

Distributed Bonsai Merkle

Tree

Ofir Shwartz and Yitzhak Birk

IRWIN AND JOAN JACOBS

CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

THE ANDREW & ERNA VITERBI FACULTY OF ELECTRICAL ENGINEERING

TECHNION—ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 3200003, ISRAEL

CCIT Report #914
August 2017

Electronics
Computers

Communications

1

Distributed Bonsai Merkle Tree

 Ofir Shwartz Yitzhak Birk

 Electrical Engineering Dept., Technion, Israel Electrical Engineering Dept., Technion, Israel

 ofirshw@tx.technion.ac.il birk@ee.technion.ac.il

Abstract

Ensuring the correct execution of a program while running

on untrusted computing services is challenging. Specifically,

protecting the integrity of the memory content against replay

attacks while running on a platform with an untrusted

memory requires dedicated tracking structures and an in-

chip state. For that, the Bonsai Merkle Tree (BMT)was sug-

gested as an efficient integrity tree. We present the Distrib-

uted Bonsai Merkle Tree, a multi-node version of the BMT

suitable for parallel and distributed environments.

1. Introduction

Secure computing on untrusted environments is an emerg-

ing requirement. In these environments, it is commonly as-

sumed that the CPU is the only trusted element, leaving eve-

rything else (including the board and the off-CPU memory)

untrusted. The use of encryption enables protecting the con-

fidentiality of the data while it resides in the untrusted

memory, and the use of message authenticating code (MAC)

enables protecting against forged or mis-located data; how-

ever, replay attacks, wherein old data is maliciously restored

(e.g. by blocking the memory ‘write’ port) requires additional

treatment.

The Bonsai Merkle Tree (BMT) [1] was suggested for pro-

tecting a program running on a single-node setting; however,

most of the workloads that benefit from the use of untrusted

environments (e.g., public clouds) are parallel and distributed

in nature. Multi-node applications commonly use distributed

shared memory (DSM) [2] or message passing interface

(MPI) [3], where in the latter the memory space itself is not

distributed, so the single-node integrity solutions are suitable.

However, DSM is easier to program by simply spawning

threads that access the shared address space, therefore an in-

tegrity pre-serving mechanism that supports DSM is re-

quired.

In this work we present the Distributed Bonsai Merkle Tree

(DBMT). While extending the single node BMT's function-

ality, it does not require additional overhead on top of it.

2. Bonsai Merkle Tree

Bonsai Merkle Tree (BMT) [1] is an efficient integrity hash

tree. BMT targets systems that protect their memory using

counter mode encryption, wherein each memory block has its

corresponding counter value. [1]'s observation is that instead

of protecting the actual memory blocks using a secure hash

tree, protecting the counters by a Merkle hash tree [4] (with

an in-chip root hash) and using a per-block secure MAC will

result in a smaller hash tree, the Bonsai Merkle Tree, which

provides the same security guarantees as the original Merkle

Tree. The smaller hash tree footprint results in better cache

hit-rate, and therefore better performance than the Merkle

Tree.

Each memory block has a small MAC alongside the data, so

when it is fetched into the cache and decrypted by the counter

mode technique (assuming a correct counter), forged data

will result in a mismatch between the fetched MAC and the

one computed over the fetched, decrypted block. Forging a

counter (e.g. old counter with old data and MAC) will be de-

tected on counter block fetch, since BMT directly protects the

counter blocks (similarly to the way Merkle Tree protects the

data blocks).

 The BMT values are stored in the clear in the unprotected

memory, and can be cached in the chip.

BMT cannot be simply used for protecting a distributed pro-

gram, because its memory space spans multiple memories

that are controlled by different CPUs.

3. Distributed Bonsai Merkle Tree

We assume the existence of a secure node-to-node data trans-

fer method, such as SDSM [5].

In Distributed Bonsai Merkle Tree, we use private per-CPU

encryption counters (not shared), so other CPUs cannot ac-

cess them. We choose the counter corresponding to the data

block to either contain the actual counter for an existing

block, or NA for unmapped or a block currently resides in an-

other CPU's local memory. Since counters are kept in blocks,

counters of existing and non-existing blocks may reside in the

same counter block. A per-CPU local-BMT is maintained

normally, and each CPU maintains a local root hash of its lo-

cal-BMT. See Fig. 1 for example.

When a memory block is needed, its counter is fetched first.

If the counter value is NA, then it is considered not existing

S1 S2

. . .

CPU1 Hash

Tree

. . .

Data

Blocks
In

RAM1

0 0
Counter

Blocks

. . .

CounterBlk1 CounterBlk2

. . .

. . .

. . .

CPU1 Root

Hash

0 S3

. . .

CPU2 Hash

Tree

. . .

Not

allocated

S4 0

. . .

CounterBlk1 CounterBlk2

. . .

. . .

. . .

CPU2 Root

Hash
CPU1 CPU2

Not

here

In

RAM1

In

RAM2

In

RAM2

Not

here

Not

allocated

Fig. 1. DBMT of blocks of multiple states: only in CPU1, shared
between CPU1 and CPU2, and not allocated.

mailto:ofirshw@tx.technion.ac.il
lesley
CCIT Report #914 August 2017

2

locally, and it is then requested from the directory. When a

memory block arrives (securely) in the cache from another

CPU, it does not have a local counter value (NA). Only when

locally evicted, a new counter value is assigned and stored lo-

cally in the private counter block, and a MAC is calculated

alongside the block. When a memory block is sent and inval-

idated, its local counter is again reset to NA.

Any alteration of a memory block while in a CPU's local off-

chip (unprotected) memory will be detected as soon as it is

fetched into the cache using its MAC, and any alteration of a

local encryption counter will be detected at the same time us-

ing the local-BMT.

Per-CPU encryption counters are advantageous over shared

(among CPUs) counters:

1) Private counter blocks never require write permission from

the directory, or value updates from remote CPUs, saving sig-

nificant performance overheads for locks and communication

overheads for permission re-quests.

 2) Using shared counters, although a data block may only get

modified by one CPU at any given time, different data blocks

whose counters reside in the same counter block may get mod-

ified simultaneously. Therefore, a CPU needs exclusive write

permissions for updating the counter block, so other copies at

the other CPUs must be invalidated; therefore, shared counters

may exhibit forced evictions although data blocks are not

shared. In contrast, private counters are never shared among

different CPUs, obviating the abovementioned false evictions.

Performance Analysis
Accessing locally existing blocks is similar to the case of a
single-node BMT, so its performance is the same. Accessing
a block that does not exist locally require bringing its counter,
determining its state, and then requesting it from a remote
node into the local cache. This block will not get a local coun-
ter update until it is evicted locally, and only then a DBMT
update is required. Therefore, there is no performance over-
head for a non-existing block, since determining the block's
state is required in any DSM system, and once the block has
arrived it is similar to the single-node system.

4. Conclusions

We presented the Distributed Bonsai Merkle Tree, an integ-

rity tree suitable for multi-node and parallel environments.

While extending the single-node Bonsai Merkle Tree into

distributed environments, DBMT suffers from no additional

overheads.

References

[1] B. Rogers, S. Chhabra, Y. Solihin, and M. Prvulovic, “Using address
independent seed encryption and bonsai merkle trees to make secure

processors OS-and performance-friendly”, in MICRO'07, 2007.

[2] B. Nitzberg and V. Lo, “Distributed Shared Memory: A Survey of
Issues and Algorithms,” Computer (Long. Beach. Calif)., vol. 24, no.
8, pp. 52–60, 1991.D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D.
Boneh, J. Mitchell and M. Horowitz, "Architectural support for copy
and tamper resistant software," ACM SIGPLAN Notices, 2000.

[3] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable parallel
programming with the message-passing interface, vol. 40, no. 2–3.
2000.

[4] R. C. Merkle, “A Digital Signature Based on a Conventional
Encryption Function,” Advances, vol. 293. pp. 369–378, 1988.

[5] O. Shwartz and Y. Birk, “SDSM: Fast and scalable security support for
directory-based distributed shared memory,” Proc. IEEE Int. Symp.
Hardw. Oriented Secur. Trust. HOST, 2016.

