
Technical Report #1367, EE Dept., Technion, Isreal, June 2003.

 1

In-Kernel Integration of Operating System and Infiniband Primitives for
High Performance Computing Clusters: a DSM Example

Liran Liss, Yitzhak Birk and Assaf Schuster

Technion – Israel Institute of Technology
{liranl@tx, birk@ee, assaf@cs}.technion.ac.il

Abstract
The Infiniband (IB) System Area Network (SAN) enables
applications to access hardware directly from user level,
reducing the overhead of user-kernel crossings during
data transfer. However, distributed applications that
exhibit close coupling between network and OS services
may benefit from accessing IB from the kernel through
IB’s native Verbs interface, which permits tight integration
of these services. We assess this approach using a
sequential-consistency Distributed Shared Memory (DSM)
system as an example. We first develop primitives that
abstract the low-level communication and kernel details,
and efficiently serve the application’s communication,
memory and scheduling needs. Next, we combine the
primitives to form a kernel DSM protocol. The approach is
evaluated using our full-fledged Linux kernel DSM
implementation over Infiniband. We show that overheads
are reduced substantially, and overall application
performance is improved both in terms of absolute
execution time and scalability.

1. Introduction
Infiniband (IB) [1] is a high-performance SAN

architecture that implements in hardware legacy software
protocol tasks such as reliability and multiplexing among
different connections. New hardware capabilities such as
Remote Direct Memory Access (RDMA) are also
supported. Applications can send and receive data at high
rates when accessing IB through user-level networking
interfaces, e.g., VIA [2]. However, since IB defines its
basic primitives in the kernel, kernel subsystems and
extensions can also exploit the new hardware.

In this paper, we assess the benefits of accessing IB
through the kernel for applications that exhibit close
coupling between network services and those of the
operating system. We use a software Distributed Shared
Memory (DSM) system as a context.

DSM is a runtime system that emulates shared memory
across a computing cluster [3, 4]. Software DSMs
implement an invalidation-based protocol using the
operating system’s page protection mechanism. Access
rights to invalidated pages are revoked, while a page fault
triggers a protocol action that updates the page.

Software DSM protocols vary widely. Some tolerate
the coarse sharing granularity induced by the OS/hardware
(the system page size) by using relaxed consistency

memory models (e.g., Lazy Release Consistency (LRC)
[4]), while others employ fine-grain sharing and retain the
intuitive Sequential Consistency (SC) memory model
[5, 6]. However, several observations hold for DSM
protocols in general:
• Each protocol invocation requires at least one system

call. These are usually multiple calls for changing page
protection or for synchronizing with application or
communication threads (using semaphores, mutexes,
etc.).

• The communication is inherently asynchronous. Various
request messages (Pages, Locks, Diff applications,
Barriers) arrive unexpectedly.

• Latency is important. A DSM system is intended for
parallel, computation-bound applications. An
application thread waiting for a remote response can
severely affect the parallel computation. In addition, the
communication workload comprises mostly small
packets, so high bandwidth does not suffice.

• Application data is frequently transferred among nodes.
This data is not processed by the DSM protocol, and its
destination address is known in advance.

Therefore, reducing expensive system calls and user-
kernel crossings, high responsiveness to asynchronous
events, and efficient data transfer in terms of buffer copies
and associated OS protocol processing are all required for
high performance.

The introduction of high-performance user-level SANs
to DSM systems [7, 8] eliminated OS protocol processing,
and reduced extra memory copying through remote
memory operations. Responsiveness, however, remains a
problem: constant polling is the most responsive method,
but wastes valuable CPU cycles; a separate
communication thread requires a context switch to and
from it; catching a signal depends on the receiving task
being scheduled. Also, memory protection system calls are
reported to constitute substantial overhead in user-level
implementations [9, 10]. Accordingly, DSM systems
appear well suited for evaluating the kernel/IB platform.

Previous work demonstrated the advantages of
integrating the kernel network protocol stack (TCP/IP)
with high-level protocols [11] or with the file cache [12] in
network servers. In this paper, we show that this approach
is beneficial even for SANs, wherein the network protocol
stack is implemented in hardware.

lesley
CCIT Report #428
June 2003

