CCIT Report #468 February 2004

On the Reliability Exponent of the Exponential Telephone Signaling Channel

Yakir Ovadia * Shraga I. Bross † February 4, 2004

Abstract

Abstract—A lower bound on the reliability exponent of the memoryless exponential server timing channel with noiseless feedback is provided. The lower bound depends on whether fixed or random transmission-time, as well as on whether fixed block-length or variable block-length, codes are considered (with block-length denoting the number of recorded departures). On the other hand we show that Arikan's one-way sphere-packing bound for fixed transmission-time codes [8] applies as well to fixed transmission-time codes for the case at hand.

Index Terms – Point process channel, reliability exponent, noiseless feedback, timing channel, telephone signaling channel.

I. Introduction

The exponential-server timing channel is a model for a single-server queue with a first-in first-out service discipline wherein the server's service times are independent and exponentially distributed with mean $1/\mu$ (see [1]-[7] and references therein). Transmission begins at time 0 with the queue containing a possibly non-zero amount u_0 of unfinished work. The model allows u_0 to be a random variable except that it must be independent of the message transmitted. The message to be transmitted is encoded via a codeword $\tilde{\boldsymbol{x}} = (\tilde{x}_1, \tilde{x}_2, \dots, \tilde{x}_n)$ which consists of n nonnegative components that determine the interarrival times of packets to the queue. The receiver observes the interdeparture times $\boldsymbol{y} = (y_1, y_2, \dots, y_n)$ of packets from the queue and makes its decision based on this.

^{*}All Optical, Yogneam 20692, Israel email:yakir@alloptical.co.il

[†]Department of Electrical Engineering Technion, Haifa 32000, Israel email:shraga@ee.technion.ac.il