
The Space Complexity of Processing XML Twig Queries Over

Indexed Documents∗

Mirit Shalem

Department of Computer Science

Technion, Haifa, Israel

mirit2s@cs.technion.ac.il

Ziv Bar-Yossef

Department of Electrical Engineering

Technion, Haifa, Israel

and Google Haifa Engineering Center

Haifa, Israel

zivby@ee.technion.ac.il

March 27, 2008

Abstract

Current twig join algorithms incur high memory costs on queries that involve child-axis nodes. In

this paper we provide an analytical explanation for this phenomenon. In a first large-scale study of

the space complexity of evaluating XPath queries over indexed XML documents we show the space

to depend on three factors: (1) whether the query is a path or a tree; (2) the types of axes occurring

in the query and their occurrence pattern; and (3) the mode of query evaluation (filtering, full-fledged,

or “pattern matching”). Our lower bounds imply that evaluation of a large class of queries that have

child-axis nodes indeed requires large space.

Our study also reveals that on some queries there is a large gap between the space needed for pattern

matching and the space needed for full-fledged evaluation or filtering. This implies that many existing

twig join algorithms, which work in the pattern matching mode, incur significant space overhead. We

present a new twig join algorithm that avoids this overhead. On certain queries our algorithm is exceed-

ingly more space-efficient than existing algorithms, sometimes bringing the space down from linear in

the document size to constant.

1 Introduction

XQuery and XPath [9] queries are typically represented as node-labeled twig patterns (i.e., small trees).

Evaluating a twig pattern over an XML document is therefore a core database operation. As with rela-

tional databases, creating an index over the XML document at a pre-processing step can significantly reduce

the costs (time, space) of query evaluation. Similarly to text search, an index for an XML document con-

sists of posting lists or streams, one for each XML label that occurs in the document. The stream consists

of positional encodings of all the elements that have this label, in document order. In this paper we fo-

cus on the most popular encoding scheme, the BEL encoding [6], in which each element is encoded as a

(Begin,End,Level) tuple. The BEL encoding, although being compact, enables simple testing of structural

relationships between elements.

Over the past decade, many algorithms for evaluating twig queries over indexed XML documents have

been proposed (e.g., [6, 7, 10, 23, 22, 25, 18]). Much progress has been made in supporting wider fragments

∗Supported by the European Commission Marie Curie International Re-integration Grant.

lesley
Text Box
CCIT Report #693 March 2008

