
A shared file system abstraction for heterogeneous architectures

Mark Silberstein, Idit Keidar
Technion

Abstract

We advocate the use of high-level OS abstractions in
heterogeneous systems, such as CPU-GPU hybrids. We
suggest the idea of aninter-device shared file system
(IDFS) for such architectures. The file system pro-
vides a unified storage space for seamless data sharing
among processors and accelerators via a standard well-
understood interface. It hides the asymmetric nature
of CPU-accelerator interactions, as well as architecture-
specific inter-device communication models, thereby fa-
cilitating portability and usability. We explore the design
space for realizing IDFS as an in-memory inter-device
shared file system for hybrid CPU-GPU architectures.

1 The case for better abstractions

Recent years have seen increasinglyheterogeneoussys-
tem designs featuring multiple hardware accelerators.
These have become common in a wide variety of sys-
tems of different scales and purposes, ranging from em-
bedded SoC, through server processors (IBM PowerMP),
and desktops (GPUs) to supercomputers (GPUs, Clear-
Speed, IBM Cell). Furthermore, the “wheel of reincarna-
tion” [8] and economy-of-scale considerations are driving
toward fully programmableaccelerators withlarge mem-
ory capacity, such as today’s GPUs1.

Despite the growing programmability of accelerators,
developers still live in the “medieval” era of explicitly
asymmetric, low-level programming models. Emerging
development environments such as NVIDIA CUDA and
OpenCL [1] focus on the programming aspects of the
accelerator hardware, but largely overlook its interac-
tion with other accelerators and CPUs. In that context
they ignore the increasing self-sufficiency of accelerators
and lock the programmers in an asymmetric CPU-centric
model with accelerators treated as co-processors, second-
class citizens under CPU control.

We argue that this idiosyncratic asymmetric program-
ming model has destructive consequences on the pro-
grammability and efficiency of accelerator-based systems.
Below we list the main constraints induced by this asym-
metric approach.

1NVIDIA GPUs support up to 64GB of memory.

Problem: coupling with CPU process. An accelera-
tor needs ahostingCPU process to manage its (separate)
physical memory, and invoke computations; the accelera-
tor’s state is associated with that process.

Implication 1: no standalone applications.One can-
not build accelerator-only programs, thus making modu-
lar software development harder.

Implication 2: no portability. Both the CPU and the
accelerator have to match program’s target platform.

Implication 3: no fault-tolerance.Failure of the hosting
process causes also state loss of the accelerator program.

Implication 4: no intra-accelerator data sharing.Mul-
tiple applications using the same accelerator are isolated
and cannot access each others’ data in the accelerator’s
memory. Sharing is thus implemented via redundant stag-
ing of the data to a CPU.
Problem: lack of I/O capabilities. Accelerators cannot
initiate I/O operations, and have no direct access to the
CPU memory2. Thus, the data for accelerator programs
must be explicitly staged to and from its physical memory.

Implication 1: no dynamic working set.The hosting
process must pessimistically transfer all the data the ac-
celerator would potentially access, which is inefficient for
applications with the working sets determined at runtime.

Implication 2: no inter-device sharing support.Pro-
grams employing multiple accelerators need the host-
ing process to implement data sharing between them by
means of CPU memory.
Problem: no standard inter-device memory model.
Accelerators typically provide a relaxed consistency
model [1] for concurrent accesses by a CPU and an ac-
celerator to its local memory. Such a model essentially
forces memory consistency at the accelerator invocation
and termination boundaries only.

Implication: no long-running accelerator programs.
Accelerator programs have to be terminated and restarted
by a CPU before they can access newly staged data.

Implication: no forward compatibility. Programs using
explicit synchronization between data transfers and accel-
erator invocations will require significant programming
efforts to adapt to more flexible memory models likely
to become available in the future.

2NVIDIA GPUs enable dedicated write-shared memory regions in
the CPU memory, but with low bandwidth and high access latency.

1

lesley
Text Box
CCIT Report #782 January 2011

