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Linear Regression with Gaussian Model

Uncertainty: Algorithms and Bounds
Ami Wiesel, Yonina C. Eldar and Arie Yeredor

Abstract—We consider the problem of estimating an unknown
deterministic parameter vector in a linear regression model with
random Gaussian uncertainty in the mixing matrix. We prove
that the maximum likelihood (ML) estimator is a regularized
least squares estimator and develop three alternative approaches
for finding the regularization parameter which maximizes the
likelihood. We analyze the performance using the Cramér Rao
bound (CRB) on the mean squared error, and show that the
degradation in performance due the uncertainty is not as severe
as may be expected. Next, we address the problem again assuming
that the variances of the noise and the elements in the model
matrix are unknown and derive the associated CRB and ML
estimator.

We compare our methods to known results on linear regression
in the error in variables (EIV) model. We discuss the similarity
between these two competing approaches, and provide a thorough
comparison which sheds light on their theoretical and practical
differences.

Index Terms—Maximum likelihood estimation, Total least
squares, Errors in Variables, Linear models, Random model
matrix.

I. INTRODUCTION

One of the most classical problems in statistical signal

processing is that of estimating an unknown, deterministic

vector parameter x in the linear regression model y = Gx+w

where G is a linear transformation and w is a Gaussian

noise vector. The importance of this problem stems from the

fact that a wide range of problems in communications, array

processing, and many other areas can be cast in this form.

Most of the literature concentrates on the simplest case, in

which it is assumed that the model matrix G is completely

specified. In this setting, the celebrated least squares (LS)

estimator coincides with the maximum likelihood (ML) solu-

tion and is known to minimize the mean-squared-error (MSE)

among all unbiased estimators of x [1], [2]. Nonetheless, it

may be outperformed in terms of MSE by biased methods

such as the regularized LS estimator due to Tikhonov [3], the

James-Stein method [4], and the minimax MSE approach [5].

The linear regression problem for cases where G is not

completely specified received much less attention. In this

case, there are many mathematical models for describing the

uncertainty in G. Each of these models leads to different

optimization criteria and accordingly to different estimation

algorithms. Most of the literature can be divided into two main
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categories, in which the uncertainty is expressed using either

deterministic or random models. A standard deterministic

approach is the “robust LS” which is designed to cope with

the worst-case G within a known deterministic set [6], [7].

Recently, the minimax MSE criterion was also considered

in this problem formulation [5]. In the stochastic uncertainty

models, G is usually known up to some Gaussian distortion.

Typically, there are two approaches in this setting. First, one

can use a random variables (RV) model and assume that G

is a random Gaussian matrix with known statistics. Based on

this model, different estimation methods have been considered.

The ML estimator was derived in our recent letter [8]. An

alternative strategy is to minimize the expected LS criterion

with respect to G [9], [10]. The minimax MSE estimator was

also generalized to this setting in [10]. The second approach

is the standard Errors-in-Variables (EIV) model, where G is

considered a deterministic unknown matrix, and an additional

noisy observation on this matrix is available [11]. The ML

solution for x in this case was addressed in [11], and coincides

with the well known total LS (TLS) estimator [12] (when

the additive Gaussian noise w is independent and identically

distributed).

Evidently, there are different models and optimization cri-

teria for estimating x in a linear model with uncertainty in the

model matrix. The main objective of this paper is to compare

the Gaussian uncertainty approaches and to shed light on

their advantages and disadvantages. In particular, we consider

the two classical Gaussian uncertainty formulations: the RV

and EIV models. We explain the practical and theoretical

differences between them, and discuss the scenarios in which

each is appropriate.

The main part of this paper considers ML estimation of

x in the RV linear regression model. We prove that the

ML estimate (MLE) is a regularized (or deregularized) LS

estimator, and that its regularization parameter and squared

norm can be characterized as a saddle point of a concave-

quasiconvex objective function. Thus, we can efficiently find

the optimal parameters numerically. In fact, our previous

solution in [8] can be interpreted as a minimax search for

this saddle point. Using this new characterization, we present

a more efficient maximin search. Furthermore, an appealing

approach for finding the ML estimate in this setting is to resort

to the classical expectation maximization (EM) algorithm

which is known to converge to a stationary point of the ML

objective (see [13], [14], [15] and references within). Due to

the non-convexity of the log-likelihood function, there is no

guarantee that this point will indeed be the global maximum.

Fortunately, our saddle point interpretation provides a simple

method for checking the global optimality of the convergence
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