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Abstract—We derive a simple general parametric representa-
tion of the rate–distortion function of a memoryless source, where
both the rate and the distortion are given by integrals whose
integrands include the minimum mean square error (MMSE) of
the distortion ∆ = d(X, Y ) based on the source symbol X ,
with respect to a certain joint distribution of these two random
variables. At first glance, these relations may seem somewhat
similar to the I–MMSE relations due to Guo, Shamai and Verdú,
but they are, in fact, quite different. The new relations among
rate, distortion, and MMSE are discussed from several aspects,
and more importantly, it is demonstrated that they can sometimes
be rather useful for obtaining non–trivial upper and lower
bounds on the rate–distortion function, as well as for determining
the exact asymptotic behavior for very low and for very large
distortion. Analogous MMSE relations hold for channel capacity
as well.

Index Terms—Rate–distortion function, Legendre transform,
estimation, minimum mean square error.

I. INTRODUCTION

IT has been well known for many years that the derivation of

the rate–distortion function of a given source and distortion

measure, does not lend itself to closed form expressions,

even in the memoryless case, except for a few very simple

examples [1],[2],[3],[5]. This has triggered the derivation of

some upper and lower bounds, both for memoryless sources

and for sources with memory.

One of the most important lower bounds on the rate–

distortion function, which is applicable for difference distor-

tion measures (i.e., distortion functions that depend on their

two arguments only through the difference between them),

is the Shannon lower bound in its different forms, e.g., the

discrete Shannon lower bound, the continuous Shannon lower

bound, and the vector Shannon lower bound. This family of

bounds is especially useful for semi-norm–based distortion

measures [5, Section 4.8]. The Wyner–Ziv lower bound [14]

for a source with memory is a convenient bound, which

is based on the rate–distortion function of the memoryless

source formed from the product measure pertaining to the

single–letter marginal distribution of the original source and

it may be combined elegantly with the Shannon lower bound.

The autoregressive lower bound asserts that the rate–distortion

function of an autoregressive source is lower bounded by the

rate–distortion function of its innovation process, which is

again, a memoryless source.

Upper bounds are conceptually easier to derive, as they may

result from the performance analysis of a concrete coding
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scheme, or from random coding with respect to (w.r.t.) an

arbitrary random coding distribution, etc. One well known

example is the Gaussian upper bound, which upper bounds

the rate–distortion function of an arbitrary memoryless (zero–

mean) source w.r.t. the squared error distortion measure by the

rate–distortion function of the Gaussian source with the same

second moment. If the original source has memory, then the

same principle generalizes with the corresponding Gaussian

source having the same autocorrelation function as the original

source [1, Section 4.6].

In this paper, we focus on a simple general parametric

representation of the rate–distortion function which seems to

set the stage for the derivation of a rather wide family of

both upper bounds and lower bounds on the rate–distortion

function. In this parametric representation, both the rate and

the distortion are given by integrals whose integrands include

the minimum mean square error (MMSE) of the distortion

based on the source symbol, with respect to a certain joint

distribution of these two random variables. More concretely,

given a memoryless source designated by a random variable

(RV) X , governed by a probability function1 p(x), a reproduc-

tion variable Y , governed by a probability function q(y), and

a distortion measure d(x, y), the rate and the distortion can be

represented parametrically via a real parameter s ∈ [0,∞) as

follows:

Ds = D0 −

∫ s

0

dŝ · mmseŝ(∆|X)

= D∞ +

∫
∞

s

dŝ · mmseŝ(∆|X) (1)

and

Rq(Ds) =

∫ s

0

dŝ · ŝ · mmseŝ(∆|X)

= Rq(D∞) −

∫
∞

s

dŝ · ŝ · mmseŝ(∆|X), (2)

where Ds is the distortion pertaining to parameter value s,

Rq(Ds) is the rate–distortion function w.r.t. reproduction dis-

tribution q, computed at Ds, ∆ = d(X, Y ), and mmses(∆|X)
is the MMSE of estimating ∆ based on X , where the joint

probability function of (X, ∆) is induced by the following

joint probability function of (X, Y ):

ps(x, y) = p(x) · ws(y|x) = p(x) ·
q(y)e−sd(x,y)

Zx(s)
(3)

1Here, and throughout the sequel, the term “probability function” refers to
a probability mass function in the discrete case and to a probability density
function in the continuous case.
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