
Transactifying Apache

Haggai Eran Ohad Lutzky Zvika Guz Idit Keidar

Department of Electrical Engineering, Technion - Israel Institute of Technology

haggaie@tx.technion.ac.il lutzky@gmail.com zguz@tx.technion.ac.il idish@ee.technion.ac.il

Abstract

Apache is a large-scale industrial multi-process and

multi-threaded application, which uses lock-based syn-

chronization. We report on our experience in modify-

ing Apache to employ transactional memory instead

of locks, a process we refer to as transactification;

we are not aware of any previous efforts to transactify

legacy software of such a large scale. Along the way,

we learned some valuable lessons about which tools

one should use, which parts of the code one should

transactify and which are better left untouched, as well

as on the intricacy of commit handlers. We also stum-

bled across weaknesses of existing software transac-

tional memory (STM) toolkits, leading us to identify

desirable features they are currently lacking. Finally,

we present performance results from running Apache

on a 32-core machine, showing that, there are scenar-

ios where the performance of the STM-based version

is close to that of the lock-based version. These results

suggest that there are applications for which the over-

head of using a software-only implementation of trans-

actional memory is insignificant.

Categories and Subject Descriptors D.1.3 [Program-

ming Techniques]: Concurrent Programming

General Terms Measurement, Performance, Experi-

mentation

Keywords Software Transactional Memory

1. Introduction

The vast shift to multi-core machines in recent years

creates a major challenge for software developers, who

must learn how to exploit the parallelism that such

architectures can offer. In this context, Transactional

Memory (TM) is one of the leading paradigms targeted

at allowing programmers to easily harness the paral-

lelism of future multi-core machines and to extract the

performance promise these systems can offer. Since

hardware transactional memory implementations are

not yet in the market, Software Transactional Memory

(STM) tools offer a viable alternative in the interim.

One of the principal challenges that TM systems

confront, (besides delivering performance), is the abil-

ity to handle large-scale commercial applications. De-

velopers that wish to employ TM, face the challenge

of applying it to large legacy code. As TM systems are

maturing, these aspects of convertibility and complete-

ness are becoming critical in order to allow TM to shift

from a promising concept to a full-fledged commercial

tool. In this work, we try, via a design example, to an-

swer how far we are from achieving these goals.

To date, TM was mostly employed within the niche

of complex concurrent data structures, such as red-

black trees and skip lists [9, 7], and isolated scientific

algorithms (such as STAMP [3]); it was additionally

used for benchmarks such as STMBench7 [8], which

measures operations on a complex yet still artificial

object graph. Moreover, Transactional Memory was

mostly used thus far in benchmarks that were imple-

mented explicitly with TM from the outset.

In this paper, we use Transactional Memory for

the first time in the context of large-scale industrial

software, which, moreover, does not pertain to any

of the typical niches of transactional memory bench-

marks. Furthermore, we convert legacy code, which

used lock-based synchronization, to work with transac-

tional memory, rather than write the benchmark from

scratch. We refer to this conversion process as trans-

actification. Specifically, we transactify the Apache

web server. Since Apache is written in C, we needed

to employ C-based STM toolkits. We next recognized

that it would not be feasible to use library-based STM

tools, as this would entail changing all reads and writes

to global variables in the code. Instead, we opted for

compiler-based STMs. We experimented with two such

lesley
Text Box
CCIT REPORT #718 February 2009

