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Abstract— We provide a simple physical interpretation, in the
context of the second law of thermodynamics, to the information
inequality (a.k.a. the Gibbs’ inequality, which is also equivalent
to the log–sum inequality), asserting that the relative entropy
between two probability distributions cannot be negative. Since
this inequality stands at the basis of the data processing theorem
(DPT), and the DPT in turn is at the heart of most, if not all,
proofs of converse theorems in Shannon theory, it is observed
that conceptually, the roots of fundamental limits of Information
Theory can actually be attributed to the laws of physics, in
particular, the second law of thermodynamics, and indirectely,
also the law of energy conservation. By the same token, in the
other direction: one can view the second law as stemming from
information–theoretic principles.

Index Terms— Gibbs’ inequality, data processing theorem,
entropy, second law of thermodynamics, divergence, relative
entropy, mutual information.

I. INTRODUCTION

While the laws of physics draw the boundaries between the

possible and the impossible in Nature, the coding theorems of

Information Theory, or more precisely, their converse parts,

draw the boundaries between the possible and the impossible

in the design and performance of coded communication sys-

tems and in data processing. A natural question that may arise,

in view of these two facts, is whether there is any relationship

between them. It is the purpose of this work to touch upon this

question and to make an attempt to provide at least a partial

answer.

Perhaps the most fundamental inequality in Information

Theory is the so called information inequality (cf. e.g., [1,

Theorem 2.6.3, p. 28]), which asserts that the relative entropy

(a.k.a. the Kullback–Leibler divergence) between two proba-

bility distributions over the same alphabet P = {P (x), x ∈
X} and Q = {Q(x), x ∈ X},

D(P‖Q) =
∑

x∈X

P (x) log
P (x)

Q(x)
,

can never be negative, and a similar fact applies to probability

density functions with the summation across X being replaced

by integration.

The log–sum inequality (LSI) [1, Theorem 2.7.1, p. 31],

which asserts that for two sets of non–negative numbers,

(a1, a2, . . . , an) and (b1, b2, . . . , bn):

n
∑

i=1

ai log
ai

bi

≥

(

n
∑

i=1

ai

)

log

(∑n

i=1
ai

∑

n

i=1
bi

)

,

is completely equivalent1 to the information inequality, al-

though proved in [1] in a rather different manner.

Yet another name for the same inequality, which is more fre-

quently encountered in the jargon of physicists, is the Gibbs’

inequality: When the information inequality is applied to two

probability distributions of the Boltzmann form (cf. Section

IV below), it yields an interesting inequality concerning their

corresponding free energies (cf. e.g., [2, Section 5.6, pp. 143–

146]), which serves as a useful tool for obtaining good bounds

on the free energy of a complex system, when its exact value

is difficult to calculate.

In this work, we provide a simple physical interpretation

to this inequality of the the free energies, and thereby also

to the information inequality, or the log–sum inequality. This

physical interpretation is directly related to the second law

of thermodynamics, which asserts that the entropy of an

isolated physical system cannot decrease: According to this

interpretation, the divergence between two probability distri-

butions is proportional to the energy dissipated in the system

when it undergoes an irreversible process, and hence converts

this energy loss into entropy production, or heat. Thus, the

non–negativity of the relative entropy is related to the non–

negativity of this entropy change, which is, as said, the second

law of thermodynamics.

Since the mutual information can be thought of as an

instance of the relative entropy, and so can the difference

between two mutual informations defined along a Markov

chain, then the data processing theorem (DPT) can, of course,

also be given the very same physical interpretation. Consid-

ering the fact that the DPT is pivotal to most, if not all,

converse theorems in Information Theory, this means that,

in fact, the fundamental limits of Information Theory can,

at least conceptually, be attributed to the laws of physics,

in particular, to the second law of thermodynamics:2 The

rate loss in any suboptimal coded communication system, is

given the meaning of irreversibility and entropy production

in a corresponding physical system. Optimum (or nearly opti-

mum) communication systems are corresponding to reversible

processes (or lack of any process at all) with no entropy

1The information inequality is obtained from the LSI when
(a1, a2, . . . , an) and (b1, b2, . . . , bn) both sum to unity, and conversely,
the LSI is obtained from the information inequality, by applying the latter to
the probability distributions Pi = ai/

P

j aj and Qi = bi/
P

j bj .
2Another law of physics that plays a role here, at least indirectly, is the

law of energy conservation, because our derivations are all based on the
Boltzmann–Gibbs distribution of equilibrium statistical mechanics, and this
distribution, in turn, is derived on the basis of the energy conservation law.
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