CCIT Report #609 December 2006

On Finite Memory Universal Data Compression and Classification of Individual Sequences

Jacob Ziv
Department of Electrical Engineering
Technion-Israel Institute of Technology
Haifa 32000, Israel

November 19, 2006

Abstract

Consider the case where consecutive blocks of N letters of a semi-infinite individual sequence \mathbf{X} over a finite-alphabet are being compressed into binary sequences by some one-to-one mapping. No a-priori information about \mathbf{X} is available at the encoder, which must therefore adopt a universal data-compression algorithm.

It is known that if the universal LZ77 data compression algorithm is successively applied to N-blocks then the best error-free compression, for the particular individual sequence \mathbf{X} is achieved as N tends to infinity.

The best possible compression that may be achieved by any universal data compression algorithm for $finite\ N$ -blocks is discussed. It is demonstrated that context tree coding essentially achieves it.

Next, consider a device called classifier (or discriminator) that observes an individual training sequence \mathbf{X} . The classifier's task is to examine individual test sequences of length N and decide whether the test N-sequence has the same features as those that are captured by the training sequence \mathbf{X} , or is sufficiently different, according to some appropriate criterion. Here again, it is demonstrated that a particular universal context classifier with a storage-space complexity that is linear in N, is essentially optimal. This may contribute a theoretical "individual sequence" justification for the Probabilistic Suffix Tree (PST) approach in learning theory and in computational biology.

Index Terms: Data compression, universal compression, universal classification, context-tree coding.