CCIT Report #7/82 January 2011

A shared file system abstraction for heterogeneous architectures

Mark Silberstein, Idit Keidar
Technion

Abstract Problem: coupling with CPU process. An accelera-
tor needs dostingCPU process to manage its (separate)
We advocate the use of high-level OS abstractionsBRysical memory, and invoke computations; the accelera-
heterogeneous systems, such as CPU-GPU hybrids. e state is associated with that process.
suggest the idea of aimter-device shared file system Implication 1: no standalone applicationsOne can-
(IDFS) for such architectures. The file system prawot build accelerator-only programs, thus making modu-
vides a unified storage space for seamless data shalaigoftware development harder.
among processors and accelerators via a standard weltnplication 2: no portability. Both the CPU and the
understood interface. It hides the asymmetric natuaecelerator have to match program’s target platform.
of CPU-accelerator interactions, as well as architecturebmplication 3: no fault-toleranceFailure of the hosting
specific inter-device communication models, thereby fprocess causes also state loss of the accelerator program.
cilitating portability and usability. We explore the desig Implication 4: no intra-accelerator data sharindvul-
space for realizing IDFS as an in-memory inter-deviagple applications using the same accelerator are isolated
shared file system for hybrid CPU-GPU architectures. and cannot access each others’ data in the accelerator’s
. memory. Sharing is thus implemented via redundant stag-
1 The case for better abstractions ing of the data to a CPU.
Problem: lack of I/O capabilities. Accelerators cannot
Recent years have seen increasirigferogeneousys- nitiate 1/0 operations, and have no direct access to the
tem designs featuring multiple hardware acceleratogspy memory. Thus, the data for accelerator programs
These have become common in a wide variety of sygyst be explicitly staged to and from its physical memory.
tems of different scales and purposes, ranging from €Mmplication 1: no dynamic working setThe hosting
bedded SoC, through server processors (IBM PowerMB)ocess must pessimistically transfer all the data the ac-
and desktops (GPUs) to supercomputers (GPUs, Cledferator would potentially access, which is inefficient fo
Speed, IBM Cell). Furthermore, the “wheel of reincarngppjications with the working sets determined at runtime.
tion” [8] and economy-of-scale considera.tions are driVi”glmplication 2: no inter-device sharing supporro-
toward fully programmableaccelerators witharge mem- o-ams employing multiple accelerators need the host-
ory capacity such as today’s GPUs ing process to implement data sharing between them by
Despite the growing programmability of acceleratorgyeans of CPU memory.

developers still live in the “medieval” era of explicitlypoplem: no standard inter-device memory model.

asymmetric, low-level programming models. Emergingecelerators typically provide a relaxed consistency
development environments such as NVIDIA CUDA ang,oqe| [1] for concurrent accesses by a CPU and an ac-
OpenCL [1] focus on the programming aspects of theyerator to its local memory. Such a model essentially

accelerator hardware, but largely overlook its interagsces memory consistency at the accelerator invocation
tion with other accelerators and CPUs. In that contextq termination boundaries only.

they ignore the increasing self-sufficiency of accelemtor_lmpncaﬂon: no long-running accelerator programs.

and lock the programmers in an asymmetric CPU-CeNtiie cojerator programs have to be terminated and restarted
model with accelerators treated as co-processors, secqﬂpé CPU before they can access newly staged data

class cmzenshundﬁr C(I;’U control..) Implication: no forward compatibility Programs using
We argue that this idiosyncratic asymmetric prograngs njieit synchronization between data transfers and accel

ming model has destructive consequences on the PPy, inyocations will require significant programming

grammability and efficiency of accelerator-based SysteM%orts to adapt to more flexible memory models likely
Below we list the main constraints induced by this asyms pacome available in the future

metric approach.

2NVIDIA GPUs enable dedicated write-shared memory regions in
INVIDIA GPUs support up to 64GB of memory. the CPU memory, but with low bandwidth and high access latency.

lesley
Text Box
CCIT Report #782 January 2011

