CCIT Report #437 July 2003

Linear Minimax Regret Estimation with Bounded Data Uncertainties

Yonina C. Eldar^{*}, A. Ben-Tal[†] and A. Nemirovski[†]

June 26, 2003

Abstract

We develop a new linear estimator for estimating an unknown vector of parameters \mathbf{x} in a linear model, in the presence of bounded data uncertainties. The estimator is designed to minimize the worstcase *regret* over all bounded data vectors, namely the worst-case difference between the MSE attainable using a linear estimator that does not know the true parameters \mathbf{x} , and the optimal MSE attained using a linear estimator that knows \mathbf{x} . We demonstrate through several examples that the minimax regret estimator can significantly increase the performance over the conventional least-squares estimator, as well as several other least-squares alternatives.

1 Introduction

The problem of estimating a vector of unknown parameters \mathbf{x} from noisy observations $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{w}$, where \mathbf{H} is a known matrix and \mathbf{w} is a noise vector, arises in many different fields in science and engineering, and consequently attracted much attention in the estimation literature.

If the unknown parameters \mathbf{x} are assumed to be random variables with known second-order statistics, then the linear estimator minimizing the mean-squared error (MSE) is the well-known Wiener estimator [1, 2]. However, in many problems of practical interest there is no statistical information available on \mathbf{x} , so that \mathbf{x} is treated as an unknown set of deterministic parameters. In this case, the MSE of an estimator $\hat{\mathbf{x}}$ of \mathbf{x} depends explicitly on the unknown parameters \mathbf{x} , and therefore cannot be minimized directly.

Since the MSE between $\hat{\mathbf{x}}$ and \mathbf{x} depends on \mathbf{x} , a common approach is to seek estimators that minimize some function of the data error $\hat{\mathbf{y}} - \mathbf{y}$, where $\hat{\mathbf{y}} = \mathbf{H}\hat{\mathbf{x}}$ is the estimated data vector. The celebrated least-

^{*}Department of Electrical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel. E-mail: yonina@ee.technion.ac.il.

[†]MINERVA Optimization Center, Department of Industrial Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel. E-mail: {morbt,nemirovs}@ie.technion.ac.il.