
Fork Sequential Consistency is Blocking

Christian Cachin∗ Idit Keidar† Alexander Shraer†

May 14, 2008

Abstract

We consider an untrusted server storing shared data on behalf of clients. We show that no storage

access protocol can on the one hand preserve sequential consistency and wait-freedom when the

server is correct, and on the other hand always preserve fork sequential consistency.

1 Introduction

We examine an online collaboration facility providing storage and data sharing functions for remote

clients that do not communicate directly [3, 4, 13, 14]. Specifically, we consider a server that implements

single-writer multi-reader registers. The storage server may be faulty, potentially exhibiting Byzantine

faults [10, 8, 11, 2]. When the server is correct, strong liveness, namely wait-freedom [5], should be

guaranteed, as a client editing a document does not want to be dependent on another client, which could

even be in a different timezone [14]. In addition, although read/write operations of different clients

may occur concurrently, consistency of the shared data should be provided. Specifically, we consider a

service that, when the server is correct, provides sequential consistency, which ensures that clients have

the same view of the order of read/write operations, which also respects the local order of operations

occurring at each client [7]. Sequential consistency provides clients with a convenient abstraction of a

shared storage space. It allows for more efficient implementations than stronger consistency conditions

such as linearizability [6], especially when the system is not synchronized [1].

In executions where the server is faulty, liveness obviously cannot be guaranteed. Moreover, with a

Byzantine server, ensuring sequential consistency is also impossible [2]. Still, it is possible to guarantee

weaker semantics, in particular so-called forking consistency notions [8, 10]. These ensure that when-

ever the server causes the views of two clients to differ in a single operation, the two clients never again

see each other’s updates after that. In other words, if an operation appears in the views of two clients,

these views are identical up to this operation.

Originally, fork-linearizability was considered [8, 10, 2]. In this paper, we examine the weaker fork

sequential consistency condition, recently introduced by Oprea and Reiter [11], who showed that this

new condition is sufficient for certain applications. However, to date, no fork-sequentially-consistent

storage protocol has been proposed. In fact, Oprea and Reiter suggested this as a future research direc-

tion [11]. Furthermore, Cachin et al. [2] showed that the stronger notion of fork-linearizability does not

allow for wait-free implementations, but conjectured that such implementations might be possible with

fork sequential consistency. Surprisingly, we prove here that no storage access protocol can provide fork

sequential consistency at all times and also be sequentially consistent and wait-free whenever the server

is correct. This generalizes the impossibility result of Cachin et al. [2], and requires a more elaborate

proof.

∗IBM Research, Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland. cca@zurich.ibm.com
†Department of Electrical Engineering, Technion, Haifa 32000, Israel. {idish@ee, shralex@tx}.technion.ac.il

1

lesley
Text Box
CCIT Report #697 April 2008

