An exact algorithm for energy-efficient acceleration of tas Kk
trees on CPU/GPU architectures.

Mark Silberstein
marks@cs.technion.ac.il
Electrical Engineering Department
Technion — Israel Institute of Technology

ABSTRACT

We consider the problem of energy-efficient acceleration of
applications comprising multiple interdependent tasks form-
ing a dependency tree, on a hypothetical CPU/GPU system
where both a CPU and a GPU can be powered off when idle.
Each task in the tree can be invoked on both a GPU or a
CPU, but the performance may vary: some run faster on a
GPU, others prefer a CPU, making the choice of the lowest-
energy processor input dependent. Furthermore, greedily
minimizing the energy consumption for each task is sub-
optimal because of the additional energy required for the
communication between the tasks executed on different pro-
Cessors.

We propose an efficient algorithm, which accounts for the
energy consumption of a CPU and a GPU for each task, as
well as for the communication costs of data transfers between
them, and constructs an optimal acceleration schedule with
provably minimal total consumed energy.

We evaluate the algorithm in the context of a real appli-
cation having task dependency tree structure, and show up
to 2.5-fold improvement in the expected energy consump-
tion versus CPU only or GPU only schedule, and up to 50%
improvement over the communication unaware schedule on
real inputs. We also show another application of this algo-
rithm which allows to achieve up to a 2-fold speedup in real
CPU/GPU systems.

1. INTRODUCTION

Energy efficiency has become one of the central goals in
contemporary hardware designs, in particular for embed-
ded processors and SoCs, often at the expense of the peak
performance. To this end, many systems already implement
software-controlled dynamic power management, sometimes
allowing to completely shut down idle components, quickly
turning them back on when necessary. For example, NVIDIA
Optimus technology [1] enables dynamic switching between
power-hungry high-performance discreet GPU to the inte-

January 2011

CCIT Report #783

GPU task invocation

180~ — GPU Power b
L — - CPU Power 4
160 [‘ M —

140~ —
120— —

100 CPU task invocatoin B

80 :/J b n-«w-.._-v-«-l
i 1 4
i

401 —
Time

Figure 1: An example of power consumed by CPU
and GPU when running the same task.

grated low-power GPU to extend the battery life.

We believe that similar capabilities will be also available in
the GP-GPU world, allowing for almost complete power off
and zero-overhead power up of both a CPU and a GPU to
enable prolonged battery life in mobile platforms.

However, without appropriate software support, energy-efficient

hardware by itself will not allow energy-efficient execution.
Consider an application which comprises two independent
tasks. Both can be executed on a CPU or a GPU, but their
performance vary: while the first runs faster on a GPU, the
second does not benefit from the massive parallelism. In
fact, it is easy to minimize makespan of the application by
executing tasks where they perform best.

In order to achieve energy-efficient execution we also need to
know the actual power dissipated by each processor. To il-
lustrate the difference between the CPU and GPU power
consumption today, Figure 1 shows the power consumed
when executing the same task on all 4 cores of AMD Phenom
9500 Quad-core processor and a GTX285 NVIDIA GPU.
While the GPU requires slightly less time, the CPU con-
sumes about 50% less energy in total. Predicting GPU
power consumption by statistical methods or via modeling
has been investigated before [7], and can be used by the
application scheduler to assign the tasks accordingly.


lesley
Text Box
CCIT Report #783
 January 2011




