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Abstract—The fundamental principle underlying compressed
sensing is that a signal, which is sparse under some basis
representation, can be recovered from a small number of linear
measurements. However, prior knowledge of the sparsity basis
is essential for the recovery process. This work introduces the
concept of blind compressed sensing, which avoids the need to
know the sparsity basis in both the sampling and the recovery
process. We suggest three possible constraints on the sparsity
basis that can be added to the problem in order to make its
solution unique. For each constraint we prove conditions for
uniqueness, and suggest a simple method to retrieve the solution.
Under the uniqueness conditions, and as long as the signals
are sparse enough, we demonstrate through simulations that
without knowing the sparsity basis our methods can achieve
results similar to those of standard compressed sensing, which
relay on prior knowledge of the sparsity basis. This offers a
general sampling and reconstruction system that fits all sparse
signals, regardless of the sparsity basis, under the conditions and
constraints presented in this work.

I. INTRODUCTION

Sparse signal representations have gained popularity in

recent years in many theoretical and applied areas [1]–[6].

Roughly speaking, the information content of a sparse signal

occupies only a small portion of its ambient dimension. For

example, a finite dimensional vector is sparse if it contains a

small number of nonzero entries. It is sparse under a basis if

its representation under a given basis transform is sparse. An

analog signal is referred to as sparse if, for example, a large

part of its bandwidth is not exploited [4], [7]. Other models

for analog sparsity are discussed in detail in [5], [6], [8].

Compressed sensing (CS) [2], [3] focuses on the role of

sparsity in reducing the number of measurements needed to

represent a finite dimensional vector x ∈ R
m. The vector x is

measured by b = Ax, where A is a matrix of size n×m, with

n ≪ m. In this formulation, determining x from the given

measurements b is ill possed in general, since A has fewer

rows than columns and is therefore non-invertible. However,

if x is known to be sparse in a given basis P , then under

additional mild conditions on A [9]–[11], the measurements

b determine x uniquely as long as n is large enough. This

concept was also recently expanded to include sub-Nyquist

sampling of structured analog signals [4], [6], [12].

In principle, recovery from compressed measurements is

NP-hard. Nonetheless, many suboptimal methods have been

proposed to approximate its solution [1]–[3], [13]–[15]. These

algorithms recover the true value of x when x is sufficiently

sparse and the columns of A are incoherent [1], [9]–[11],
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[13]. However, all known recovery approaches use the prior

knowledge of the sparsity basis P .

Dictionary learning (DL) [16]–[20] is another application of

sparse representations. In DL, we are given a set of training

signals, formally the columns of a matrix X . The goal is to

find a dictionary P , such that the columns of X are sparsely

represented as linear combinations of the columns of P . In

[17], the authors study conditions under which the DL problem

yields a unique solution for the given training set X .

In this work we introduce the concept of blind compressed

sensing (BCS), in which the goal is to recover a high-

dimensional vector x from a small number of measurements,

where the only prior is that there exists some basis in which

x is sparse. We refer to our setting as blind, since we do not

require knowledge of the sparsity basis for the sampling or

the reconstruction. This is in sharp contrast to CS, in which

recovery necessitates this knowledge. Our BCS framework

combines elements from both CS and DL. On the one hand, as

in CS and in contrast to DL, we obtain only low dimensional

measurements of the signal. On the other hand, we do not

require prior knowledge of the sparsity basis which is similar

to the DL problem. The goal of this work is to investigate the

basic conditions under which blind recovery from compressed

measurements is possible theoretically, and to propose con-

crete algorithms for this task.

Since the sparsity basis is unknown, the uncertainty about

the signal x is larger in BCS than in CS. A straightforward

solution would be to increase the number of measurements.

However, we show that no rate increase can be used to

determine x, unless the number of measurements is equal

the dimension of x. Furthermore, we prove that even if we

have multiple signals that share the same (unknown) sparsity

basis, as in DL, BCS remains ill-posed. In order for the

measurements to determine x uniquely we need an additional

constraint on the problem. To prove the concept of BCS we

begin by discussing two simple constraints on the sparsity ba-

sis, which enable blind recovery of a single vector x. We then

turn to our main contribution, which is a BCS framework for

structured sparsity bases. In this setting, we show that multiple

vectors sharing the same sparsity pattern are needed to ensure

recovery. For all of the above formulations we demonstrate via

simulations that when the signals are sufficiently sparse the

results of our BCS methods are similar to those obtained by

standard CS algorithms which use the true, though unknown

in practice, sparsity basis. When relying on the structural

constraint we require in addition that the number of signals

must be large enough. However, the simulations show that the

number of signals needed is reasonable and much smaller than

that used for DL [21]–[24].

The first constraint on the basis we consider relies on the

fact that over the years there have been several bases that
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