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Abstract—The fundamental principle underlying compressed
sensing is that a signal, which is sparse under some basis
representation, can be recovered from a small number of linear
measurements. However, prior knowledge of the sparsity basis
is essential for the recovery process. This work introduces the
concept of blind compressed sensing, which avoids the need to
know the sparsity basis in both the sampling and the recovery
process. We suggest three possible constraints on the sparsity
basis that can be added to the problem in order to make its
solution unique. For each constraint we prove conditions for
uniqueness, and suggest a simple method to retrieve the solution.
Under the uniqueness conditions, and as long as the signals
are sparse enough, we demonstrate through simulations that
without knowing the sparsity basis our methods can achieve
results similar to those of standard compressed sensing, which
relay on prior knowledge of the sparsity basis. This offers a
general sampling and reconstruction system that fits all sparse
signals, regardless of the sparsity basis, under the conditions and
constraints presented in this work.

I. INTRODUCTION

Sparse signal representations have gained popularity in
recent years in many theoretical and applied areas [1]-[6].
Roughly speaking, the information content of a sparse signal
occupies only a small portion of its ambient dimension. For
example, a finite dimensional vector is sparse if it contains a
small number of nonzero entries. It is sparse under a basis if
its representation under a given basis transform is sparse. An
analog signal is referred to as sparse if, for example, a large
part of its bandwidth is not exploited [4], [7]. Other models
for analog sparsity are discussed in detail in [5], [6], [8].

Compressed sensing (CS) [2], [3] focuses on the role of
sparsity in reducing the number of measurements needed to
represent a finite dimensional vector € R™. The vector z is
measured by b = Ax, where A is a matrix of size n x m, with
n < m. In this formulation, determining = from the given
measurements b is ill possed in general, since A has fewer
rows than columns and is therefore non-invertible. However,
if « is known to be sparse in a given basis P, then under
additional mild conditions on A [9]-[11], the measurements
b determine x uniquely as long as n is large enough. This
concept was also recently expanded to include sub-Nyquist
sampling of structured analog signals [4], [6], [12].

In principle, recovery from compressed measurements is
NP-hard. Nonetheless, many suboptimal methods have been
proposed to approximate its solution [1]—[3], [13]-[15]. These
algorithms recover the true value of x when z is sufficiently
sparse and the columns of A are incoherent [1], [9]-[11],
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[13]. However, all known recovery approaches use the prior
knowledge of the sparsity basis P.

Dictionary learning (DL) [16]-[20] is another application of
sparse representations. In DL, we are given a set of training
signals, formally the columns of a matrix X. The goal is to
find a dictionary P, such that the columns of X are sparsely
represented as linear combinations of the columns of P. In
[17], the authors study conditions under which the DL problem
yields a unique solution for the given training set X.

In this work we introduce the concept of blind compressed
sensing (BCS), in which the goal is to recover a high-
dimensional vector z from a small number of measurements,
where the only prior is that there exists some basis in which
x is sparse. We refer to our setting as blind, since we do not
require knowledge of the sparsity basis for the sampling or
the reconstruction. This is in sharp contrast to CS, in which
recovery necessitates this knowledge. Our BCS framework
combines elements from both CS and DL. On the one hand, as
in CS and in contrast to DL, we obtain only low dimensional
measurements of the signal. On the other hand, we do not
require prior knowledge of the sparsity basis which is similar
to the DL problem. The goal of this work is to investigate the
basic conditions under which blind recovery from compressed
measurements is possible theoretically, and to propose con-
crete algorithms for this task.

Since the sparsity basis is unknown, the uncertainty about
the signal z is larger in BCS than in CS. A straightforward
solution would be to increase the number of measurements.
However, we show that no rate increase can be used to
determine z, unless the number of measurements is equal
the dimension of x. Furthermore, we prove that even if we
have multiple signals that share the same (unknown) sparsity
basis, as in DL, BCS remains ill-posed. In order for the
measurements to determine = uniquely we need an additional
constraint on the problem. To prove the concept of BCS we
begin by discussing two simple constraints on the sparsity ba-
sis, which enable blind recovery of a single vector x. We then
turn to our main contribution, which is a BCS framework for
structured sparsity bases. In this setting, we show that multiple
vectors sharing the same sparsity pattern are needed to ensure
recovery. For all of the above formulations we demonstrate via
simulations that when the signals are sufficiently sparse the
results of our BCS methods are similar to those obtained by
standard CS algorithms which use the true, though unknown
in practice, sparsity basis. When relying on the structural
constraint we require in addition that the number of signals
must be large enough. However, the simulations show that the
number of signals needed is reasonable and much smaller than
that used for DL [21]-[24].

The first constraint on the basis we consider relies on the
fact that over the years there have been several bases that
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