
Merge Path – Cache-Efficient Parallel Merge and Sort

Saher Odeh, Oded Green , Zahi Mwassi, Oz Shmueli, Yitzhak Birk

Electrical Engineering Department

Technion

Haifa, Israel

{sahero, ogreen, zahim}@tx.technion.ac.il, {shmueli, birk}@ee.technion.ac.il

Abstract—Merging two sorted arrays is a prominent

building block for sorting and other functions. Its efficient

parallelization requires balancing the load among compute

cores, minimizing the extra work brought about by

parallelization, and minimizing inter-thread synchronization

requirements. Due to the extremely low compute to memory-

access ratio, it is also critically important to efficiently utilize

the memory system: minimize memory traffic, maximize the

cache hit rate and minimize cache-coherence related activity.

We present a novel approach to partitioning the two sorted

arrays into pairs of contiguous sequences of elements, one from

each array, such that 1) each pair comprises any desired total

number of elements, and 2) the elements of each pair form a

contiguous sequence in the final merged sorted array. While

the resulting partition and the computational complexity are

similar to those of certain previous algorithms, our approach is

different, extremely intuitive, and offers interesting insights.

Based on this, we present a synchronization-free, cache-

efficient merging (and sorting) algorithm. While we use CREW

PRAM as the basis, our algorithm is easily adaptable to

additional architectures. In fact, our approach is even relevant

to sequential cache-efficient sorting. The new algorithm has

been implemented both on the HyperCore many-core shared-

cache architecture and on a sizable x86 system, with emphasis

on cache efficiency. The algorithms and performance results

are presented, along with important cache-related insights.

Keywords-component; Cache Memories; Parallelism and

concurrency; Parallel processors; Sorting and searching

I. INTRODUCTION

Merging two sorted arrays, and to form a sorted

array is an important utility, and is the core the of merge-

sort algorithm [1]. The merging (e.g., in ascending order) is

carried out by repeatedly comparing the smallest (lowest-

index) as-yet unused elements of the two arrays, and

appending the smaller of those to the result array.

Given an (unsorted) N-element array, merge-sort

comprises a sequence of log2N rounds: in the first round,

N/2 disjoint pairs of adjacent elements are sorted, forming

N/2 sorted arrays of size two. In the next round, each of the

N/4 disjoint pairs of two-element arrays is merged to form a

sorted 4-element array. In each subsequent round, array

pairs are similarly merged, eventually yielding a single

sorted array.

Consider the parallelization of merge-sort using

compute cores (or processors or threads, terms that will be

used synonymously). Whenever , the early

rounds are trivially parallelizable, with each core assigned a

subset of the array pairs. This, however, is no longer the

case in later rounds, as only few arrays remain. Because the

total amount of computation is the same for all rounds,

effective parallelization thus requires the ability to

parallelize the merging of two sorted arrays.

An efficient Parallel Merge algorithm must have several

salient features, some of which are required due to the very

low compute to memory-access ratio: 1) equal amounts of

work for all cores; 2) minimal inter-core communication

(platform-dependent ramifications); 3) minimum excess

work (for parallelizing, as well as replication of effort); and

4) efficient access to memory (high cache hit rate and

minimal cache-coherence overhead). Coherence issues may

arise due to concurrent access to the same address, but also

due to concurrent access to different addresses in the same

cache line (false sharing). Memory issues have platform-

dependent manifestations.
The naïve approach to parallel merge entails partitioning

each of the two arrays into equal-length contiguous sub-
arrays and assigning a pair of same-numbered sub arrays to
each core. Each core then merges its pair to form a single
sorted array, and those are concatenated to yield the final
result. Unfortunately, this is incorrect. (To see this, consider
the case wherein all the elements of A are greater than all
those of B.) So, correct partitioning is the key to success.

In this paper, we present a parallel merge algorithm for
Parallel Random Access Machines (PRAM), namely shared-
memory architectures that permit concurrent (parallel) access
to memory. PRAM systems are further categorized as
CRCW, CREW, ERCW or EREW, where C, E, R and W
denote concurrent, exclusive, read and write, respectively.
Our algorithm assumes CREW, but can be adapted. Also,
complexity calculations assume equal access time of any
core to any address, but this is not a requirement.

Our algorithm is load-balanced, lock-free, requires
negligible excess work, and is extended to a memory-
efficient version. Being lock-free, the algorithm does not rely
on a set of atomic instructions of any particular platform.
The efficiency of memory access is also not confined to one
kind of architecture; in fact, the memory access is efficient
for both private- and shared-cache architectures.

———————————————— Oded Green is currently with the School of Computational Science and
Engineering at Georgia Tech, GA 30332. This work was done while Oded was
at the Technion.

lesley
Text Box
CCIT Report #802 January 2012

