
On Maintaining Multiple Versions in STM

Dmitri Perelman∗ Rui Fan∗ Idit Keidar∗

May 16, 2010

Abstract

An effective way to reduce the number of aborts in software transactional memory (STM) is to keep

multiple versions of transactional objects. In this paper, we study inherent properties of STMs that use

multiple versions to guarantee successful commits of all read-only transactions.

We first show that these STMs cannot be disjoint-access parallel. We then consider the problem of

garbage collecting old object versions, and show that no STM can be optimal in the number of previous

versions kept. Moreover, we show that garbage collecting useless versions is impossible in STMs that

implement invisible reads. Finally, we present an STM algorithm using visible reads that efficiently

garbage collects useless object versions.

1 Introduction

Transactional memory [12, 18] is a popular paradigm for concurrent computing in modern multi-core ar-

chitectures. Most current transactional memory implementations are software toolkits, or STMs for short.

STMs speculatively allow multiple transactions to proceed concurrently, before knowing all possible data

dependencies between them. This optimistic approach inevitably leads to aborting transactions in some

cases, such as when data dependencies introduce inconsistencies. When many transactions contend on the

same data objects, aborts may become frequent, causing a devastating effect on performance [2, 15]. There-

fore, reducing the number of aborts is an important challenge for STMs.

While some aborts are unavoidable, existing STMs tend to be over-conservative, and also abort trans-

actions that could have been committed without violating consistency. Such unnecessary aborts often stem

from coarse-grained inconsistency detection. Consider the scenario depicted in Figure 1. We depict transac-

tional histories in the style of [17]. An object oi’s state in time is represented as a horizontal line, with time

proceeding left to right. Transactions are drawn as polylines, with circles representing accesses to objects.

Filled circles indicate writes, and empty circles indicate reads. A commit is indicated by the letter C, and an

abort by the letter A. A read operation returning an old value of an object is indicated by a dotted arc line.

The initial value of object oi is denoted by o0

i , and the value written to oi by the j’th write is denoted by o
j
i .

In the scenario depicted in Figure 1 transaction T2 reads an object o1, then another transaction T3 updates

objects o1 and o2, and commits. Assume that T2 now tries to read o2. Reading the value o2

2
written by T3

would violate correctness, since T2 does not read the value o1

2
written by T3. In a single-versioned STM,

illustrated in Figure 1(a), T2 must abort. However, a multi-versioned STM may keep both versions o1

2
and

o2

2
of o2, and may return o1

2
to T2, as illustrated in Figure 1(b). This allows T2 to successfully commit, in

spite of its conflict with T3.

∗Department of Electrical Engineering, Technion, Haifa, Israel {dima39@tx,rfan@ee,idish@ee}.technion.ac.il

1

lesley
Text Box
CCIT REPORT #765 May 2010

