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Abstract

We present an optimization engine for large scale pattern recognition using Support Vector
Machine (SVM). Our treatment is based on conversion of soft-margin SVM constrained
optimization problem to an unconstrained form, and solving it using newly developed
Sequential Subspace Optimization (SESOP) method. SESOP is a general tool for large-
scale smooth unconstrained optimization. At each iteration the method minimizes the
objective function over a subspace spanned by the current gradient and by directions of
few previous steps and gradients. Following an approach of A. Nemirovski, we also include
into the search subspace the direction from the starting point to the current point, and
a weighted sum of all previous gradients: this provides the worst case optimality of the
method. The subspace optimization can be performed extremely fast in the cases when
the objective function is a combination of expensive linear mappings with computationally
cheap non-linear functions, like in the unconstrained SVM problem. Presented numerical
results demonstrate high efficiency of the method.

Keywords: Large-scale optimization, pattern recognition, Support Vector Machine, con-
jugate gradients, subspace optimization

1. Introduction

The problem of large-scale binary data classification arises in many applications, like recog-
nition of text, hand-written characters, images, medical diagnostics, etc. Quite often, the
number of features or examples is very large, say 104

−107 and more, and there is a need for
algorithms, for which storage requirement and computational cost per iteration grow not
more than linearly in those parameters. One way to treat such problems with SVM (Vapnik,
1998) is to convert a constrained SVM problem into an unconstrained one and solve it with
an optimization method having non-expensive iteration cost and storage. An appropriate
optimization algorithm of this type is the conjugate gradient (CG) method (Hestenes and
Stiefel, 1952; Gill et al., 1981; Shewchuk, 1994). It is known that CG worst case convergence
rate for quadratic problems is O(k−2) (in terms of objective function calculations), where
k is the iteration count. This rate of convergence is independent of the problem size and is
optimal, i.e. it coincides with the complexity of convex smooth unconstrained optimization
(see e.g. Nemirovski (1994)). However the standard extensions of CG to nonlinear functions
by Fletcher-Reeves and Polak-Ribière (see e.g. Shewchuk (1994)) are no longer worst-case
optimal.
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