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Abstract— We study a relative optimization framework for
quasi-maximum likelihood blind source separation and relative
Newton method as its particular instance. The structure of the
Hessian allows its fast approximate inversion. In the second
part we present Smoothing Method of Multipliers (SMOM) for
minimization of sum of pairwise maxima of smooth functions, in
particular sum of absolute value terms. Incorporating Lagrange
multiplier into a smooth approximation of max-type function,
we obtain an extended notion of non-quadratic augmented
Lagrangian. Our approach does not require artificial variables,
and preserves the sparse structure of Hessian. Convergence of
the method is further accelerated by the Frozen Hessian strategy.
We demonstrate efficiency of this approach on an example of
blind separation of sparse sources. The non-linearity in this case
is based on the absolute value function, which provides super-
efficient source separation.

Index Terms— blind source separation, maximum likelihood,
Newton method, augmented Lagrangian, method of multipliers,
sparse representations

I. INTRODUCTION

In this work we study quasi-maximum likelihood blind

source separation (quasi-ML BSS) [1], [2] in batch mode,

without orthogonality constraint. This criterion provides im-

proved separation quality [3], [4], and is particularly useful

in separation of sparse sources. We will present optimization

methods, which produce quasi-ML BSS efficiently.

A. Quasi-ML blind source separation (BSS)

Consider the BSS problem, where an N -channel sensor

signal x(t) arises from N unknown scalar source signals si(t),
i = 1, .., N , linearly mixed together by an unknown N × N
matrix A

x(t) = As(t). (1)

We wish to estimate the mixing matrix A and the N -

dimensional source signal s(t). In the discrete time case

t = 1, 2, . . . , T we use matrix notation X = AS, where X
and S are N × T matrices with the signals xi(t) and si(t) in

the corresponding rows. We also denote the unmixing matrix

W = A−1.

The author would like to acknowledge support for this project by the
Ollendorff Minerva Center and the HASSIP Research Network Program
HPRN-CT-2002-00285, sponsored by the European Commission

When the sources are i.i.d, stationary and white, the nor-

malized minus-log-likelihood of the observed data X is (see

for example [4])

L(W ; X) = − log |detW | +
1

T

∑

i,t

h
(

Wix(t)
)

, (2)

where Wi is i-th row of W , h(·) = − log f(·), and

f(·) is the probability density function (pdf) of the sources.

Consistent estimator can be obtained by minimization of (2),

also when h(·) is not exactly equal to − log f(·). Such quasi-

ML estimation is practical when the source pdf is unknown,

or is not well-suited for optimization. For example, when the

sources are sparse or sparsely representable, the absolute value

function or its smooth approximation is a good choice for h(·)
[5], [6], [7], [8], [9], [10]. Here we will use a family of convex

smooth approximations to the absolute value

h1(c) = |c| − log(1 + |c|) (3)

hλ(c) = λh1(c/λ) (4)

with λ a proximity parameter: hλ(c) → |c| as λ → 0+. Widely

accepted natural gradient method does not work well when

the approximation of the absolute value becomes too sharp.

In this work we consider the relative Newton method, which

overcomes this obstacle.

The Newton equations considered in this work are similar in

part to those obtained by Pham and Garat [1], using different

considerations. However, the algorithm given in [1], is not used

in practice, because of a possibility of convergence to spurious

solutions. We overcome this difficulty using line search and

forcing positive definiteness of the Hessian.

Several other Newton-like BSS methods have been studied

in the literature. They are based on negentropy approximation

with orthogonality constraint [11], cumulant model [12], [13]

and joint diagonalization of correlation matrices [14], [15],

[16], [17].

The relative Newton method presented here is dedicated to

quasi-ML BSS in general (not only to the sparse source case).

B. Smoothing Method of Multipliers (SMOM) for Sum-Max

problems

In the second part we present a method for minimization of

a sum of pairwise maxima of smooth functions, in particular
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