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Abstract

The first part of this work considers the entropy of the sum of (possibly dependent and non-identically distributed) Bernoulli

random variables. Upper bounds on the error that follows from an approximation of this entropy by the entropy of a Poisson

random variable with the same mean are derived via the Chen-Stein method. The second part of this work derives new lower

bounds on the total variation distance and relative entropy between the distribution of the sum of independent Bernoulli random

variables and the Poisson distribution. The starting point of the derivation of the new bounds in the second part of this work

is an introduction of a new lower bound on the total variation distance, whose derivation generalizes and refines the analysis

by Barbour and Hall (1984), based on the Chen-Stein method for the Poisson approximation. A new lower bound on the

relative entropy between these two distributions is introduced, and this lower bound is compared to a previously reported

upper bound on the relative entropy by Kontoyiannis et al. (2005). The derivation of the new lower bound on the relative

entropy follows from the new lower bound on the total variation distance, combined with a distribution-dependent refinement of

Pinsker’s inequality by Ordentlich and Weinberger (2005). Upper and lower bounds on the Bhattacharyya parameter, Chernoff

information and Hellinger distance between the distribution of the sum of independent Bernoulli random variables and the

Poisson distribution with the same mean are derived as well via some relations between these quantities with the total variation

distance and the relative entropy. The analysis in this work combines elements of information theory with the Chen-Stein

method for the Poisson approximation. The resulting bounds are easy to compute, and their applicability is exemplified.

Index Terms

Chen-Stein method, Chernoff information, entropy, error bounds, error exponents, Poisson approximation, relative entropy,

total variation distance.

AMS 2000 Subject Classification: Primary 60E07, 60E15, 60G50, 94A17.

I. INTRODUCTION

Convergence to the Poisson distribution, for the number of occurrences of possibly dependent events, naturally

arises in various applications. Following the work of Poisson, there has been considerable interest in how well the

Poisson distribution approximates the binomial distribution. This approximation was treated by a limit theorem in

[15, Chapter 8], and later some non-asymptotic results have considered the accuracy of this approximation. Among

these old and interesting results, Le Cam’s inequality [35] provides an upper bound on the total variation distance

between the distribution of the sum Sn =
∑

n

i=1
Xi of n independent Bernoulli random variables {Xi}

n
i=1

, where

Xi ∼ Bern(pi), and a Poisson distribution Po(λ) with mean λ =
∑

n

i=1
pi. This inequality states that
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so if, e.g., Xi ∼ Bern
(

λ

n

)

for every i ∈ {1, . . . , n} (referring to the case that Sn is binomially distributed) then this

upper bound is equal to λ2

n
, thus decaying to zero as n tends to infinity. This upper bound was later improved, e.g.,

by Barbour and Hall (see [4, Theorem 1]), replacing the above upper bound by
(

1−e−λ

λ

)

∑

n

i=1
p2

i
and therefore

improving it by a factor of 1

λ
when λ is large. This improved upper bound was also proved by Barbour and Hall

to be essentially tight (see [4, Theorem 2]) with the following lower bound on the total variation distance:
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