
ACID-RAIN: ACID Transactions in a Resilient Archive

with Independent Nodes

Ittay Eyal1, Ken Birman2, Idit Keidar1, and Robbert van-Renesse2

1Department of Electrical Engineering, Technion, Haifa, Israel
2Department of Computer Science, Cornell Univerisity, Ithaca, NY, USA

Abstract

In cloud-scale data centers, it is common to shard data

across many nodes, each maintaining a small subset of

the data. Although ACID transactions are desirable,

architects often avoid them due to performance con-

cerns. We present a novel architecture for support of

low-latency high-throughput ACID transactions in a Re-

silient Archive with Independent Nodes (ACID-RAIN).

ACID-RAIN uses logs in a novel way, limiting reliability

to a single scalable tier. A large set of independent fault-

prone nodes form an outer layer that caches the sharded

data, backed by a set of independent highly available log

services. ACID-RAIN dramatically reduces concurrency

conflicts by using prediction to order transactions before

they take actions that would lead to an abort. Simula-

tions using the Transactional-YCSB workloads demon-

strate scalability and effective contention handling.

1 Introduction

Large-scale data-center computing systems often employ

massive data sets, sharded (partitioned) over many stor-

age nodes. When client transactions access shared data

items, the issue of consistency arises. Ideally, we would

use a system with ACID transactions [2, 18, 1], because

this model facilitates reasoning about system properties

and makes possible a variety of high-assurance guaran-

tees. Nonetheless, the ACID model is widely avoided

due to efficiency concerns [15].

In case ACID transactions are needed, one of two ap-

proach is commonly used. The first is to use a central

highly available certification entity (e.g., [16, 23]) for se-

rializing transactions. However, such a central certifi-

cation entity has limited throughput, and therefore, this

approach cannot scale beyond a certain point.

Another option is to use a combination of locking or

optimistic concurrency control (OCC) with timestamped

version management in each shard, together with two

phase commit (2PC) across shards. However, 2PC is

generally avoided in high-availability systems due to per-

formance and fault-tolerance concerns. In case of fail-

ures, specifically, of the 2PC coordinator, which is not a

rare event in a large-scale system, all potentially conflict-

ing transactions must block until the failure is mended.

To avoid that, existing systems [6, 9] replace the 2PC

coordinator with a highly available one. This severely

harms throughput, as we demonstrate in Section 5.

In this paper, we present ACID-RAIN — an architec-

ture for ACID transactions in a Resilient Archive with

Independent Nodes. It is depicted in Figure 1. Our ap-

proach uses logs in a novel manner. A set of independent

highly-available logs collaboratively describe the state of

the entire system, i.e., one would need to combine all

logs in order to learn the global state. Each log is ac-

cessed through an Object Manager (OM) that caches the

data and provides the data structure abstraction. Transac-

tion Managers (TMs) provide the atomic transaction ab-

straction, certifying a given transaction by checking for

conflicts in each log via its OM. The benefit of our ap-

proach is that other than the logs, no system entities are

required to be highly-available. OMs and TMs that are

suspected to have failed can be instantly replaced; safety

is not violated by multiple copies running concurrently.

Our system uses a form of OCC: OMs respond to con-

current TM instructions with no locks. To improve la-

tency, the OMs serve requests from speculative local data

structures, referring to the logs only for certification. To

decrease abort rate, we use predictors that foresee the

likely access pattern of transactions; such predictors can

be implemented with machine learning tools [25]. To

leverage prediction, a transaction leases a version of an

object for its use. Note that unlike locks, failure to re-

spect a lease does not violate safety, and therefore does

not delay OM restoration on failures.

We evaluate ACID-RAIN through simulation with the

transactional YCSB benchmark [13, 14]. We demon-

strate the algorithm’s linear scalability, compared to the

other approaches mentioned above, and the effectiveness

of using accurate and inaccurate predictors.

1

lesley
Text Box
CCIT Report #827 March 2013

