
Memristor-based IMPLY Logic Design Procedure

Shahar Kvatinsky, Avinoam Kolodny,

and Uri C. Weiser

Department of Electrical Engineering

Technion – Israel Institute of Technology

Haifa 32000 ISRAEL

{skva@tx, kolodny@ee, uri.weiser@ee}.technion.ac.il

Eby G. Friedman

Department of Electrical and Computer Engineering

University of Rochester

Rochester, NY 14627 USA

friedman@ece.rochester.edu

Abstract — Memristors can be used as logic gates. No design

methodology exists, however, for memristor-based combinatorial

logic. In this paper, the design and behavior of a memristive-

based logic gate – an IMPLY gate - are presented and design

issues such as the tradeoff between speed (fast write times) and

correct logic behavior are described, as part of an overall design

methodology. A memristor model is described for determining

the write time and state drift. It is shown that the widely used

memristor model - a linear ion drift memristor - is impractical

for characterizing an IMPLY logic gate, and a different

memristor model is necessary such as a memristor with a current

threshold.

Keywords- memristor; memristive systems; IMPLY; design

methodology; logic

I. INTRODUCTION

Memristors are passive elements with varying resistance

(also known as a memristance), conceived theoretically in [1].

Changes in the memristance depend upon the history of the

device, the total charge which passes through it, or,

alternatively, the total flux in the device (the integral over time

of the applied voltage at the ports of the device).

In 2008, Hewlett-Packard announced the fabrication of a

working memristor [2]. A linear ion drift model was proposed

for describing the behavior of this memristor. The memristance

of a linear ion drift memristor is

2

() 1 ()v ON
OFF

R
M q R q t

D

� = −
 , (1)

where ROFF and RON are, respectively, the maximum and

minimum resistance of the memristor, µv is the average ion

mobility, D is the memristor physical thickness, and q(t) is the

total charge passing through the memristor. The linear ion drift

model is the most commonly used memristor model, although

practical memristors exhibit highly non-linear behavior.

Memristors can be used for numerous applications, such as

memory [3], neuromorphic systems [4], and analog circuits

(e.g., see [5]). One interesting application of memristors is

logic, using memristors as building blocks of logic gates. To

use memristors in a digital manner, a high memristance is

considered as logic 0 and a low memristance is considered as

logic 1. Several approaches for memristor-based logic have

been proposed, e.g., [6] and [7], which suggest using

memristors as configurable switches as in an FPGA. The logic

gates are designed as CMOS gates or as programmable

majority logic array (PMLA) based on Goto pairs as logic gates

[8].

Another approach is to use memristors as the primary

building blocks of a logic gate. Each memristor acts as an

input, output, computational logic element, and a latch in

different stages of the computing process [9]. In [10], a

memristor-based logic gate - the IMPLY gate, is presented.

Since this logic function together with FALSE (a function that

always yields the value 0 as an output) comprise a

computationally complete logic structure, it may potentially

provide a basic logic element for a memristor-based circuit.

The truth table for p IMPLY q is listed in Table 1. Unlike

CMOS logic [11], no design methodology exists for memristor-

based logic circuits.

In this paper, a design methodology is suggested for

memristor-based IMPLY logic gates. A memristor-based

IMPLY gate and related limitations are also presented here.

The tradeoff between performance and robustness is described

as well as the necessity to refresh the logic gate.

This paper is organized as follows. In Section II, the

operation of a memristor-based IMPLY gate is described. In

section III, the performance and limitations of this logic gate

are presented. In section IV, a design example is described, and

simulation results of the IMPLY gate are shown. The paper is

summarized in section V.

II. MEMRISTOR-BASED IMPLY GATE

The logic function p→q (also known as "p IMPLIES q,"

"material implication," and "if p then q") is described in [10].

The proposed memristor logic is based upon a resistor RG (RON

< RG < ROFF) connected to two memristors, named P and Q,

acting as digital switches. The corresponding initial

memristances p and q are the inputs of the gate; while the

output of the gate is the final memristance of Q (the result is

written into the logic state q). A schematic of an IMPLY gate

is shown in Figure 1.

The basic concept is to apply different negative voltages to

P and Q, where VSET, the applied voltage on Q, has a higher

magnitude than VCOND, the applied magnitude on P

(|VCOND| < |VSET |). If p = 1 (low resistance), the voltage on the

common terminal is approximately VCOND and the voltage on

This work was partially supported by Hasso Plattner Institute and by Intel

grant "Heterogeneous Computing, the Inevitable Solution: Power

Management, Scheduling and ISA" grant no. 864-737-13.

lesley
Text Box
CCIT Report #795 August 2011

