CPUs, obviating the abovementioned false evictions.   

Performance Analysis 
Accessing locally existing blocks is similar to the case of a 
single-node BMT, so its performance is the same. Accessing 
a block that does not exist locally require bringing its counter, 
determining its state, and then requesting it from a remote 
node into the local cache. This block will not get a local coun-
ter update until it is evicted locally, and only then a DBMT 
update is required. Therefore, there is no performance over-
head for a non-existing block, since determining the block's 
state is required in any DSM system, and once the block has 
arrived it is similar to the single-node system.  

4. Conclusions  

We presented the Distributed Bonsai Merkle Tree, an integ-

rity tree suitable for multi-node and parallel environments. 

While extending the single-node Bonsai Merkle Tree into 

distributed environments, DBMT suffers from no additional 

overheads.  
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