CCIT Report #641

October 2007 1

Constrained Linear Minimum MSE Estimation
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Abstract— We address the problem of linear minimum mean-
squared error (LMMSE) estimation under constraints on the
filter or the estimated signal. We develop a general formula that
leads to closed form solutions for a wide class of constrained
LMMSE problems. The results are applicable to both finite
dimensional problems as well as to the Wiener filtering setup, in
which infinitely-many measurements are available. Our approach
generalizes previous known results such as the generalized
Karhunen-Loeve transform (GKLT), the causal Wiener filter and
more. As an application of our framework, we develop Wiener
type filters under various restrictions, which allow for practical
implementations.

Index Terms— Estimation, Wiener filtering, Constrained Esti-
mation.

I. INTRODUCTION

COMMON problem in Bayesian estimation is to obtain
Aan estimate of a random vector (r.v.) x based on a
realization of another random vector y such that some error
criterion is minimized [1]. The estimator T = ¢ (y) assigns
an estimated vector Z to every possible realization of y. Thus,
constructing a Bayesian estimator amounts to a mapping from
the space of measurement vectors to the space of signals based
on the joint probability function of x and y. One of the
most commonly used error criteria is the mean-squared error
(MSE), which is given by the expectation of the squared-norm
error E[||lz — ¢ (y)||°]. It is well known that the estimator
minimizing the MSE is the conditional expectation of & given
y, denoted as ¢, (y) = E[x|y].

The minimum MSE (MMSE) estimator, although seemingly
simple, is not frequently used due to two main reasons. First,
in many cases it is very hard to obtain an expression for ¢.
Second, one often desires to constrain the estimator to belong
to a certain class of mappings because of implementation
reasons. One way to overcome the difficulties in computation
and implementation of the MMSE method is to restrict the
estimator to be linear. The linear MMSE estimator (LMMSE)
minimizes the MSE among all linear functions. The LMMSE
solution has a closed form that depends only on the second
order statistics of x and y [2], quantities which may be
easily estimated from a set of training data. Moreover, it is
easy to implement in practical applications as the estimation
procedure involves only matrix multiplication, i.e. T = Auy.
The LMMSE approach also has a simple extension to the
case where x and y are jointly wide-sense stationary (WSS)
random processes, which is known as the Wiener filter [3].
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In practical applications, there are situations that require
that either the linear estimator itself or the signal at its
output possess certain desired properties. These may stem
for example from implementation limitations, efficiency of
computation or the need to compress the data.

A prime example of constrained linear estimation is the
famous work of Wiener [3] on causal LMMSE estimation and
prediction of signals. Other restrictions on the Wiener filter
include finite impulse response (FIR) [4], finite horizon and
general restrictions on the support of the filter in the time
domain [5]. Constrained LMMSE estimation arises in array
processing applications as well (also termed vector Wiener
filtering). In this context, it is often desired to reduce the
dimensionality of the measurement vector process. This is
analogous to restricting the rank of the estimator. Various
approaches were devised in the past for this problem, some
directed at minimizing the MSE and some ad hoc (see for
example [6],[7] and references therein).

Reduced rank estimators are also at the heart of signal
compression. A basic problem encountered in this field is
the determination of a small set of vectors that allows the
representation (via linear combinations) of a certain class of
signals. These vectors are usually chosen to minimize the MSE
between the original signal and its compact representation.
Like in array processing, this approach can be expressed as a
linear estimation problem with a rank constraint. The solution
to this problem is known as principal component analysis
(PCA) or the Karhunen-Loeve transform (KLT). One extension
to this basic concept is the design of a linear compression
transform that takes into account additive noise [8]. A more
general setting was considered in [9] and [10] in which a
compact representation is designed for the task of estimating
a different signal (rather than the representation of the original
signal itself).

There are applications in which the constraints on the
estimator have a stochastic flavor. One example is the MMSE
whitening technique which emerged recently [11] and found
many applications in the fields of signal processing and
communication. In this methodology, a linear transformation
is designed such that, when applied to a r.v. y, it produces
the r.v. y that is as close as possible to y in an MSE sense
and whose covariance matrix is diagonal. A generalization
of this approach is the covariance shaping technique [12],
in which the transform is designed to produce a r.v. with a
predefined covariance matrix (not necessarily diagonal). A few
of the applications of these approaches are improvement of
least squares parameter estimation [13], multiuser detection
[14] and matched filtering [15].

Another important class of restrictions emerges in setups
where the estimator is only one block in a larger scheme. For
example, in a relay communication system it is often desired
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